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Recall the statement of Problem 4.2.7 in Folland’s Advanced Calculus.

Theorem 1 (Problem 4.2.7 in Folland’s Advanced Calculus). Let : [a,b] — R be C' and increasing on
[a,b] and let f: [a,b] — R be continuous. Then there exists a c € [a,b] such that

/ab f(x)p(x)dz = p(a) /ac f(z)dz + o(b) /cb F(@)dz.

The suggested proof uses integration by parts on the left integral and then applies Theorem 4.24 in the
text. This requires the continuity of ¢’. It is then natural to ask whether this result can be proved without
Theorem 4.24 so that the condition that ¢ be C' could be dropped. The proof of the following result avoids
Theorem 4.24 and thus greatly weakens the assumptions of ¢ and f.

Theorem 2 (The Mean Value Theorem for Integrals). Let ¢: [a,b] — R be monotone and let f: [a,b] = R
be integrable. Then there exists a ¢ € [a,b] such that

b c b
/ f(@)p(x)dz = p(a®) / f(@)dz + o(b) / f(2)dz where p(a®) = lim_g(z), p(b7) = lim ().
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Proof. By replacing ¢ by +¢, we may assume without loss of generality that ¢ is decreasing. By replacing
© with ¢ — p(b7), we may assume without loss of generality that o(b~) = 0. Then it suffices to show that
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for some ¢ € [a,b]. Now let ¢: [a,b] — [0, 1] be a decreasing step function with 0 < ¢ < . Then
DI
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for constants ¢; > ca > ... >¢, =0and a =z < 21 < ... < x, = b. Defining F(t) = f(f f(z)dz gives
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However, ¢, = 0 and F'(a) = 0 so we can rewrite this equality as
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This sum is a weighted sum of the F'(z;) where the weights are positive and sum to 1. Then the value of
the weighted sum must lie between the minimum and maximum of the F(z;). By the continuity of F', the
intermediate value theorem guarantees that this value equals F(c) for some ¢ € [a,b] so

b
/ F@)yi(@)de = e1F(e) = (a*) (o).

Now let {¢;: [a,b] — R}?‘;l be a family of decreasing step functions such that 0 < 17 < ¥ < ... < ¢
and such that 1¢; — ¢ pointwise as j — co. As an example of such a sequence, one could let ¢; be given
by rounding the value of ¢ down to the nearest 1/27th. For each j > 1, let c¢j be the constant given by
applying the previous argument to v¢;. By passing to a convergent subsequence, we may assume without
loss of generality that the sequence {c;}32, converges to some c € [0, 1]. Then for each j > 1,

b
/ F(@);(@)dz = () F(e;).

Taking the limit as j — oo gives that

b
/ f(@)p(x)dz = p(a*)F(e)

where interchanging the limit and integral is valid by the dominated convergence theorem. O

This proof highlights a useful real analysis technique that works especially well when dealing with
Lebesgue integration: You first prove a result for step functions and then extend the result to all func-
tions by approximating that function by a sequence of step functions.



