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1 Algebraic Number Theory

Recall that a number field is a finite extension of Q. If K is a number field then we define OK to be the
ring of algebraic integers of K or, equivalently, the integral closure of Z in K. For every nonzero ideal I
of OK , the quotient OK/I is finite and we define the norm of I to be the cardinality |OK/I|. The ring
OK is a Dedekind domain. This means that every nonzero prime ideal of OK is maximal and that every
nonzero ideal of OK factors as a finite product of nonzero prime ideals. Furthermore, this factorization is
unique up to permutation. In other words, every nonzero ideal of OK is of the form pe11 . . . p

eg
g for distinct

nonzero prime ideals p1, . . . , pg of OK and positive integers e1, . . . , eg. A fractional ideal of OK is a nonzero
finitely-generated OK-submodule of K. Fractional ideals of OK can always be expressed as αI for a nonzero
α ∈ K and a nonzero ideal I of OK . The fractional ideals of OK form a group IK under multiplication with
OK as the identity element. The group of fractional ideals of OK is a free abelian group with the nonzero
prime ideals of OK as a basis. In other words, every fractional ideal of OK is of the form pe11 . . . p

eg
g for

distinct nonzero prime ideals p1, . . . , pg of OK and integers e1, . . . , eg. A principal fractional ideal of OK is
a fractional ideal of the form αOK for a nonzero α ∈ K. The principal fractional ideals form a subgroup PK
of IK . The quotient IK/PK is called the ideal class group of K and is denoted by C(OK). The ideal class
group of K will always be a finite abelian group.

Example 1. Let n 6= 0, 1 be a squarefree integer and let K = Q(
√
n). Consider an element α = a+b

√
n ∈ K

with b nonzero. The minimal polynomial of α is given by x2 − 2ax+ a2 − nb2. As a consequence, α ∈ OK if
and only if both 2a ∈ Z and a2 − nb2 ∈ Z. From this, it can be shown that

OK =

{
Z
[
1+
√
n

2

]
n ≡ 1 (mod 4)

Z[
√
n] n ≡ 2, 3 (mod 4)

.

If n = −5 then OK = Z[
√
−5]. We have the factoriation 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5) where the elements

{2, 3, 1 +
√
−5, 1 −

√
−5} ⊆ OK are all irreducible. This shows that OK is not a UFD. In terms of ideals,

we have the factorization (6) = (2)(3) = (1 +
√
−5)(1 −

√
−5). This does not contradict the uniqueness of

prime factorization since none of these ideals are prime. In fact, we have the prime factorizations

(2) =
(

2, 1−
√
−5
)(

2, 1 +
√
−5
)

(3) =
(

3, 1−
√
−5
)(

3, 1 +
√
−5
)

(
1 +
√
−5
)

=
(

2, 1 +
√
−5
)(

3, 1 +
√
−5
)
,(

1−
√
−5
)

=
(

2, 1−
√
−5
)(

3, 1−
√
−5
)
.

Let K be a number field and let L be a finite extension of K. If p is a nonzero prime ideal of OK then
pOL is a nonzero ideal of OL and has a factorization pOL = qe11 . . . q

eg
g for distinct nonzero prime ideals

q1, . . . qg of OL and positive integers e1, . . . , eg. The integer ei = eqi|p is called the ramification index of qi|p.
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The inclusion p ⊆ qi gives a residue field extension OK/p ⊆ OL/qi of degree fi = fqi|p which is called the
inertia degree of qi|p. We have the relation

f∑
i=1

eifi = [L : K].

We say that p is ramified in L if any ramification index ei is larger than 1. There will only be finitely many
nonzero prime ideals of OK that ramify in L. We say that p is totally ramified in L if e1 = [L : K] and
f1 = 1 and g = 1. We say that p is inert in L if e1 = 1 and f1 = [L : K] and g = 1. We say that p splits
completely in L if ei = fi = 1 for all i and g = [L : K]. If L/K is Galois with Galois group G = Gal(L/K)
then G acts transitively on the qi so e1 = . . . = eg and f1 = . . . = fg. In this case, efg = [L : K].

Example 2. Let K = Q and let L = Q(
√
−5). Then we have the prime factorizations

2OL =
(

2, 1 +
√
−5
)2
,

3OL =
(

3, 1−
√
−5
)(

3, 1 +
√
−5
)
,

5OL =
(√
−5
)2
,

7OL =
(

7, 3−
√
−5
)(

7, 3 +
√
−5
)
,

11OL = (11),

so 2 and 5 ramify, 3 and 7 split, 11 is inert. Every number field K has a nonzero integer discriminant dK .
A prime p ramifies in K/Q if and only if p divides dK . For the quadratic field, the discriminant is given by

dQ(
√
−n) =

{
n n ≡ 1 (mod 4)

4n n ≡ 2, 3 (mod 4)
.

