Mean Value Theorem for Integrals

Thomas Browning

November 2017

Recall the statement of Problem 4.2.7 in Folland's Advanced Calculus.

Theorem 1 (Problem 4.2.7 in Folland's Advanced Calculus). Let $\varphi : [a,b] \to \mathbb{R}$ be C^1 and increasing on [a,b] and let $f : [a,b] \to \mathbb{R}$ be continuous. Then there exists a $c \in [a,b]$ such that

$$\int_{a}^{b} f(x)\varphi(x)dx = \varphi(a)\int_{a}^{c} f(x)dx + \varphi(b)\int_{c}^{b} f(x)dx.$$

The suggested proof uses integration by parts on the left integral and then applies Theorem 4.24 in the text. This requires the continuity of φ' . It is then natural to ask whether this result can be proved without Theorem 4.24 so that the condition that φ be C^1 could be dropped. The proof of the following result avoids Theorem 4.24 and thus greatly weakens the assumptions of φ and f.

Theorem 2 (The Mean Value Theorem for Integrals). Let $\varphi : [a, b] \to \mathbb{R}$ be monotone and let $f : [a, b] \to \mathbb{R}$ be integrable. Then there exists a $c \in [a, b]$ such that

$$\int_{a}^{b} f(x)\varphi(x)dx = \varphi(a^{+})\int_{a}^{c} f(x)dx + \varphi(b^{-})\int_{c}^{b} f(x)dx \text{ where } \varphi(a^{+}) = \lim_{x \to a^{+}} \varphi(x), \ \varphi(b^{-}) = \lim_{x \to a^{-}} \varphi(x).$$

Proof. By replacing φ by $\pm \varphi$, we may assume without loss of generality that φ is decreasing. By replacing φ with $\varphi - \varphi(b^-)$, we may assume without loss of generality that $\varphi(b^-) = 0$. Then it suffices to show that

$$\int_{a}^{b} f(x)\varphi(x)dx = \varphi(a^{+})\int_{a}^{c} f(x)dx$$

for some $c \in [a, b]$. Now let $\psi: [a, b] \to [0, 1]$ be a decreasing step function with $0 \le \psi \le \varphi$. Then

$$\psi = \sum_{j=1}^{n} c_j \mathbf{1}_{[x_{j-1}, x_j]}$$

for constants $c_1 > c_2 > \ldots > c_n = 0$ and $a = x_0 < x_1 < \ldots < x_n = b$. Defining $F(t) = \int_a^t f(x) dx$ gives

$$\int_{a}^{b} f(x)\psi(x)dx = \sum_{j=1}^{n} c_j \int_{x_{j-1}}^{x_j} f(x)dx = \sum_{j=1}^{n} c_j \left(F(x_j) - F(x_{j-1})\right) = c_n F(b) - c_1 F(a) + \sum_{j=1}^{n-1} F(x_j) \left(c_j - c_{j+1}\right) + \sum_{j=1}^{n-1} F(a_j) \left(c_j -$$

However, $c_n = 0$ and F(a) = 0 so we can rewrite this equality as

$$\int_{a}^{b} f(x)\psi(x)dx = c_1 \sum_{j=1}^{n-1} F(x_j) \frac{c_j - c_{j+1}}{c_1}.$$

This sum is a weighted sum of the $F(x_j)$ where the weights are positive and sum to 1. Then the value of the weighted sum must lie between the minimum and maximum of the $F(x_j)$. By the continuity of F, the intermediate value theorem guarantees that this value equals F(c) for some $c \in [a, b]$ so

$$\int_{a}^{b} f(x)\psi(x)dx = c_{1}F(c) = \psi(a^{+})F(c).$$

Now let $\{\psi_j: [a,b] \to \mathbb{R}\}_{j=1}^{\infty}$ be a family of decreasing step functions such that $0 \leq \psi_1 \leq \psi_2 \leq \ldots \leq \varphi$ and such that $\psi_j \to \varphi$ pointwise as $j \to \infty$. As an example of such a sequence, one could let ψ_j be given by rounding the value of φ down to the nearest $1/2^j$ th. For each $j \geq 1$, let c_j be the constant given by applying the previous argument to ψ_j . By passing to a convergent subsequence, we may assume without loss of generality that the sequence $\{c_j\}_{j=1}^{\infty}$ converges to some $c \in [0, 1]$. Then for each $j \geq 1$,

$$\int_{a}^{b} f(x)\psi_{j}(x)dx = \psi_{j}(a^{+})F(c_{j}).$$

Taking the limit as $j \to \infty$ gives that

$$\int_{a}^{b} f(x)\varphi(x)dx = \varphi(a^{+})F(c)$$

where interchanging the limit and integral is valid by the dominated convergence theorem.

This proof highlights a useful real analysis technique that works especially well when dealing with Lebesgue integration: You first prove a result for step functions and then extend the result to all functions by approximating that function by a sequence of step functions.