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1 The Fibonacci Sequence

1.1 Domino Tilings

Let T}, count the number of ways to tile a 2 x n board with dominos. We will set T_1 = 0 and Ty = 1. The
first few values of T, are given in Figure 1 below.
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Figure 1: Values of T,, for small n

Let m and n be nonnegative integers. Every tiling of a 2 x (m + n) board with dominos will either have a
break between the first m columns and the last n columns or will have two horizontal dominos lying over
the line between the first m columns and the last n columns. In the first case there are T, ways to tile the
left side of the board and there are T}, ways to tile the right side of the board. In the second case there are
Tmn—1 ways to tile the left side of the board and there are T,,_1 ways to tile the right side of the board. This
is shown pictorially in Figure 2 below.

T, +n = Tn T, + Tr-1 Th—1

Figure 2: Cutting the board

Adding up the number of tilings from each of the two cases gives the recursive formula
Toan =TnTn +Th_1T,—1 for m,n > 0. (1.1)
In the special case where m = 1, Equation 1.1 reduces to the recursive formula
Thy1 =T, +Ty—1 for n > 0. (1.2)

You might be worried about Equation 1.1 when m = 0 or n = 0. Don’t worry: if m = 0 then Equation 1.1
reduces to the tautology T,, = T},. Similarly, if n = 0 then Equation 1.1 reduces to the tautology T}, = T;,.

1.2 Divisibility of Fibonacci Numbers

We define the shifted sequence F,, = T,,_1 which will be easier to work with in the long run. The number
F, is called the nth Fibonacci number. The motivating goal of this first chapter is the understand the prime
factorization of Fibonacci numbers. The first 150 Fibonacci numbers are given in Table 1 and factorizations



of the first 100 Fibonacci numbers are given in Table 2. Careful examination of Table 2 suggests the patterns

Every 3rd Fibonacci number is divisible by 2
Every 4th Fibonacci number is divisible by 3
Every 6th Fibonacci number is divisible by 4
Every 5th Fibonacci number is divisible by 5
Every 12th Fibonacci number is divisible by 6
Every 8th Fibonacci number is divisible by 7
Every 6th Fibonacci number is divisible by 8
Every 12th Fibonacci number is divisible by 9
Every 15th Fibonacci number is divisible by 10

This naturally leads to the following conjecture:

Conjecture 1. For every positive integer d, there is a positive integer aq such that F,, is divisible by d if
and only if n is divisible by aq. Equivalently, the values of n such that F,, is divisible by d are precisely the
nonnegative integer multiples of aq.

The number ag in Conjecture 1 is called the dth Fibonacci entry point. Suppose for a moment that
Conjecture 1 is true and let ¢ and d have no common divisors other than 1. Then we have the chain of
biconditionals

n is divisible by a.q <= F,, is divisible by cd
<= F,, is divisble by both ¢ and d
<= n is divisible by both a. and aq

<= n is divisible by lem(a,,aq), the least common multiple of a. and agy.

Thus, a.q = lem(ac,aq). Repeated application of this result shows that if d = 1011’1 .. .pZ’“ is the prime
factorization of a positive integer d then we have the identity

ag = lcm(ozpf;1 e ).

In particular, the values of a4 for all positive integers d are determined by the values of a,» for all prime
powers p®. The values of aye for primes p < 230 and all 1 < b <5 are given in Table 3. Careful examination
of Table 3 suggests the following conjecture:

Conjecture 2. For all primes p and all positive integers b,

3.2 p=2 bH<2
»=1¢3-20"2 p=2 bp>3

pbilap p>3

ap

If both conjectures are true then the values of ag4 for all positive integers d are determined by the values
of a, for all primes p. Ideally, we would prove Conjectures 1 and 2 and then determine the values of a,
for all primes p. Doing so would solve the problem of understanding the prime factorizations of Fibonacci
numbers. This plan is far too ambitious. In fact, Conjecture 2 is currently an open problem in mathematics
and the values of a, for primes p are not well-understood. Here is what we will do:

e We will prove Conjecture 1 by analyzing the greatest common divisor of Fibonacci numbers.

e We will prove a partial result regarding the values of a,, for all primes p (see Corollary 4).



1.3 The Greatest Common Divisor

For integers m and n, we say that m divides n when n = km for some integer k. For example 4 divides 20
with k£ = 5, 8 divides 8 with £ = 1, and 6 divides 0 with £k = 0. For integers m and n, a common divisor of
m and n is an integer d such that d divides m and d divides n. For example, 5 is a common divisor of 20
and 25, 4 is a common divisor of 12 and 24, and 10 is a common divisor of 0 and 20. If m and n are not
both equal to 0 then then m and n have only finitely many common divisors. In particular, m and n have
a greatest common divisor which we denote by ged(m,n). For example, ged(20,25) = 5, ged(12,24) = 12,
ged (0, 20) = 20.

If d is a common divisor of both m and km + n then d is a divisor of n = (km + n) — km. Conversely, if
d is a common divisor of both m and n then d is a divisor of km + n. This shows that the common divisors
of m and km + n coincide with the common divisors of m and n. In particular, the greatest common divisor
of m and km + n must equal the greatest common divisor of m and n. This shows that

ged(m, km + n) = ged(m, n). (1.3)
In the case that k = 1, Equation 1.3 becomes
ged(m,n) = ged(m — n,n). (1.4)

In particular, the greatest common divisor of two positive integers can be computed by repeatedly subtracting
the smaller integer from the larger integer until the two integers are equal. This is called the Euclidean
algorithm for computing the greatest common divisor.