In our case, dK = −20 so only 2 and 5 ramify in K/Q.

Let K be a number field, let L be a finite Galois extension of K, let p be a nonzero prime ideal of OK ,
and let q be a nonzero prime ideal of OL lying over p. The stabilizer subgroup

Dq|p = {σ ∈ Gal(L/K) : σ(q) = q}

is called the decomposition group of q|p. If σ ∈ Dq|p then σ induces an automorphism σ of OL/q which is

the identity on OK/p. We obtain a homomorphism ϕq|p : Dq|p → G̃ where G̃ = Gal((OL/q)/(OK/p)). The
homomorphism ϕq|p is surjective with kernel

Iq|p = {σ ∈ Gal(L/K) : σ(α) ≡ α (mod q) for all α ∈ OL}

which is called the inertia group of q|p. We obtain a short exact sequence of finite abelian groups

1 Iq|p Dq|p G̃ 1
ϕq|p

.

The orbit-stabilizer theorem shows that |Dq|p| = [L : K]/gq|p = eq|pfq|p. Also,
∣∣G̃∣∣ = fq|p by the definition

of fq|p. Thus, |Iq|p| = eq|p. Now suppose that p is unramified in L. Then eq|p = 1 so Iq|p = 1 and ϕq|p is

an isomorphism. The group G̃ is cyclic and is generated by the Frobenius automorphism x 7→ xN(p). The
corresponding element Frobq|p ∈ Dq|p is the unique element of G such that

Frobq|p(α) ≡ αN(p) (mod q)
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for all α ∈ OK . For each σ ∈ G,

σ
(
Frobq|p

(
σ−1 (α)

))
− αN(p) = σ

(
Frobq|p

(
σ−1 (α)

)
− σ−1(α)N(p)

)
∈ σ(p)

which shows that Frobσ(q)|p = σ Frobq|p σ
−1. If G is abelian, then Frobq|p does not depend on q and we

obtain the Artin symbol
(
L/K
p

)
∈ G. If L/K is abelian and unramified then the Artin symbol is defined for

all nonzero prime ideals p of OK and we obtain the Artin homomorphism(
L/K

·

)
: IK → Gal(L/K).

The Artin homomorphism is always surjective.
Let K be a number field. There exists a maximal abelian unramified extension L of K called the Hilbert

class field of K. The Artin reciprocity theorem for the Hilbert class field states that the kernel of the Artin
homomorphism is PK . We obtain a short exact sequence of abelian groups

1 PK IK Gal(L/K) 1 .

Thus, Gal(L/K) ∼= C(OK). Then the Galois correspondence gives an inclusion-reversing bijection between
unramified abelian extensions of K and subgroups of C(OK). If M is an unramified abelian extension of K
with Gal(L/M) ∼= H ⊆ C(OK) then we have the isomorphism

Gal(M/K) ∼= Gal(L/K)/Gal(L/M) ∼= C(OK)/H.

This is known as class field theory for unramified abelian extensions.

Theorem 1 (Corollary 5.24 in [1]). Let K be a number field. Then there is an inclusion-reversing bijection
between unramified abelian extensions of K and subgroups of C(OK). If M is the unramified abelian extension
of K that corresponds to the subgroup H of C(OK) then we have an isomorphism C(OK)/H ∼= Gal(M/K).

Let K be a number field, let L be the Hilbert class field of K, and let p be a nonzero prime ideal of OK .
Then we have the following chain of biconditionals:

p splits completely in L ⇐⇒ fq|p = 1

⇐⇒ Gal((OL/q)/(OK/p)) = 1

⇐⇒ Frobq|p = 1

⇐⇒
(
L/K

p

)
= 1

⇐⇒ p ∈ PK .

Example 3. Consider the following lattice of fields:

Q(
√
−1,
√

5)

Q(
√
−1) Q(

√
−5) Q(

√
5)

Q

Only 2 and 5 ramify in Q(
√
−5)/Q. However, 2 does not ramify in Q(

√
5)/Q and 5 does not ramify in

Q(
√
−1)/Q. Since ramification index is multiplicative, Q(

√
−1,
√

5) is an unramified abelian extension of
Q(
√
−5). The class number of Q(

√
−5) is 2 so Q(

√
−1,
√

5) is the Hilbert class field of Q(
√
−5).
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