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1 Introduction

The goal of this paper is to generalize the theory of nonsingular curves to include Dedekind domains. In
algebraic number theory, one develops ramification theory for extensions of Dedekind domains. There is
a similar ramification theory for nonsingular curves. By gluing Dedekind domains together, we will form
objects called Dedekind schemes which unify these two theories. This works because the ramification theory
developed in algebraic number theory is local in nature, and so easily translates over to Dedekind schemes.

The first section will focus on individual Dedekind schemes in isolation. We will develop the theory of
valautions and divisors, and prove the isomorphism between the Picard group and the group of divisors
modulo principal divisors. We will also give an example of how this works in the case of an elliptic curve.

In the second section, we will focus on morphisms between Dedekind schemes. In algebraic number theory,
the usual process is to start with a Dedekind domain A with field of fractions K, take a finite extension
L/K, and consider the integral closure of A in L. We will generalize this construction to Dedekind schemes
and finite extensions of their function fields. Finally, we will develop the basic theory of ramification, and
demonstrate how it relates to pullback of divisors.

2 The Picard Group of a Dedekind Scheme

2.1 Dedekind Schemes

Definition 1. A Dedekind Scheme is a Noetherian integral scheme of dimension 1, all of whose local
rings are regular.

There are two key examples of Dedekind schemes to keep in mind. The first is the spectrum of a Dedekind
domain. The second is a nonsingular curve over a field.

Lemma 2 (Points of a Dedekind Scheme). Let X be a Dedekind scheme. Then X has at least 2 points, one
of which is the generic point η (which satisfies {η} = X), and the rest of which are closed.

Proof. Since X has dimension 1, X has at least 2 points. Since X is an integral scheme, X has a generic
point η satisfying {η} = X. Let x ∈ X and let y ∈ {x}. Then {y} ⊆ {x} ⊆ {η} = X is a chain of irreducible
closed subsets of X. Since X has dimension 1, we must have {y} = {x} or {x} = {η}. By the uniqueness of
generic points, we must have y = x or x = η. Thus, if x 6= η then x is closed.

The main takeaway from Lemma 2 is that “closed point” is equivalent to “not the generic point η.”

Lemma 3 (Open Subsets of a Dedekind Scheme). Let X be a Dedekind scheme. Then the nonemepty open
subsets of X are the subsets of the form X \ {x1, . . . , xk} for finitely many closed points x1, . . . , xn ∈ X.

Proof. It is clear that if x1, . . . , xn ∈ X are closed points then U = X \ {x1, . . . , xk} is an open subset of X.
Conversely, let U be a nonempty open subset of X. Note that η ∈ U as otherwise X \ U would be a proper
closed subset of X containing η. Then every point of X \U is closed. It remains to show that X \U is finite.
Since X is quasi-compact, there exists a finite affine open cover X =

⋃n
i=1 Ui of X. Now Ui \ U is a closed

subset of Ui so Ui \ U = {p ∈ SpecOX(Ui) : I ⊆ p} for some ideal I of OX(Ui). However, Ui \ U consists
entirely of closed points, so all p ∈ Ui \ U are maximal ideals of OX(Ui). In particular, all p ∈ Ui \ U are
minimal prime ideals over I. Since the ring OX(Ui) is Noetherian, Ui \U is finite. Then X \U =

⋃n
i=1 Ui \U

is also finite.

One technical issue that will complicate some of our results is that the generic point η might be open.
Luckily, Lemma 3 tells us exactly when this situation occurs.

Corollary 4. Let X be a Dedekind scheme with generic point η. Then {η} is open if and only if X is finite.

This situation could arise when studying curves over finite fields, or when studying the spectrum of a
Dedekind domain with only finitely many maximal ideals (although such a Dedekind domain is necessarily
a principal ideal domain).
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Lemma 5 (The Structure Sheaf of a Dedekind Scheme). Let X be a Dedekind scheme with generic point η.

1. The stalk OX,η is a field.

2. For every closed point x ∈ X, the stalk OX,x is a discrete valuation ring with field of fractions OX,η.

3. Let U be a nonempty affine open subset of X. If U = {η} then OX(U) is the field OX,η. If U 6= {η}
then OX(U) is a Dedekind domain with field of fractions OX,η.

Proof. The first statement is a general fact about integral schemes. Now let x ∈ X be a closed point and let
U be a nonempty affine open neighborhood of x. Then OX(U) is a Noetherian ring of dimension at most 1,
whose localization at every prime ideal is a regular local ring. Then OX(U) is either a field or a Dedekind
domain. Since U contains at least two points (x and η), OX(U) must be a Dedekind domain. Here η is the
zero ideal of OX(U) and x is a maximal ideal of OX(U). Then the localization OX(U)x = OX,x is a discrete
valuation ring with field of fractions OX(U)η = OX,η.

