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1 Algebraic Number Theory

Recall that a number field is a finite extension of Q. If K is a number field then we define Ok to be the
ring of algebraic integers of K or, equivalently, the integral closure of Z in K. For every nonzero ideal I
of Ok, the quotient Ok /I is finite and we define the norm of I to be the cardinality |Ok/I|. The ring
Ok is a Dedekind domain. This means that every nonzero prime ideal of Ok is maximal and that every
nonzero ideal of Ok factors as a finite product of nonzero prime ideals. Furthermore, this factorization is
unique up to permutation. In other words, every nonzero ideal of O is of the form p§' ...pg’ for distinct
nonzero prime ideals pi,...,p, of Ox and positive integers e, ..., e4. A fractional ideal of O is a nonzero
finitely-generated Og-submodule of K. Fractional ideals of Ok can always be expressed as al for a nonzero
«a € K and a nonzero ideal I of O . The fractional ideals of Ok form a group I under multiplication with
Ok as the identity element. The group of fractional ideals of O is a free abelian group with the nonzero
prime ideals of O as a basis. In other words, every fractional ideal of Oy is of the form p§'...pg° for
distinct nonzero prime ideals pi,...,p, of Ok and integers e1,...,e4. A principal fractional ideal of Ok is
a fractional ideal of the form aQf for a nonzero a € K. The principal fractional ideals form a subgroup Pk
of Ix. The quotient Ix /P is called the ideal class group of K and is denoted by C(Og). The ideal class
group of K will always be a finite abelian group.

Example 1. Let n # 0,1 be a squarefree integer and let K = Q(y/n). Consider an element o = a+by/n € K
with b nonzero. The minimal polynomial of « is given by 22 — 2ax + a® — nb?. As a consequence, o € O if
and only if both 2a € Z and a? — nb? € Z. From this, it can be shown that

O — {Z [1+2‘/ﬂ =1 (mod 4) .
Z[\/n] n = 2,3 (mod 4)

If n = —5 then Ok = Z[/—5]. We have the factoriation 6 = 2-3 = (1+1/=5)(1 — v/=5) where the elements
{2,3,1 +/=5,1 — v/=5} C O are all irreducible. This shows that O is not a UFD. In terms of ideals,
we have the factorization (6) = (2)(3) = (1 + +/—5)(1 — v/=5). This does not contradict the uniqueness of
prime factorization since none of these ideals are prime. In fact, we have the prime factorizations

(2) = (21—\/—75)(2,1—1—\/—75)
(3) = (3:1-v=5) (3.1 +v=5)
(1+F) (21+F)(31+F)
(1-@):(2,1— 5)(31— —).

Let K be a number field and let L be a finite extension of K. If p is a nonzero prime ideal of O then
pOy is a nonzero ideal of O and has a factorization pOp = q7* ...qff for distinct nonzero prime ideals
q1,.--qg of O and positive integers ey, ..., e,. The integer e; = e, |, is called the ramification index of q;|p.



The inclusion p C g; gives a residue field extension O /p € Or/q; of degree f; = fq,, which is called the
inertia degree of q;|p. We have the relation

f
Z eifi =L
i=1

We say that p is ramified in L if any ramification index e; is larger than 1. There will only be finitely many
nonzero prime ideals of Ok that ramify in L. We say that p is totally ramified in L if e = [L : K| and
fi=1and g = 1. We say that p is inert in L if e; = 1 and f; = [L : K] and g = 1. We say that p splits
completely in L if e; = f; =1 for all i and g = [L : K]. If L/K is Galois with Galois group G = Gal(L/K)
then G acts transitively on the q; so e; = ... =¢4 and f1 = ... = f,. In this case, efg = [L : K].

Example 2. Let K = Q and let L = Q(+/—5). Then we have the prime factorizations

:(2,1+F)
3(9L:(3,1 )(31+F)

501 = (V5

:((7,) V=5) (7.3+ V=5),

so 2 and 5 ramify, 3 and 7 split, 11 is inert. Every number field K has a nonzero integer discriminant dg.
A prime p ramifies in K/Q if and only if p divides di. For the quadratic field, the discriminant is given by

P _Jn  n=1(mod4)
V=R T Y 4n n=2,3 (mod 4)

In our case, dxg = —20 so only 2 and 5 ramify in K/Q.

