Primes Presentation

Thomas Browning

November 6, 2018

1 Algebraic Number Theory

Recall that a number field is a finite extension of \mathbb{Q} . If K is a number field then we define \mathcal{O}_K to be the ring of algebraic integers of K or, equivalently, the integral closure of \mathbb{Z} in K. For every nonzero ideal I of \mathcal{O}_K , the quotient \mathcal{O}_K/I is finite and we define the norm of I to be the cardinality $|\mathcal{O}_K/I|$. The ring \mathcal{O}_K is a Dedekind domain. This means that every nonzero prime ideal of \mathcal{O}_K is maximal and that every nonzero ideal of \mathcal{O}_K factors as a finite product of nonzero prime ideals. Furthermore, this factorization is unique up to permutation. In other words, every nonzero ideal of \mathcal{O}_K is of the form $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_g^{e_g}$ for distinct nonzero prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_g$ of \mathcal{O}_K and positive integers e_1, \dots, e_g . A fractional ideal of \mathcal{O}_K is a nonzero finitely-generated \mathcal{O}_K -submodule of K. Fractional ideals of \mathcal{O}_K form a group I_K under multiplication with \mathcal{O}_K as the identity element. The group of fractional ideals of \mathcal{O}_K is a free abelian group with the nonzero prime ideals of \mathcal{O}_K as a basis. In other words, every fractional ideal of \mathcal{O}_K is of the form $\mathfrak{p}_1^{e_1} \dots \mathfrak{p}_g^{e_g}$ for distinct nonzero prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_g$ of \mathcal{O}_K and integers e_1, \dots, e_g . A principal fractional ideal of \mathcal{O}_K is a fractional ideal of \mathcal{O}_K is a fractional ideal of \mathcal{O}_K is a nonzero prime ideal of \mathcal{O}_K is called the ideal class group of K and is denoted by $C(\mathcal{O}_K)$. The ideal class group of K will always be a finite abelian group.

Example 1. Let $n \neq 0, 1$ be a squarefree integer and let $K = \mathbb{Q}(\sqrt{n})$. Consider an element $\alpha = a + b\sqrt{n} \in K$ with *b* nonzero. The minimal polynomial of α is given by $x^2 - 2ax + a^2 - nb^2$. As a consequence, $\alpha \in \mathcal{O}_K$ if and only if both $2a \in \mathbb{Z}$ and $a^2 - nb^2 \in \mathbb{Z}$. From this, it can be shown that

$$\mathcal{O}_K = \begin{cases} \mathbb{Z} \begin{bmatrix} \frac{1+\sqrt{n}}{2} \end{bmatrix} & n \equiv 1 \pmod{4} \\ \mathbb{Z}[\sqrt{n}] & n \equiv 2, 3 \pmod{4} \end{cases}.$$

If n = -5 then $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$. We have the factoriation $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ where the elements $\{2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}\} \subseteq \mathcal{O}_K$ are all irreducible. This shows that \mathcal{O}_K is not a UFD. In terms of ideals, we have the factorization $(6) = (2)(3) = (1 + \sqrt{-5})(1 - \sqrt{-5})$. This does not contradict the uniqueness of prime factorization since none of these ideals are prime. In fact, we have the prime factorizations

$$(2) = \left(2, 1 - \sqrt{-5}\right) \left(2, 1 + \sqrt{-5}\right)$$
$$(3) = \left(3, 1 - \sqrt{-5}\right) \left(3, 1 + \sqrt{-5}\right)$$
$$\left(1 + \sqrt{-5}\right) = \left(2, 1 + \sqrt{-5}\right) \left(3, 1 + \sqrt{-5}\right),$$
$$\left(1 - \sqrt{-5}\right) = \left(2, 1 - \sqrt{-5}\right) \left(3, 1 - \sqrt{-5}\right).$$

Let K be a number field and let L be a finite extension of K. If \mathfrak{p} is a nonzero prime ideal of \mathcal{O}_K then $\mathfrak{p}\mathcal{O}_L$ is a nonzero ideal of \mathcal{O}_L and has a factorization $\mathfrak{p}\mathcal{O}_L = \mathfrak{q}_1^{e_1} \dots \mathfrak{q}_g^{e_g}$ for distinct nonzero prime ideals $\mathfrak{q}_1, \dots, \mathfrak{q}_g$ of \mathcal{O}_L and positive integers e_1, \dots, e_g . The integer $e_i = e_{\mathfrak{q}_i|\mathfrak{p}}$ is called the ramification index of $\mathfrak{q}_i|\mathfrak{p}$.