We now analyze the greatest common divisor of Fibonacci numbers. By Equations 1.2 and 1.3,

ng(Fn+la Fn) = ng(Fn + Fn—l,Fn) = ng(Fn—la Fn) = ng(an Fn—l)

for all n > 1. Since ged(Fy, Fy) = ged(1,0) = 1, this shows that ged(Fq1, F) = 1 for all n > 0. By
Equations 1.1 and 1.3,

ng(Fma Fn) = ng(Fm—n—an + Fm—nFn-i-la Fn) = ng(Fru Fm—n—an + Fm—nFn—i-l) = ng(Fn7 Fm—nFn-&-l)

for all m > n > 0. However, ged(F, 41, F,) = 1 so F,, and F,,;1 have no common factors other than 1. As a
consequence,
ged(Fo, Fy) = ged(Fy, Fr—nFrng1) = ged(Fy, Frepn) = ged(Fr—p, F).

This is precisely the result of applying one step of the Euclidean algorithm to the indices m and n. Repeating
this process until the Euclidean algorithm terminates shows that

ged(Fon, Frn) = Fyed(m,n) for all m,n > 0. (1.5)

Note that Equation 1.5 is much cleaner in terms of F, than in terms of 7T,. This justifies our decision to
work with the shifted sequence F,, = T,,_.

1.4 Fibonacci Entry Points

We can now prove Conjecture 1. Fix a positive integer d. Consider the sequence of the pairs of remainders
when dividing F,, and F,, ;1 by d. There are only d? possible pairs of remainders so this sequence must
eventually repeat. However, Equation 1.2 shows that any term of the sequence determines both the previous
term of the sequence and the next term of the sequence. Since the sequence starts at the pair (0, 1), the
sequence must eventually cycle back to (0,1). This shows that F,, will be divisible by d for some positive
integer n. Now consider the collection Sy of the values of n such that F;, is divisible by d. We have shown that
Sy contains a positive integer. Let ag be the smallest positive integer contained in S;. For any nonnegative
integer multiple kay of a4, Equation 1.5 states that

ng(Fada Fkad) = Fgcd(ad,kad) = Fad



which is divisble by d. Then Fy,, is divisible by d so S4 contains ka4. This shows that that Sy contains the
nonnegative integer multiplies of a4. For the converse, let n be an positive integer contained in Sy. Then
F, is divisible by d so d is a common divisor of F,, and F,,. Equation 1.5 gives that

Fgcd(ad,n) = ng(Fad7 Fn)

which is divisible by d. Then ged(ag,n) > agq by the minimality of ag. However, ged(ag,n) < aq by properties
of the greatest common divisor. Thus, ged(agq,n) = ag so n is a nonnegative integer multiple of ag. This
shows that Sy is the collection of nonnegative integer multiplies of agy which proves Conjecture 1.

1.5 A Formula

Examining the number of digits of the first 150 Fibonacci numbers suggests that the Fibonacci numbers
grow exponentially. Suppose that the sequence a,, = 2™ satisfied the Fibonacci recurrence a, 492 = ap+1+ap
for some fixed real number z. Setting n = 0 shows that z is a root of the quadratic polynomial 22 — z — 1.
Conversely, if x is a root of the quadratic polynomial 2 —x — 1 then "2 = 2"(2?) = 2™ (z +1) = 2" 42
so the exponential sequence a,, = ™ will satisfy the Fibonacci recurrence a,19 = apni1 + an-

If ¢ and ¢ are distinct roots of the quadratic polynomial 22 — z — 1 and if ¢ and d are real numbers, then
the linear combination sequence a,, = cp™ +dy™ will also satisfy the Fibonacci recurrence a2 = ap11 + ay.
If we can choose ¢ and d such that ag = 0 and a; = 1 then it must be the case that a, = F, for all
n > 0 and we will obtain a formula for the Fibonacci sequence. We would like to choose ¢ and d such that
0=ap=cp’+dy® = c+d and such that 1 = a; = cp' + dip* = cp + dip. The first equation shows that
d = —c. Then the second equation becomes 1 = cp —ctp = ¢(p — 1) which shows that ¢ = 1/(¢ —1)). Thus, if
c=1/(p—1) and if d = —1/(¢ — 1)) then the Fibonacci numbers are given by the formula F,, = co™ + dy™.
We may also write this formula as

Lpn _ wﬂ
F,=— (1.6)
p=
This formula for the Fibonacci numbers works in other number systems. A field to be a set with a 0-element,
a l-element, addition, subtraction, multiplication, and division by nonzero elements. For example, the real
numbers are a field and the rational numbers are a field but the integers are not a field. If K is a field then
we can define the Fibonacci numbers in K by Fy =0, Fy =1, and F, 42 = Fj,+1 + F),. Furthermore, suppose
that ¢ and ¢ are distinct roots of the polynomial 22 — z — 1 in K. Then Equation 1.6 gives a formula for
the Fibonacci numbers in K. To prove this, note that
SDO_wO 7 1-1 0 301_1/)1 _ QD—'I/J 1 ¢n+2_wn+2 <)On+1_¢n+1 +SOn_wn

e—v  e-v 7 e-v e-v 7 p-9 - p—
where the last equality holds since ¢ "2 = ¢"(¢?) = " (p + 1) = "1 + ™ and similarly for 1.

We have shown that if the polynomial 2 — 2 — 1 has two distinct roots in the field K then Equation
1.6 gives a formula for the Fibonacci numbers in K. It is natural to ask when this hypothesis holds. We
will suppose for now that 2 # 0 in K (meaning that 1 + 1 # 0 in K) and that 5 # 0 in K (meaning that
1+14+1+141#0in K). If K contains a square root of 5 then we have that

<1iV%>2:(1t¢®2:112¢3+5:3iv%:1iyg

+ 1.