Lastly, let U be a nonempty affine open subset of X. We just showed that if U contains a closed point x
then OX(U) is a Dedekind domain with field of fractions OX,η. If U contains no closed points then U = {η}
so OX(U) = OX,η.

We now prove a technical lemma regarding invertible sheaves on Dedekind domains.

Lemma 6. Let X be a Dedekind scheme, let L be an invertible sheaf on X, let U be a nonempty open
subset of X, and let x ∈ X be any point. Then the diagram

L (U) Lx

Lη

commutes, and all maps in the above diagram are injective.

Proof. Let V ⊆ U be an open neighborhood of x on which L is trivial. Fix an isomorphism LV
∼= OX |V .

This gives an isomorphism Lη
∼= OX,η. If W ⊆ V is an open neighborhood of x then we obtain an

isomorphism L (W ) ∼= OX(W ) making the diagram

L (U) L (W ) OX(W )

Lη OX,η

∼

∼

commute. Taking the colimit over W gives the commutative diagram

L (U) Lx OX,x

Lη OX,η

fx

fη

∼

g

∼

where the right vertical map OX,x → OX,η is injective by Lemma 5. Then g is also injective. In particular,
ker fη ⊆ ker fx. Since this holds for any x ∈ U , we have

ker fη ⊆
⋂
p∈U

ker(L (U)→ Lp) = ker

L (U)→
∏
p∈U

Lp

 = 0

which shows that fη is injective. By the commutivity of the diagram, fx must also be injective.

In light of Lemma 6, we will view L (U) ⊆ Lx ⊆ Lη. In the next section, we will obtain a more precise
version of this result (Proposition 8) which will allow us to view Lx as the elements of Lη that are “defined
at x” and L (U) as the elements of Lη that are “defined on all of U”.
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2.2 Valuations

Let X be a Dedekind scheme and let x ∈ X be a closed point. By Lemma 5, OX,x is a discrete valuation
ring with field of fractions OX,η. There is a valuation ν0x : OX,η → Z ∪ {∞} coming from OX,x.

Now let L be an invertible sheaf on X. Consider an open neighborhood U of x on which L is trivial, and
fix an isomorphism L |U ∼= OX |U . The proof of Lemma 6 gives isomorphisms Lx

∼= OX,x and Lη
∼= OX,η

making the diagram

Lx OX,x

Lη OX,η

∼

∼

commute. Then there exists a unique function νx : Lη → Z ∪ {∞} making the diagram

Lx OX,x

Lη OX,η

Z ∪ {∞}

∼

∼

νx ν0
x

commute. This explicit construction of νx : Lη → Z∪{∞} from the valuation ν0x : OX,η → Z∪{∞} requires
choosing the neighborhood U and the isomorphism L |U ∼= OX |U . We now give an intrinsic characterization
of νx, showing that νx does not depend on these choices.

Lemma 7. Let π be a uniformizing parameter for the discrete valuation ring OX,x. Then νx is given by

νx(s) = max{n ∈ Z : π−ns ∈ Lx}.

In particular, νx does not depend on the choice of the neighborhood U or the isomorphism L |U ∼= OX |U .

Proof. Let ϕ : Lη → OX,η be the chosen OX,η-module isomorphism with ϕ(Lx) = OX,x. Then

νx(s) ≥ n ⇐⇒ ν0x(ϕ(s)) ≥ n ⇐⇒ π−nϕ(s) ∈ OX,x ⇐⇒ ϕ(π−ns) ∈ OX,x ⇐⇒ π−ns ∈ Lx.

We should mention that the functions ν0x are really just the functions νx associated to OX .

Proposition 8. Let X be a Dedekind scheme, let L be an invertible sheaf on X, let s, t ∈ Lη, and let
r ∈ OX,η. Then the functions νx : Lη → Z ∪ {∞} satisfy:

1. For each closed point x ∈ X, νx(s+ t) ≥ min(νx(s), νx(t)) with equality if νx(s) 6= νx(t),

2. For each closed point x ∈ X, νx(rs) = ν0x(r) + νx(s),

3. For each closed point x ∈ X, νx(s) =∞ ⇐⇒ s = 0,

4. For each closed point x ∈ X, νx(s) ≥ 0 ⇐⇒ s ∈ Lx,

5. For each nonempty open subset U of X, [νx(s) ≥ 0 for all closed points x ∈ U ] ⇐⇒ s ∈ L (U).

Proof. The first four statements follow from the analogous statements about the valuation ν0x. Let U be a
nonempty open subset of X. It remains to show that [s ∈ Lx for all closed points x ∈ U ] ⇐⇒ s ∈ L (U).
The ⇐= direction is clear. Now suppose that s ∈ Lx for all closed points x ∈ U . We wish to show that
s ∈ L (U). By the gluing axiom for sheaves, it suffices to show that s ∈ L (V ) for every nonempty affine
open subscheme V ⊆ U of X on which L is trivial. Fix an isomorphism L |V ∼= OX |V . By Lemma 5, OX(V )
is a Dedekind domain with field of fractions OX(V )η = OX,η. The isomorphism Lη