Let K be a number field, let L be a finite Galois extension of K, let p be a nonzero prime ideal of O,
and let q be a nonzero prime ideal of Of, lying over p. The stabilizer subgroup

Dgjp = {0 € Gal(L/K): o(q) = q}

is called the decomposition group of q|p. If o € Dy, then o induces an automorphism & of Or, /g which is

the identity on Ok /p. We obtain a homomorphism g, : Dqp — G where G = Gal((01/q)/(Ox /p)). The
homomorphism ¢g, is surjective with kernel

Iy, = {0 € Gal(L/K): o(a) = a (mod q) for all a € Or}
which is called the inertia group of q|p. We obtain a short exact sequence of finite abelian groups

Palp

1 I Dqjy G 1.

qlp

The orbit-stabilizer theorem shows that |Dgp| = [L : K|/gqp = eqppfq)p- Also, ’é| fqlp by the definition
of fqp- Thus, |Igp| = eqp. Now suppose that p is unramified in L. Then eq, = 1 so I, = 1 and g, is

an isomorphism. The group G is cyclic and is generated by the Frobenius automorphism x — V(). The
corresponding element Frobg, € Dy, is the unique element of G such that

Frobg,(a) = a™® (mod q)



for all o € Ok. For each o € G,
o (Frobgp (07 (@))) — oV = o (Frobq|p (e (@) — o’fl(a)N(p)) €o(p)

which shows that Frob,(qy, = o Frobg, o', If G is abelian, then Frobg), does not depend on g and we

L/TK € G. If L/K is abelian and unramified then the Artin symbol is defined for

all nonzero prime ideals p of O and we obtain the Artin homomorphism

obtain the Artin symbol (

(L/K> : Ix — Gal(L/K).

The Artin homomorphism is always surjective.

Let K be a number field. There exists a maximal abelian unramified extension L of K called the Hilbert
class field of K. The Artin reciprocity theorem for the Hilbert class field states that the kernel of the Artin
homomorphism is Pg. We obtain a short exact sequence of abelian groups

1 Px Ix Gal(L/K) —— 1 .

Thus, Gal(L/K) = C(Ok). Then the Galois correspondence gives an inclusion-reversing bijection between
unramified abelian extensions of K and subgroups of C(Of). If M is an unramified abelian extension of K
with Gal(L/M) = H C C(Og) then we have the isomorphism

Cal(M/K) = Gal(L/K)/Gal(L/M) = C(Ok)/H.
This is known as class field theory for unramified abelian extensions.

Theorem 1 (Corollary 5.24 in [1]). Let K be a number field. Then there is an inclusion-reversing bijection
between unramified abelian extensions of K and subgroups of C(Ok). If M is the unramified abelian extension
of K that corresponds to the subgroup H of C(Ok) then we have an isomorphism C(Og)/H = Gal(M/K).

Let K be a number field, let L be the Hilbert class field of K, and let p be a nonzero prime ideal of Og.
Then we have the following chain of biconditionals:

p splits completely in L <= fq, =1

> Gal((0L/q)/(Ok/p)) =1
<= Frobg, =1

(%)
— [— | =1
p

<~ p € Pg.

Example 3. Consider the following lattice of fields:

Q(vV=1,v5)

Q(v-1) Q(v/-5) Q5
\ | /

Only 2 and 5 ramify in Q(v/—5)/Q. However, 2 does not ramify in Q(v/5)/Q and 5 does not ramify in
Q(v/~1)/Q. Since ramification index is multiplicative, Q(v/—1,v/5) is an unramified abelian extension of
Q(v/=5). The class number of Q(v/=5) is 2 so Q(v/—1,v/5) is the Hilbert class field of Q(v/=5).

)
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