2 4 4 2 2

This shows that the two values (14 +/5)/2 are roots of 2 —x — 1 in K. In fact, these two values are distinct
since their difference is v/5 which is nonzero since 5 # 0 by assumption. Conversely, suppose that there exist
distinct roots o and ¢ of % — 2z — 1 in K. I claim that this gives a factorization 2? —z —1 = (z — p)(z — ¥).

Proof using polynomial division: We may apply the polynomial division algorithm to write

o —w—1=q(2)(@ ) +r(@)



where ¢(z) is a polynomial of degree 1 (a linear polynomial) and where r(z) is a polynomial of degree 0 (a
constant polynomial). Substituting x = v gives that

0=9%—¢—1=q(¥)(W —¥) +r(®) =r).

However, r(z) is a constant polynomial so r(z) = 0 and we have that 22 — 2 — 1 = ¢(z)(z — +). Substituting
x = @ gives that

0=¢*—p—1=q()(¢—¥)

where ¢ — 9 # 0 since ¢ # 1 by assumption. Then ¢(p) = 0. However, ¢(z) is a linear polynomial so
q(x) = c(x—) for some constant c. Comparing leading coefficients of the equality 22—z —1 = c(z—¢)(z—1)
shows that ¢ =1 as claimed. O

We now have the factorization 22 —x — 1 = (x — ¢)(z — ¢). Comparing coefficients gives that ¢ + ¢ =1
and that ¢y = —1. Then

(p=9)? =" +9° =200 = (p+ )+ W+ 1) +2=(p+¥) +4=5
so K contains a square root of 5. We summarize these results in the following proposition:

Proposition 1. Let K be a field. If ¢ and v are distinct roots of the polynomial x> — x — 1 in K then
Equation 1.6 gives a formula for the Fibonacci numbers in K. If 2 # 0 in K and if 5 # 0 in K then the
polynomial 22 — x — 1 has distinct roots in K if and only if K contains a square root of 5.

If K is a field and if ¢ and ) are distinct roots of the polynomial 2 — z — 1 in K then Equation 1.6
holds. Then F,, = 0 if and ouly if ™ — 4™ = 0 if and only if ™ = ¢™ if and ouly if ™ /¢™ = 1 if and only
if (¢/v)™ = 1. Then Proposition 1 gives the following corollary:

Corollary 1. Let K be a field. If 2 # 0 in K and if 5 # 0 in K and if K contains a square root of 5 then
F, =0 in K if and only if (¢/¥)™ = 1 where ¢ and 1 are distinct roots of the polynomial x> —x — 1 in K.

1.6 Finite fields

Let p be a prime. We shall construct a field F,, such that F,, is divisible by p if and only if F;, = 0 in F,. Let
F), consist of the p distinct remainders when dividing modulo p. Then 0 is the remainder of numbers that
are a multiple of p and 1 is the remainder of numbers that are 1 more than a multiple of p. Also, note that
addition, subtraction, and multiplication preserve remainders. In the more familiar case where p = 10, this
is just saying that the last digit of a sum, difference, or product is determined by the last digits of the two
starting numbers. This shows that we have a well defined addition, subtraction, and multiplication on F,,.

To show that we have division by nonzero elements, it suffices to show that nonzero elements have inverses
since we can write a/b = (a)(b™!). Equivalently, it suffices to show that if z is an integer not divisible by p
(the remainder is nonzero) then there exists an integer y such that zy is 1 more than a multiple of p (the
remainder is 1). To see this, consider the p — 1 integers z,2z,...,(p — 1)x. These p — 1 integers are not
divisible by p so the remainders of these p — 1 integers lie in the p — 1 nonzero remainders modulo p. If we
can show that no two of these p — 1 integers have the same remainder modulo p then it will follow that each
of the p— 1 nonzero remainders modulo p is the remainder of one of these p— 1 integers. In particular, one of
these p — 1 integers will have a remainder of 1 modulo p which is what we want to show. If jx and kx have
the same remainder modulo p for some 1 < j <p—1and 1 <k <p—1with j # k then jx — ke = (j — k)z
will be divisible by p where neither j —k nor x is disivible by p. This is a contradiction to prime factorization.
We conclude that we have division by nonzero elements.

In summary, we have shown that the collection F,, of the p distinct remainders when dividing modulo
p form a field. Also, the Fibonacci sequence in F,, will consist of the remainders of the standard Fibonacci
sequence modulo p. In particular, F, is divisible by p if and only if F;, = 0 in IF,. Then Corollary 1 proves
the following theorem:



Theorem 1. Let p # 2,5 be a prime and suppose that F), contains a square root of 5. Then F, is divisible
by p if and only if (¢/1)" =1 in F, where ¢ and ¢ are distinct roots of the polynomial x> —x — 1 in F,,.

As an example, let p = 29. Then 11% = 121 = 4-29 4 5 so 11 is a square root of 5 in F,. As shown in
the previous section, the two distinct roots of z2 — 2 — 1 are given by (1 ++/5)/2 = (1 4+ 11)/2. These are
p=(1-11)/2=-10/2=—-5=24 and ¢y = (1 +11)/2 = 12/2 = 6. The ratio ¢/¢ = 24/6 = 4 happens to
be easy to compute in this case. Thus, Fj, is divisible by 29 if and only if 4™ is one more than a multiple of
29. If we examine the remainders of 4™ modulo 29, we get the sequence

n |[0|1]2|3]4] | 7 [ 8|9 [10]11]
1

1 516 1 |14 |15 |16 | ---
a1 4a]16][6]24[9]7]28[25[13|23] 5 |2 16 |-

[ 1] 4]16]
This sequence is periodic since each entry depends only on the previous entry (multiplication by 4 in F))
Thus, every 14th Fibonacci number is divisible by 29. Table 3 confirms that asg = 14.