The inclusion $\mathfrak{p} \subseteq \mathfrak{q}_i$ gives a residue field extension $\mathcal{O}_K/\mathfrak{p} \subseteq \mathcal{O}_L/\mathfrak{q}_i$ of degree $f_i = f_{\mathfrak{q}_i|\mathfrak{p}}$ which is called the inertia degree of $\mathfrak{q}_i|\mathfrak{p}$. We have the relation

$$\sum_{i=1}^{f} e_i f_i = [L:K]$$

We say that \mathfrak{p} is ramified in L if any ramification index e_i is larger than 1. There will only be finitely many nonzero prime ideals of \mathcal{O}_K that ramify in L. We say that \mathfrak{p} is totally ramified in L if $e_1 = [L : K]$ and $f_1 = 1$ and g = 1. We say that \mathfrak{p} is inert in L if $e_1 = 1$ and $f_1 = [L : K]$ and g = 1. We say that \mathfrak{p} splits completely in L if $e_i = f_i = 1$ for all i and g = [L : K]. If L/K is Galois with Galois group $G = \operatorname{Gal}(L/K)$ then G acts transitively on the \mathfrak{q}_i so $e_1 = \ldots = e_g$ and $f_1 = \ldots = f_g$. In this case, efg = [L : K].

Example 2. Let $K = \mathbb{Q}$ and let $L = \mathbb{Q}(\sqrt{-5})$. Then we have the prime factorizations

$$2\mathcal{O}_{L} = \left(2, 1 + \sqrt{-5}\right)^{2},$$

$$3\mathcal{O}_{L} = \left(3, 1 - \sqrt{-5}\right)\left(3, 1 + \sqrt{-5}\right),$$

$$5\mathcal{O}_{L} = \left(\sqrt{-5}\right)^{2},$$

$$7\mathcal{O}_{L} = \left(7, 3 - \sqrt{-5}\right)\left(7, 3 + \sqrt{-5}\right),$$

$$11\mathcal{O}_{L} = (11),$$

so 2 and 5 ramify, 3 and 7 split, 11 is inert. Every number field K has a nonzero integer discriminant d_K . A prime p ramifies in K/\mathbb{Q} if and only if p divides d_K . For the quadratic field, the discriminant is given by

$$d_{\mathbb{Q}(\sqrt{-n})} = \begin{cases} n & n \equiv 1 \pmod{4} \\ 4n & n \equiv 2,3 \pmod{4} \end{cases}$$

In our case, $d_K = -20$ so only 2 and 5 ramify in K/\mathbb{Q} .

Let K be a number field, let L be a finite Galois extension of K, let \mathfrak{p} be a nonzero prime ideal of \mathcal{O}_K , and let \mathfrak{q} be a nonzero prime ideal of \mathcal{O}_L lying over \mathfrak{p} . The stabilizer subgroup

$$D_{\mathfrak{q}|\mathfrak{p}} = \{ \sigma \in \operatorname{Gal}(L/K) \colon \sigma(\mathfrak{q}) = \mathfrak{q} \}$$

is called the decomposition group of $\mathfrak{q}|\mathfrak{p}$. If $\sigma \in D_{\mathfrak{q}|\mathfrak{p}}$ then σ induces an automorphism $\overline{\sigma}$ of $\mathcal{O}_L/\mathfrak{q}$ which is the identity on $\mathcal{O}_K/\mathfrak{p}$. We obtain a homomorphism $\varphi_{\mathfrak{q}|\mathfrak{p}} \colon D_{\mathfrak{q}|\mathfrak{p}} \to \widetilde{G}$ where $\widetilde{G} = \operatorname{Gal}((\mathcal{O}_L/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p}))$. The homomorphism $\varphi_{\mathfrak{q}|\mathfrak{p}}$ is surjective with kernel

$$I_{\mathfrak{q}|\mathfrak{p}} = \{ \sigma \in \operatorname{Gal}(L/K) \colon \sigma(\alpha) \equiv \alpha \pmod{\mathfrak{q}} \text{ for all } \alpha \in \mathcal{O}_L \}$$

which is called the inertia group of q|p. We obtain a short exact sequence of finite abelian groups

$$1 \longrightarrow I_{\mathfrak{q}|\mathfrak{p}} \longrightarrow D_{\mathfrak{q}|\mathfrak{p}} \stackrel{\varphi_{\mathfrak{q}|\mathfrak{p}}}{\longrightarrow} \widetilde{G} \longrightarrow 1 \ .$$