∼= OX,η = OX(V )η
takes s ∈ Lη to an element s̃ ∈ OX(V )η in the field of fractions of OX(V ). For every closed point x ∈ V ,
s ∈ Lx so s̃ ∈ OX(V )x. In other words, s̃ ∈ OX(V )m for all maximal ideals m of OX(V ). Since OX(V ) is
an integral domain, this implies that s̃ ∈ OX(V ). Then s ∈ L (V ) as desired.
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In light of Proposition 8, it will be helpful to think of the functions νx in the following way:

νx(s) means the order of of vanishing of s at x

νx(s) ≥ 1 means s has a zero at x

νx(s) ≤ −1 means s has a pole at x

s ∈ Lx (or νx(s) ≥ 0) means s is defined at x

s ∈ L (U) means s is defined on all of U

With this in mind, we now show that a nonzero s ∈ Lη has only finitely many zeros and poles.

Proposition 9. Let X be a Dedekind scheme, let L be an invertible sheaf on X, and let s ∈ Lη be nonzero.
Then νx(s) = 0 for all but finitely many closed points x ∈ X.

Proof. Let U be a nonempty affine open subscheme of X on which L is trivial. If U = {η} then X is finite
by Lemma 3. Thus, we may assume that U 6= {η}. Fix an isomorphism L |U ∼= OX |U . By Lemma 5, OX(U)
is a Dedekind domain with field of fractions OX(U)η = OX,η. The isomorphism Lη

∼= OX,η = OX(U)η
takes s ∈ Lη to a nonzero element s̃ ∈ OX(U)η in the field of fractions of OX(U). Write s̃ = a/b for nonzero
elements a, b ∈ OX(U). Since OX(U) is a Dedekind domain, a and b are each contained in only finitely many
maximal ideals of OX(U). Then νx(s) = ν0x(s̃) = 0 for all but finitely many closed points x ∈ U . However,
X \ U is finite by Lemma 3. Thus, νx(s) = 0 for all but finitely many closed points x ∈ X.

One consequence of this is that there is a largest open subset of X on which s is defined.

Corollary 10. Let X be a Dedekind scheme, let L be an invertible sheaf on X, and let s ∈ Lη. Then

Us = {closed points x ∈ X : νx(s) ≥ 0} ∪ {η}

is an open subset of X and is the largest open subset of X with s ∈ L (U).

Proof. By Proposition 9, Us is open. By Proposition 8, Us is the largest open subset of X with s ∈ L (U).

2.3 Divisors

We now turn our attention to divisors on Dedekind schemes.

Definition 11. For a Dedekind scheme X, let DivX denote the free abelian group on the closed points of
X. The elements of DivX are called divisors on X. For an invertible sheaf L on X and a nonzero s ∈ Lη,
we define div s =

∑
x νx(s) · [x] ∈ DivX.

Our main result of this first section will be an isomorphism between the Picard group of X and a
quotient of DivX. We now prove two key results that will correspond to injectivity and surjectivity of this
isomorphism.

Lemma 12 (Injectivity). Let X be a Dedekind scheme and let L be an invertible sheaf on X. If there exists
a nonzero s ∈ Lη with div s = 0 then L ∼= OX .

Proof. By Proposition 8, there is an OX -module homomorphism ϕ : OX → L given by ϕ(r) = rs. Let
x ∈ X be a closed point and consider the commutative diagram

Lx OX,x

Lη OX,η

Z ∪ {∞}

∼

∼

νx ν0
x
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from the construction of νx. Since νx(s) = 0, the image of s in OX,η must land in O×X,x. In particular, the
OX,x-module homomorphism ϕx : OX,x → Lx is an isomorphism. This holds for all closed points x ∈ X.
Let U be a nonempty affine open subscheme of X with U 6= {η}. Then the OX(U)-module homomorphism
ϕ|U : OX(U) → L (U) is an isomorphism since its localization at any maximal ideal is an isomorphism.
Localizing at the zero ideal shows that the OX,η-module homomorphism ϕη : OX,η → Lη is an isomorphism.
We have shown that ϕ induces an isomorphism at every stalk. Therefore, ϕ is an isomorphism.