Let a be a positive integer. Then a? counts the number of ways to color p spots around a circle with a
colors. We say that a coloring is nonconstant if the coloring uses at least 2 colors. Then a? — a counts the
number of nonconstant colorings of p spots around a circle with a colors. However, given any nonconstant
coloring, the p rotations of this coloring will give p distinct nonconstant colorings (this is because p is prime).
In particular, we may group the a? — a nonconstant colorings into groups of size p consisting of nonconstant
colorings that are the same up to rotation. This shows that a” — a is divisible by p. Taking remainders
modulo p shows that a? — a = 0 for all elements a of F,. Equivalently, a? = a for all elements a of F,,. If a
is nonzero in F, then dividing by a shows that a?~! =1 for all nonzero elements a of F,. We have shown
the following lemma;:

Lemma 1. Every element a of F,, satisifes a? = a. Every nonzero element a of F,, satisfies a?~ = 1.
Combining Theorem 1 with Lemma 1 proves the following corollary:

Corollary 2. Let p # 2,5 be a prime and suppose that Fy, contains a square root of 5. Then F,_1 is divisible

by p. Equivalently, a, divides p — 1.

1.7 Field Extensions

Let p be a prime. We now have a good understanding of when Fj, is divisible by p in the case where I,
contains a square root of 5. However, if F, does not contain a square root of 5 then Corollary 1 does not
apply to F,. In this case we must consider a field extension. Let Fp(\/g) denote the collection of formal
sums a + b5 for a,b € F,. To see that this is field, note that we have the 0 element 0 = 0 + 0v/5, the 1
element 1 = 1+ 0v/5, we have the addition

(a+b\/5) + (c+d\/5) = (a+c)+ (b+d)V5,

we have the subtraction

(a+b\/5) - (c+d\/5) =(a—c)+ (b—d)V5,

we have the multiplication
(a + b\/5) (c + d\/5) = ac + adv/5 + bev/5 + 5bd = (ac + 5bd) + (ad + be)V/5,

and we have the division

a+b/5  (a+0bV5) (c—dV5)  (ac—5bd) + (bc —ad)V5  ac—5bd bc—ad\/g
c+dvVs  (c+dvs) (c—dvE) 2 — 5d> BT

for ¢+ dv5 0+ 0v/5. To see that ¢ — 5d? is nonzero, note that if d = 0 then ¢ — 5d? = ¢? is nonzero and
if d # 0 then ¢ — 5d* = d?((c/d)? — 5) is nonzero by our assumption that F, does not contain a square root




of 5. The reader familiar with complex numbers should observe that this same construction can be used to
define the complex numbers as R(y/—1) where R denotes the real numbers. However, unlike the complex
numbers, there still exist polynomials with coefficients in F, that do not factor in F,(v/5).

Note that the field Fp(\/g) has a square root of 5 by construction. Then Corollary 1 proves the following
theorem:

Theorem 2. Let p # 2,5 be a prime and suppose that F,, does not contain a square root of 5. Then F,
is divisible by p if and only if (¢/¥)" = 1 in F,(v/5) where ¢ and v are distinct roots of the polynomial
22—z —1inFy(V5).

As an example, let p = 13. Then it can be verified that F, does not have a square root of 5. The two
distinct roots of 22 — x — 1 are given by (1 & \/5)/2 = 7+ 7/5. These are p = 7 — 7y/5 = 7+ 65 and
1 =7+ 7v/5. We can compute the ratio

¢ T-TV5 1-\5 (L-vE)"  _1-2/545_10+V5 o

v T+71V5 1+v6  (1-5) (1+5) -5 2

Thus, F, is divisible by 13 if and only if (5 + 7v/5)" = 1 in F,(v/5). If we examine the remainders of
(54 7v/5)™, we get the sequence
n__Jo] 1 | 2 | 3 | 4 | 5 | 6 |7|] & |-
G+7VB)" | 15475 | 1045v5 | 4445 | 4+9V5 | 104+8V5 | 5+6V5 | 1| 5+7v5 | -

This sequence is periodic since each entry depends only on the previous entry (multiplication by 5+ 7+/5 in
F,(v/5)). Thus, every 7th Fibonacci number is divisible by 13. Table 3 confirms that a3 = 7.

A field automorphism of a field K is a bijection (a permutation or rearrangement) f: K — K that
preserves addition and multiplication in the sense that f(z +vy) = f(x) + f(y) and f(zy) = f(z)f(y) for all
elements z and y in K. Furthermore, this definition also implies that

o f(0) = f(0+0) = f(0) + f(0) so f(0) =0,

o f()=/f1-1)=f(Q)f(1)s0 f(1) =1,

° 0=f(0) = flx—=2)=f(z)+ f(-2) so f(—z) = — (),

o 1=f(1)=flza™!) = f(x)f(z™") so f(z™!) = f(z)~".

In particular, a field automorphism must preserve all of the structure of the field.
We now exhibit two field automorphisms of F,,(v/5) and show that they are the same. First, consider the

conjugation map given by a 4+ bv/5 = a — bv/5. To see that this function is a field automorphism, note that
(a+b¢5> + <c+d\/5) = (a—b\/g) + (c—dﬁ) =(a+c¢)—(b+d)V5= (a+b\/5) + (c+d\/5)
and that

(a+b\/5> <c+d\/5> = (a=bV5) (= dV5) = (ac+ 5bd) - (ad +be)V5 = (a+bV5) (c+dV5).