The orbit-stabilizer theorem shows that $|D_{\mathfrak{q}|\mathfrak{p}}| = [L:K]/g_{\mathfrak{q}|\mathfrak{p}} = e_{\mathfrak{q}|\mathfrak{p}}f_{\mathfrak{q}|\mathfrak{p}}$. Also, $|\tilde{G}| = f_{\mathfrak{q}|\mathfrak{p}}$ by the definition of $f_{\mathfrak{q}|\mathfrak{p}}$. Thus, $|I_{\mathfrak{q}|\mathfrak{p}}| = e_{\mathfrak{q}|\mathfrak{p}}$. Now suppose that \mathfrak{p} is unramified in L. Then $e_{\mathfrak{q}|\mathfrak{p}} = 1$ so $I_{\mathfrak{q}|\mathfrak{p}} = 1$ and $\varphi_{\mathfrak{q}|\mathfrak{p}}$ is an isomorphism. The group \tilde{G} is cyclic and is generated by the Frobenius automorphism $x \mapsto x^{N(\mathfrak{p})}$. The corresponding element $\operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}} \in D_{\mathfrak{q}|\mathfrak{p}}$ is the unique element of G such that

$$\operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}}(\alpha) \equiv \alpha^{N(\mathfrak{p})} \pmod{\mathfrak{q}}$$

for all $\alpha \in \mathcal{O}_K$. For each $\sigma \in G$,

$$\sigma\left(\operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}}\left(\sigma^{-1}\left(\alpha\right)\right)\right) - \alpha^{N(\mathfrak{p})} = \sigma\left(\operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}}\left(\sigma^{-1}\left(\alpha\right)\right) - \sigma^{-1}(\alpha)^{N(\mathfrak{p})}\right) \in \sigma(\mathfrak{p})$$

which shows that $\operatorname{Frob}_{\sigma(\mathfrak{q})|\mathfrak{p}} = \sigma \operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}} \sigma^{-1}$. If G is abelian, then $\operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}}$ does not depend on \mathfrak{q} and we obtain the Artin symbol $\left(\frac{L/K}{\mathfrak{p}}\right) \in G$. If L/K is abelian and unramified then the Artin symbol is defined for all nonzero prime ideals \mathfrak{p} of \mathcal{O}_K and we obtain the Artin homomorphism

$$\left(\frac{L/K}{\cdot}\right): I_K \to \operatorname{Gal}(L/K)$$

The Artin homomorphism is always surjective.

Let K be a number field. There exists a maximal abelian unramified extension L of K called the Hilbert class field of K. The Artin reciprocity theorem for the Hilbert class field states that the kernel of the Artin homomorphism is P_K . We obtain a short exact sequence of abelian groups

$$1 \longrightarrow P_K \longrightarrow I_K \longrightarrow \operatorname{Gal}(L/K) \longrightarrow 1$$

Thus, $\operatorname{Gal}(L/K) \cong \operatorname{C}(\mathcal{O}_K)$. Then the Galois correspondence gives an inclusion-reversing bijection between unramified abelian extensions of K and subgroups of $C(\mathcal{O}_K)$. If M is an unramified abelian extension of K with $\operatorname{Gal}(L/M) \cong H \subseteq \operatorname{C}(\mathcal{O}_K)$ then we have the isomorphism

$$\operatorname{Gal}(M/K) \cong \operatorname{Gal}(L/K)/\operatorname{Gal}(L/M) \cong C(\mathcal{O}_K)/H.$$

This is known as class field theory for unramified abelian extensions.

Theorem 1 (Corollary 5.24 in [1]). Let K be a number field. Then there is an inclusion-reversing bijection between unramified abelian extensions of K and subgroups of $C(\mathcal{O}_K)$. If M is the unramified abelian extension of K that corresponds to the subgroup H of $C(\mathcal{O}_K)$ then we have an isomorphism $C(\mathcal{O}_K)/H \cong \operatorname{Gal}(M/K)$.

Let K be a number field, let L be the Hilbert class field of K, and let \mathfrak{p} be a nonzero prime ideal of \mathcal{O}_K . Then we have the following chain of biconditionals:

$$\mathfrak{p} \text{ splits completely in } L \iff f_{\mathfrak{q}|\mathfrak{p}} = 1 \\ \iff \operatorname{Gal}((\mathcal{O}_L/\mathfrak{q})/(\mathcal{O}_K/\mathfrak{p})) = 1 \\ \iff \operatorname{Frob}_{\mathfrak{q}|\mathfrak{p}} = 1 \\ \iff \left(\frac{L/K}{\mathfrak{p}}\right) = 1 \\ \iff \mathfrak{p} \in P_K.$$

Example 3. Consider the following lattice of fields:

Only 2 and 5 ramify in $\mathbb{Q}(\sqrt{-5})/\mathbb{Q}$. However, 2 does not ramify in $\mathbb{Q}(\sqrt{5})/\mathbb{Q}$ and 5 does not ramify in $\mathbb{Q}(\sqrt{-1})/\mathbb{Q}$. Since ramification index is multiplicative, $\mathbb{Q}(\sqrt{-1},\sqrt{5})$ is an unramified abelian extension of $\mathbb{Q}(\sqrt{-5})$. The class number of $\mathbb{Q}(\sqrt{-5})$ is 2 so $\mathbb{Q}(\sqrt{-1},\sqrt{5})$ is the Hilbert class field of $\mathbb{Q}(\sqrt{-5})$.

References

[1] Cox, David. Primes of the Form $x^2 + ny^2$. Wiley, 1989.