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1 Convergence of Dirichlet Series

Let a1, a2, . . . be a sequence of complex numbers. Consider the partial sums defined by

Sn =

n∑
k=1

ak.

Suppose that there is an α > 0 such that |Sn| ≤ Cnα for all n ≥ n0. Let K be a compact subset of the
half-plane Hα = {s ∈ C : Re s > α}. Then

K ⊆ {s ∈ C : Re(s) ≥ α+ ε and |s| ≤M}

for some ε > 0 and M > 0. If n0 ≤ n1 ≤ n2 and s ∈ K then∣∣∣∣∣
n2∑

n=n1+1

an
ns

∣∣∣∣∣ =

∣∣∣∣∣
n2∑

n=n1+1

1

ns
(Sn − Sn−1)

∣∣∣∣∣
=

∣∣∣∣∣ Sn2

(n2 + 1)s
− Sn1

(n1 + 1)s
+

n2∑
n=n1+1

(
1

ns
− 1

(n+ 1)s

)
Sn

∣∣∣∣∣
≤ Cnα1

(n1 + 1)α+ε
+

Cnα2
(n2 + 1)α+ε

+

n2∑
n=n1+1

∣∣∣∣ 1

ns
− 1

(n+ 1)s

∣∣∣∣ |Sn|
≤ C

nε1
+
C

nε2
+

n2∑
n=n1+1

∣∣∣∣∫ n+1

n

−s
xs+1

dx

∣∣∣∣ |Sn|
≤ 2C

nε1
+

n2∑
n=n1+1

M

nα+ε+1
|Sn|

≤ 2C

nε1
+ CM

n2∑
n=n1+1

1

n1+ε

≤ 2C

nε1
+ CM

∫ n2

n1

1

x1+ε
dx

≤ 2C

nε1
+
CM

εnε1
.

This shows that the Dirichlet series

f(s) =

∞∑
n=1

an
ns

converges locally uniformly on Hα.
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2 The Riemann Zeta Function

The result of the previous section shows that the Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns

converges locally uniformly on H1 and that the Dirichlet eta function

η(s) =

∞∑
n=1

(−1)n−1

ns

converges locally uniformly on H0. On H1, we have the identity

(1− 21−s)ζ(s) = ζ(s)− 2

2s
ζ(s) =

( ∞∑
n=1

1

ns

)
−

( ∞∑
n=1

2

(2n)s

)
=

∞∑
n=1

(−1)n−1

ns
= η(s).

Then the formula

ζ(s) =
1

1− 21−s
η(s)

gives an analytic continuation of ζ(s) toH0 except with isolated singularities at the points where 1−21−s = 0.
These are the points s = 1− 2πik

log 2 for k ∈ Z. Performing the same trick with 3 instead of 2 gives an analytic

continuation of ζ(s) to H0 except with isolated singularities at the points s = 1− 2πij
log 3 for j ∈ Z. However, if

1− 2πik
log 2 = 1− 2πij

log 3 then 2j = 3k so j = k = 0. This shows that the only possible non-removable singularity

of ζ(s) in H0 is an isolated singularity at s = 1. Now we can expand

1− 21−s = 1− e(1−s) log 2 = 1−
∞∑
n=0

((1− s) log 2)n

n!
= (s− 1) log 2 + [higher order terms]

so
1

1− 21−s
=

1

log 2
(s− 1)−1 + [higher order terms].

Now η(1) = log 2 so

ζ(s) =
1

1− 21−s
η(s) = (s− 1)−1 + [higher order terms].

This shows that ζ(s) has a simple pole of residue 1 at s = 1.

Theorem 1. Let a1, a2, . . . be a sequence of complex numbers. Consider the partial sums defined by

Sn =

n∑
k=1

ak.

Suppose that there is an α ∈ (0, 1) and a w ∈ C such that |Sn − wn| ≤ Cnα for sufficiently large n. Then
the Dirichlet series

f(s) =

∞∑
n=1

an
ns

has an analytic continuation to Hα except for a simple pole of residue w at s = 1.

Proof. We can write

f(s) =

∞∑
n=1

an
ns

=

∞∑
n=1

an − w
ns

+ wζ(s)

where the sum is analytic on Hα and where wζ(s) has an analytic continuation to H0 except for a simple
pole of residue w at s = 1.

2



3 Dirichlet L-functions

Lemma 2. If A is a finite abelian group and if χ : A→ C× is a group homomorphism then

∑
a∈A

χ(a) =

{
|A| χ = 1,

0 χ 6= 1.
.

Proof. If χ = 1 then ∑
a∈A

χ(a) =
∑
a∈A

1 = |A| .

Now suppose that χ(b) 6= 1 for some b ∈ A. Then∑
a∈A

χ(a) =
∑
a∈A

χ(ab) = χ(b)
∑
a∈A

χ(a)

so
(1− χ(b))

∑
a∈A

χ(a) = 0.

Since χ(b) 6= 1, this shows that
∑
a∈A χ(a) = 0.

Let N be a positive integer and let χ : (Z/NZ)× → C× be a group homomorphism. The associated
Dirichlet series is defined by

L(s, χ) =
∑
n≥1

gcd(n,N)=1

χ(n+ nZ)

ns
.

Proposition 3. If χ 6= 1 then L(s, χ) has an analytic continuation to H0. If χ = 1 then L(s, χ) has an

analytic continuation to H0 except for a simple pole of residue ϕ(N)
N at s = 1.

Proof. This follows from Theorem 1 and Lemma 2.

4 Example From Algebraic Number Theory

Let χ : (Z/4Z)× → C× be the nontrivial character. Then we have

4ζ(s)L(s, χ) = 4

(
1

1s
+

1

2s
+

1

3s
+

1

4s
+ · · ·

)(
1

1s
− 1

3s
+

1

5s
− 1

7s
+ · · ·

)
=

4

1s
+

4

2s
+

4

4s
+

8

5s
+

4

8s
+

4

9s
+

8

10s
+

8

13s
+

4

16s
+

8

17s
+

4

18s
+

8

20s
+

12

25s
+ · · ·

=

∞∑
n=1

an
ns

where an =
∣∣{(x, y) ∈ Z2 : x2 + y2 = n}

∣∣ .
Proving this requires some number theory. A more elementary fact is that the partial sums

Sn =

n∑
k=1

ak =
∣∣{(x, y) ∈ Z2 : 1 ≤ x2 + y2 ≤ n}

∣∣
satisfy |Sn − πn| ≤ C

√
n for sufficiently large n. By Theorem 1, 4ζ(s)L(s, χ) has a simple pole of residue π

at s = 1. Thus, L(1, χ) = π
4 which gives the Leibniz formula for π:

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .
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