Note that % = v and 1) = ¢ by the (1 + \/5) /2 formulas for ¢ and .

Second, consider the pth power map that sends an element a + bv/5 to the pth power (a + b\/g)p. This
function clearly preserves multiplication. To see that this function preserves addition, note that the binomial
coefficient (i) is divisible by p for 1 < k < p—1. This can be proved algebraically or by a rotation argument
similar to the proof of Lemma 1. Then by the binomial formula,

(x+y)P = (g)x”+ (?)x”_ly+ <§>xp_2y2 +...+ <pf2>x2yp_2 + (pf 1>xyp_1 + (ﬁ)y” =aP +yP.

We summarize these results in the following proposition:



Proposition 2. Let p be a prime such that F, does not contain a square root of 5. Then the conjugation
map (a+bV/5) — (a — b\/g) and the pth power map (a + b\/g) — (a+ b\/g)p are automorphisms of IF,,(\/g).

The remarkable fact is that the two automorphisms in Proposition 2 are the same. This should be
surprising because the two automorphisms arose in very different ways:

e The conjugation automorphism arose because our field was obtained by adding in a square root.
e The pth power automorphism arose because p = 0 in our field.

As we will see in a later chapter, if K is a finite field in which p = 0 then every automorphism of K is
obtained by applying the pth power map some number of times (we would say that the automorphism group
of K is cyclic and generated by the pth power map).

If we can show that 5(~—1/2 = —1 in F, then Lemma 1 would give that

(a+0v5) = +5F p¥VE=a - WE=a+0V5 (1.7)

for all elements a + bv/5 of Fp(\/g). The result that 57~1/2 = —1 in F, is an example of Euler’s criterion:

Lemma 2. Let p be an odd prime and let a be a nonzero element of Fp,. If F, has a square root of a then
a?=V/2 =1 inF,. If F, does not have a square root of a then a®~1/2 = —1 in F,.

Proof. Suppose that F, does not have a square root of a. Then the p — 1 nonzero elements of F, form
(p — 1)/2 pairs, each of which has product equal to a (pair b with a/b). In particular, the product of the
p — 1 nonzero elements of F,, is equal to a(P~1)/2,

Suppose that IF,, has a square root of a. Let ¢ and d be square roots of a. Now 2 —d>=a—-a=0so0
(¢ —d)(c+d) = 0. Then either ¢ = d or ¢ = —d. This shows that ¢ and —c are the only square roots of a
(where ¢ # —c since p # 2). Then the p — 1 nonzero elements of I, form (p — 1)/2 pairs, each of which has
product equal to a except for the {¢, —c} pair which has product equal to —a. In particular, the product of
the p — 1 nonzero elements of I, is equal to —a®=1/2_ Since F), has a square root of 1, setting a = 1 shows
that the product of the p — 1 nonzero elements of I, is also equal to —1. O

Lemma 2 shows that 57~1/2 = —1 in F,. Then Equation 1.7 shows that the conjugation automorphism
and the pth power automorphism are the same. Recall that = v and 1) = ¢ by the (1 + \/5) /2 formulas
for ¢ and 1. Then Equation 1.7 gives that ¢ = ¢ and ¢¥? = . Consequently, P! = i) = P+ so
(p/¥)PT! = 1. Then Theorem 2 proves the following corollary:

Corollary 3. Let p # 2,5 be a prime and suppose that F,, does not contain a square root of 5. Then Fp i,
is divisible by p. Equivalently, a, divides p + 1.

1.8 Quadratic Reciprocity

For p = 2, a, = 3 so every 3rd Fibonacci number is divisible by 2. For p =5, a,, = 5 so every 5th Fibonacci
number is divisible by 5. For a prime p # 2,5, Corollaries 2 and 3 give information on when Fibonacci
numbers are divisible by p. However, these corollaries require knowing whether or not F,, contains a square
root of 5. This question is answered by the law of quadratic reciprocity. Let p be an odd prime and let a be

an integer not divisible by p. Define the Legendre symbol (%) to be +1 if IF), has a square root of a and to

be —1 if F,, does not have a square root of a. We can now state the law of quadratic reciprocity.

Theorem 3. For distinct odd primes p and q,

(©)3)-cv



In the case that ¢ = 5, Theorem 3 states that

(3)-co== () -(0)-{5 12y,

The notation p = a (mod 5) means that p = a in F5 (p and a have the same remainder when dividing by 5).
Then Corollaries 2 and 3 prove the following result:

Corollary 4. Let p be a prime.
e Ifp=1,4 (mod 5) then a, divides p—1 and F,_1 is divisible by p.
e Ifp=2,3 (mod 5) then a, divides p+ 1 and F,11 is divisible by p.
o Ifp=75 then a, =5 and every 5th Fibonacci number is divisible by 5.

It remains to prove the law of quadratic reciprocity (Theorem 3). Unfortunately, this will be rather
technical. For a positive integer n, let Z/nZ consist of the n distinct remainders when dividing modulo n,
and let (Z/nZ)* consist of the elements of Z/nZ that share no common factors with n. Consider the map
0:Z/pgZ — 7/pZ x Z/qZ from remainders modulo pg to a pair consisting of a remainder modulo p and a
remainder modulo ¢. If o(z) = (0,0) for some element x of Z/pgZ then z is divisible by both p and ¢. Then
x is divisible by pg so z = 0 (as an element of Z/pqZ). If o(z) = o(y) then o(z —y) = o(x) — o(y) = (0,0)
so x —y = 0 and thus = y. This shows that ¢ does not map different elements of Z/pgZ to the
same element of Z/pZ x Z/qZ. Since Z/pqZ and Z/pZ x 7Z/qZ have the same number of elements, this
shows that o is a bijection (a permutation or rearrangement). Restricting o to (Z/pqZ)* gives a bijection
o (Z[pal)* — (Z/pL)* x (Z/qL)*.

