P.V. numbers

Thomas Browning

October 2018

Theorem 1. Let R be an integral domain with field of fractions K. Let $p \in R[x]$ be a monic polynomial of degree d with roots $r_1, \ldots, r_d \in \overline{K}$. Then $r_1^k + \ldots + r_d^k \in R$ for all $k \ge 0$.

Proof. Let C be the $d \times d$ companion matrix of p. Then the roots of p are given by the eigenvalues of C which are given by the diagonal entries of the Jordan normal form $J = P^{-1}CP$ of C. By reindexing the roots of p, we may assume without loss of generality that $J_{ii} = r_i$ for all $1 \le i \le d$. Since J is upper triangular, $(J^k)_{ii} = (J_{ii})^k$ for all $1 \le i \le d$. Then

$$\sum_{i=1}^{d} r_i^k = \sum_{i=1}^{d} (J_{ii})^k = \sum_{i=1}^{d} (J^k)_{ii} = \operatorname{tr}(J^k) = \operatorname{tr}((P^{-1}CP)^k) = \operatorname{tr}(P^{-1}C^kP) = \operatorname{tr}(C^k) = \sum_{i=1}^{d} (C^k)_{ii}.$$

However, the entries of C lie in R so the entries of C^k also lie in R.

For $x \in \mathbb{R}$, let $||x||_{\mathbb{Z}}$ denote the distance from x to the nearest integer.

Corollary 1. Let $p \in \mathbb{Z}[x]$ be a monic polynomial of degree d with roots $r_1, \ldots, r_d \in \mathbb{C}$. If $|r_i| < 1$ for all $2 \leq i \leq d$ then $r_1 \in \mathbb{R}$ and $||r_1^k||_{\mathbb{Z}} \to 0$ as $k \to \infty$. More precisely,

$$\left\|r_{1}^{k}\right\|_{\mathbb{Z}} \leq (d-1) \left(\max_{2 \leq i \leq d} |r_{i}|\right)^{l}$$

for all $k \ge 0$. Here the maximum is taken to be 0 if d = 1.

Proof. By dividing out by a suitable power of x, we may assume without loss of generality that $p(0) \neq 0$. If d = 1 then $p = x - r_1$ so $r_1 \in \mathbb{Z}$ and the result follows. Now suppose that $d \geq 2$. Then

$$1 \le |p(0)| = |r_1 \dots r_d| = |r_1| \cdot \dots \cdot |r_d| < |r_1|$$

so $|r_1| > 1$. Since p has real coefficients, $p(\overline{r_1}) = \overline{p(r_1)} = 1$ so $\overline{r_1} \in \mathbb{C}$ is a root of p with $|\overline{r_1}| = |r_1| > 1$. Then $\overline{r_1} = r_1$ so $r_1 \in \mathbb{R}$. Theorem 1 gives that

$$\left\| r_{1}^{k} \right\|_{\mathbb{Z}} \leq \left| r_{1}^{k} - \sum_{i=1}^{d} r_{i}^{k} \right| = \left| \sum_{i=2}^{d} r_{i}^{k} \right| \leq \sum_{i=2}^{d} |r_{i}|^{k} \leq (d-1) \left(\max_{2 \leq i \leq d} |r_{i}| \right)^{k}$$

as desired.