Now consider the following subsets of (Z/pZ)* x (Z/qZ)*:

S = {(x,y) € (Z/pZ)* x (Z)qZ)*:1 < x < pzl}’ T = {0(1):33 € (Z/pgZ)* and 1 <z < pq; 1}.

Both S and T have the property that for all elements x of (Z/pZ)* x (Z/qZ)*, exactly one of x and —z
is contained in the set. Then the products [[.S and [[T differ only by a sign. Define P = (p — 1)/2 and
Q@ = (¢ —1)/2. Then we have that

[[5=@"" (g— 1)) =((p— D2 (-1)"?, (g —1)").
In (Z/pZ)*, we have that

e I o= ( T4 ( 1) =95 e (2)

k<pq/2 k<pq/2 k<pq/2
(k,pg)=1 ptk qlk

where the last equality follows from Lemma 2. Symmetrically, we have that

1= -3 - ()

Since [[ S and [[ T differ only by a sign, this shows that (%) (%) = (-1Fe.
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1.9 An Example

We now apply Conjecture 1 and Corollary 4 to factor F3; = 24157817 by hand. Let p be a prime dividing
F37. Since 37 is prime, Conjecture 1 implies that a, = 37. If p=1,4 (mod 5) then Corollary 4 implies that
p—1is a multiple of 37. If p = 2,3 (mod 5) then Corollary 4 implies that p+ 1 is a multiple of 37. The first
few primes satisfying these conditions are

73,149, 443,887, 1259, 1481, 1553, 1627, 1997, 1099, 2221.

Checking the divisibility of F37 by these primes gives that F3; = 73 - 149 - 2221.

For another example, we factor Fgg = 1100087778366101931 by hand. First note that Fgg is divisible by
Fyy =3-43-89-199-307 and by Fg = 3-7. Then Fgg is divisible by 3-7-43-89-199-307. If p is any other
prime dividing Fgg then Conjecture 1 implies that a, = 88. If p = 1,4 (mod 5) then Corollary 4 implies that
p—1is a multiple of 88. If p = 2,3 (mod 5) then Corollary 4 implies that p+ 1 is a multiple of 88. The first
few primes satisfying these conditions are

89,263, 881,967.

Checking the divisibility of Fgg by these primes gives that Fgg =3 -7-43-89-199-263 - 307 - 881 - 967.
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=1

=1
Fy=2
Fy=3
Fy=5
Fy=8

Fr =13
Fy=21

Fy =34

Fio =55

i, =89

Flo = 144
i3 =233
Fuy = 377
Fi5 = 610
Fig = 987
Fi7 = 1597
Fis = 2584
Flg = 4181
Fy = 6765
Fyy = 10946
Fyy = 17711
Fhy = 28657
Fyy = 46368
Fos = 75025
Fye = 121393
Fyr = 196418
Fhs = 317811
Fhy = 514229
Fyo = 832040

F31 = 1346269
F55 = 2178309
F33 = 3524578
F34 = 5702887
F35 = 9227465
F36 = 14930352
F57; = 24157817
F3g = 39088169
F39 = 63245986
Fyp = 102334155
Fy1 = 165580141
Fyo = 267914296
Fy3 = 433494437
Fyy = 701408733
Fy5 = 1134903170
Fye = 1836311903
Fy7 =2971215073
Fyg = 4807526976
Fyg = 7778742049
Fso = 12586269025

F51 = 20365011074

F5o = 32951280099

F53 = 53316291173

F5y = 86267571272

F55 = 139583862445

Fs6 = 225851433717

Fs7 = 365435296162

Fss = 591286729879

F59 = 956722026041

Fso = 1548008755920

Fs1 = 2504730781961

Fgo = 4052739537881

Fs3 = 6557470319842

Fsq = 10610209857723

Fes = 17167680177565

Foe = 27777890035288

Fg7 = 44945570212853

Fes = 72723460248141

Fgo = 117669030460994

Fro =190392490709135

F7 = 308061521170129

Fry = 498454011879264

Fr3 = 806515533049393

Fry = 1304969544928657

Frs = 2111485077978050

Fre = 3416454622906707

Fr7 = 5527939700884757

Frg = 8944394323791464

Frg = 14472334024676221
Fyo = 23416728348467685
Fg1 = 37889062373143906
Fyo = 61305790721611591
Fy3 = 99194853094755497
Fg4 = 160500643816367088
Fgs5 = 259695496911122585
Fss = 420196140727489673
Fy7 = 679891637638612258
Fyg = 1100087778366101931
Fgg =1779979416004714189
Fyo = 2880067194370816120
Fy; = 4660046610375530309
Fyy = 7540113804746346429
Fy3 = 12200160415121876738
Fyy = 19740274219868223167
Fys5 = 31940434634990099905
Fys = 51680708854858323072
Fy7 = 83621143489848422977
Fyg = 135301852344706746049
Fy9 = 218922995834555169026

Fio1 = 573147844013817084101

Fio2 = 927372692193078999176

Fi103 = 1500520536206896083277

Fios4 = 2427893228399975082453

Fio5 = 3928413764606871165730

Fip6 = 6356306993006846248183

Fio7 = 10284720757613717413913

Fios = 16641027750620563662096

Fio9 = 26925748508234281076009

Fiq10 = 43566776258854844738105

Fi11 = 70492524767089125814114

Fi10 = 114059301025943970552219

Fi13 = 184551825793033096366333

Fi14 = 298611126818977066918552

Fi15 = 483162952612010163284885

Fi16 = 781774079430987230203437

Fi17 = 1264937032042997393488322

Fi18 = 2046711111473984623691759

Fi19 = 3311648143516982017180081

Fia0 = 5358359254990966640871840

Fi1 = 8670007398507948658051921

Fia9 = 14028366653498915298923761
Fl23 = 22698374052006863956975682
Fi24 = 36726740705505779255899443
Fias = 59425114757512643212875125
Fia6 = 96151855463018422468774568
Fia7 = 155576970220531065681649693
Fiag = 251728825683549488150424261
Fi29 = 407305795904080553832073954
Fi130 = 659034621587630041982498215
Fi31 =1066340417491710595814572169
Fi39 = 1725375039079340637797070384
Fi33 = 2791715456571051233611642553
Fi34 = 4517090495650391871408712937
Fy35 = 7308805952221443105020355490
Fi36 = 11825896447871834976429068427
Fi37 = 19134702400093278081449423917
Fi33 = 30960598847965113057878492344
Fi39 = 50095301248058391139327916261
Fi40 = 81055900096023504197206408605
Fi41 = 131151201344081895336534324866
Fi49 = 212207101440105399533740733471
Fiy3 = 343358302784187294870275058337
Fi44 = 555565404224292694404015791808
Fi45 = 898923707008479989274290850145
Fr46 = 1454489111232772683678306641953
Fiy7 = 2353412818241252672952597492098
Fi48 = 3807901929474025356630904134051
Fiy9 = 6161314747715278029583501626149

Floo = 354224848179261915075  Fi50 = 9969216677189303386214405760200
Table 1: The first 150 Fibonacci numbers.
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=1

Fy=1
F3=2
F,=3
Fs=5

Fg =23

F, =13
Fy=3-7
Fy=2-17
Fio=5-11
Fi1 =89

Fly =24 32
Fi3 =233
Fia=13-29
Fis=2-5-61
Fig=3-7-47
Fi7 = 1597
Fis=2%-17-19
Fig =37-113

Foo=3-5-11-41
Fyy =2-13-421

Fyy =89 - 199

Fhs = 28657
Foy=25-32.7.23
Fys = 5% - 3001

Fys = 233 - 521

Fy; =2-17-53-109
Fhg=3-13-29-281

Fyy = 514229
Fy=2%-5-11-31-61
Fy = 557 - 2417

Fy =3.7-47-2207

Fy3 =2-89-19801

Fy, = 1597 - 3571

Fy5 =5-13-141961
Fy6=2%.3%.17-19-107
Fy7 = 73149 - 2221

Fys =37-113-9349

Fy9 =2-233.135721
Fipy=3-5-7-11-41-2161
Fy = 2789 - 59369

Fyo =23.13-29-211-421
Fy5 = 433494437

Fu =3-43-89-199 - 307
Fuys =2-5-17-61-109441
Fus = 139 - 461 - 28657
Fy7; = 2971215073

Fig =26.32.7.23.47-1103

Fyg =13-97-6168709

Fyo =52-11-101 - 151 - 3001

Fs1 = 2-1597 - 6376021

Fyo = 3-233- 521 - 90481

Fy3 = 953 - 55945741

Fsy =23-17-19-53-109 - 5779

Fss =5-89-661 - 474541

Fsg =3-7%-13-29-281 - 14503

Fs7 =2-37-113 - 797 - 54833

Fyg = 59 - 19489 - 514229

Frs9 = 353 - 2710260697
Fso=2%*-32-5-11-31-41-61-2521

Fg1 = 4513 - 555003497

Fgo = 5572417 - 3010349

Fs3 =2-13-17- 421 - 35239681

Fea =3-7-47-1087 - 2207 - 4481

Fss = 5-233 - 14736206161

Fs = 23 -89-199 9901 - 19801

Fg7 = 269 - 116849 - 1429913

Fgs = 3-67-1597- 3571 - 63443

Fgo =2-137-829 - 18077 - 28657
Frp=5-11-13-29-71-911- 141961

F; = 6673 - 46165371073

Fpry =25.33.7.17-19-23-107 - 103681
Fr3 = 9375829 - 86020717

Fry =73 -149 - 2221 - 54018521

Frs =2-52-61-3001 - 230686501

Frg =3-37-113-9349 - 29134601

Frp =13-89 - 988681 - 4832521

Frg =23.79.233-521-859 - 135721

Frg = 157 - 92180471494753
Fgo=3-5-7-11-41-47-1601 - 2161 - 3041
Fg1 =2-17-53-109 - 2269 - 4373 - 19441
Fgo = 2789 - 59369 - 370248451

Fgs = 99194853094755497

Fgy =2%-32.13.29-83-211-281-421 - 1427
Fgs = 5- 1597 - 9521 - 3415914041

Fge = 6709 - 144481 - 433494437

Fgr = 2-173 - 514229 - 3821263937

Fgs =3-7-43-89-199-263 - 307 - 881 - 967
Fgo = 1069 - 1665088321800481
Foo=2%-5-11-17-19-31-61-181 - 541 - 109441
Fo; = 132233 - 741469 - 159607993

Foo = 3-139 - 461 - 4969 - 28657 - 275449
Fo3 = 2- 557 - 2417 - 4531100550901

Fo, = 2971215073 - 6643838879

Fys =5-37-113 - 761 - 29641 - 67735001
Fog =27-32.7-23-47-769 - 1103 - 2207 - 3167
Fy7 = 193 - 389 - 3084989 - 361040209

Fys = 13-29 - 97 - 6168709 - 599786069

Fo9 =2-17-89-197 - 19801 - 18546805133
Figo=3-5%-11-41-101-151 - 401 - 3001 - 570601

Table 2: The factorizations of the first 100 Fibonacci numbers.
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(12:3

as = 4

as = 5

a7 = 8

aylp = 10
ais = 7
ayr = 9
ajg = 18
a23 — 24
a29 — 14
azy = 30
asr = 19
aq1 = 20
a3 = 44
Qyq7 — 16
a53 — 27
as9 = 58
a1 = 15
ag7 = 68
ar, = 70
arg = 37
arg = 78
ags = 84
agg = 11
ag7 = 49
aio1 = 50
a103 = 104
ajor = 36
aipg = 27
a1z =19
a7 = 128
a131 — 130
a3z = 69
ajzg = 46
a1a9 = 37
ais1 = 50
al157 = 79
a163 = 164
aler — 168
airs = 87
airg = 178
aig1 = 90
a9l = 190
a193 — 97
aigr = 99
a199 = 22
asyy = 42
9223 — 224
a927 = 228
a9g29 — 114

as2 =6

az2 = 12

a52 = 25

a2 = 56
a2 = 110
a3z = 91
ayr2 = 153
192 = 342
932 — 95952
(g2 = 406
asyz = 930
asr: = 703
aq12 = 820
auz2 = 1892
ayrz = 752
aszz = 1431
asg2 = 3422
ag12 = 915
agr2 = 4556
ar12 = 4970
argz2 = 2701
7oz = 6162
agzz = 6972
age: = 979
agr2 = 4753
aro12 = 5050
aro32 = 10712
a1or2 = 3852
ajp92 = 2943
ayy3e = 2147

1272 = 16256

1312 = 17030
1372 = 9453
(1392 = 6394
(1492 = 5513

ays2 = 7550

a1572 = 12403
g3z = 26732
1672 = 28056
a7z = 15051
a1792 = 31862
a1z = 16290
1012 = 36290
932 = 18721

ajg72 = 19503
a1992 = 4378
agy12 = 8862

9232 — 49952
A9972 = 51756
9292 = 26106

ass =6
azs = 36
ass = 125
ars = 392

ai13
a133
ay7s
a193
a933
a9293
as13
asrs
ay413
433
Q73
as533
as593
ag13
ag73
a3
ar733
a793
agss
agog3
ag73
ai1013
1033
a1073
a1093
1133
ai273
1313
a1373
a1393
1493
1513
Q1573
a1633
1673
ai73s
Q1793
a1813
a1913
a1933
ai973
a1993
2113
2233
A2273
2293

= 1210

= 1183

= 2601

= 6498

= 12696

= 11774

= 28830

= 26011

= 33620

= 81356

= 35344

= 75843

= 201898

= 55815

= 305252

= 352870

= 197173

= 486798

= 578676

= 87131

= 461041
= 510050
= 1103336
= 412164
= 320787
= 242611
= 2064512
= 2230930
= 1295061
= 888766
= 821437
= 1140050
= 1947271
= 4357316
= 4685352
= 2603823
= 5703298
= 2948490
= 6931390
= 3613153
= 3842091
= 871222
= 1869882
= 1113929
= 1174861
= 5978274

6
2

o4 = 12

aza = 108
as: = 625
a7a = 2744
aye = 13310
ay3: = 15379
ayps = 44217

a9t = 123462

agze = 292008

aggs = 341446

asya = 893730

az71 = 962407

aqpe = 1378420
a4zt = 3498308
aspe = 1661168
as31 = 4019679
asge = 11911982
ag1s = 3404715
agrse = 20451884
arps = 25053770
a3t = 14393629
(g1 = 38457042
agss = 48030108
aggr = T754659
agr4 = 44720977
a1o14 = 51515050
1031 = 113643608
arort = 44101548
109t = 34965783
ayy31 = 27415043
aro7s = 262193024
1314 = 292251830
1370 = 177423357
(1391 = 123538474
a0t = 122394113
apse = 172147550
a5 = 305721547
1631 = 710242508
gt = 782453784
ay730 = 450461379
791 = 1020890342
a1g14 = 533676690
a191+ = 1323895490
1931 = 697338529
1971 = 756891927
1991 = 173373178
o114 = 394545102
gzt = 2484063008
Agort = 2666934924
(9991 = 1369024746

95 = 24
ags = 324
ass = 3125
azs = 19208

aj15 = 146410

a135 = 199927

ayys = 751689

args = 2345778

935 — 6716184

aggs = 9901934

agis = 27705630

as7s = 35609059

a41s = 56515220

QAy75 = 78074896

aszs = 213042987
asgs = 702806938
ag1s = 207687615
agrs = 1370276228
arys = 1778817670
args = 1050734917
args = 3038106318
agzs = 3986498964
aggs = 690164651
agrs = 4337934769
ajo1s = 5203020050
a103s = 11705291624
agr = 4718865636
995 = 3811270347
a1135 = 3097899859
1975 = 33298514048
ay315 = 38284989730
ayz7s = 24306999909
1395 = 17171847886
1405 = 18236722837
a1s15 = 25994280050
1575 = 47998282879
arg3s = 115769528804
argrs = 130669781928
a7 = 77929818567
ayres = 182739371218
a115 = 96595480890
ajg1s = 252864038590
1935 = 134586336097
1975 = 149107709619
1995 = 34501262422
ag115 = 83249016522
o935 = 553946050784
agors = 605394227748
ag295 = 313506666834

Table 3: The values of b for primes p < 230 and integers 1 < b < 5.
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