Proposition 13 (Surjectivity). Let X be a Dedekind scheme, let D =
∑
x nx · [x] ∈ DivX be a divisor on

X, and let L be an invertible sheaf on X. Then the data

L (D)(U) =

{
{s ∈ Lη : νx(s) ≥ −nx for all closed points x ∈ U} if U 6= ∅,
0 if U = ∅

defines an invertible sheaf L (D) on X. There is a OX,η-module isomorphism ϕ : Lη
∼−→ L (D)η which

satisfies divϕ(s) = div s+D for all nonzero s ∈ Lη.

Proof. We first check that L (D) is a sheaf. Let U be an open subset of X, let {Vα}α∈A be an open cover of U ,
and fix compatible sections sα ∈ L (D)(Vα). If U is empty then 0 ∈ L (D)(U) is the unique gluing of the sα.
Now suppose that U is nonempty. If Vα and Vβ are two nonempty elements of the cover then considering the
generic point η shows that Vα∩Vβ is also nonempty. Then the restriction maps L (D)(Vα)→ L (D)(Vα∩Vβ)
and L (D)(Vβ) → L (D)(Vα ∩ Vβ) are both inclusions. In particular, sα = sβ . Since this holds whenever
Vα and Vβ are nonempty elements of the open cover, we obtain an element s ∈ Lη such that sα = s for
any index α ∈ A with Vα nonempty. Also, s ∈ L (D)(U) since νx(s) = νx(sα) ≥ −nx for any closed point
x ∈ Vα. Then s is a gluing of the sα. Uniqueness of s follows from the fact that if Vα is some nonempty
element of the cover then the restriction map L (D)(U)→ L (D)(Vα) is an inclusion.

We now check that L (D) is an OX -module. Fix an open subset U of X. Recall that L (D)(U) ⊆ Lη

and OX(U) ⊆ OX,η where Lη is an OX,η-module. We just need to check that rs ∈ L (D)(U) for every
r ∈ OX(U) and s ∈ L (D)(U). By Proposition 8,

νx(rs) = ν0x(r) + νx(s) ≥ νx(s) ≥ −nx

for all closed points x ∈ U .
We now check that L (D) is an invertible sheaf on X. Let m ∈ X be a closed point and let U be

a nonempty affine open neighborhood of m. By Lemma 5, OX(U) is a Dedekind domain. Then m is a
maximal ideal of OX(U) and we can choose an element r ∈ m \ m2. We will now get rid of finitely many
“bad” maximal ideals of OX(U).

• Since OX(U) is a Dedekind domain, there are only finitely many maximal ideals m′ 6= m containing r.

• By Proposition 9, there are only finitely many closed points m′ ∈ U \ {m} with nm′ 6= 0.

To get rid of each of these “bad” maximal ideals, localize at an element of m′ \ m. This has the effect of
puncturing U at a finite number of closed points. Then we can assume without loss of generality that:

• m is the only maximal ideal of OX(U) containing r,

• nx = 0 for all closed points x ∈ U \ {m}.

A more succinct way to say this is that nx = ν0x(rnm) for all closed points x ∈ U . By Proposition 8,

νx(rnms) = ν0x(rnm) + νx(s) = nx + νx(s)

for all s ∈ Lη and closed points x ∈ U . Then multiplication by rnm gives an isomorphism L (D)|U ∼= L |U .
By construction, this holds for a collections of U ’s that covers X. Since L is an invertible sheaf, so is L (D).
If we let ν′x denote the valuation on L (D) then the isomorphism ·rnm : L (D)|U → L |U gives the identity

ν′x(s) = νx(rnms) = nx + νx(s)
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for all s ∈ Lη. Since this holds for all closed points x ∈ X, we have div′ s = div s + D for all nonzero
s ∈ Lη. Here we are implicitly identifying L (D)η with Lη. This is reasonable since L (D)(U) = L (U)
(with the same OX(U)-module structure) for any open subset U of X that does not contain the closed points
x ∈ X for which nx 6= 0. Since the collection of such U ’s is cofinal, taking the colimit gives L (D)η = Lη

(with the same OX,η-module stricture). If one wishes to avoid this identification, we could write this as an

OX,η-module isomorphism ϕ : Lη
∼−→ L (D)η satisfying divϕ(s) = div s+D for all nonzero s ∈ Lη.

2.4 Tensor Products

We now show that the group structure on the Picard group is compatible with the group structure on DivX.

Lemma 14. Let X be a Dedekind scheme, let L and M be invertible sheaves on X, and let s ∈ Lη and
t ∈Mη be nonzero. Then s⊗ t ∈ (L ⊗M )η is nonzero and satisfies div(s⊗ t) = div s+ div t.

Proof. Let x ∈ X be a closed point and fix isomorphisms f : Lη
∼−→ OX,η and g : Mη

∼−→ OX,η making the
diagrams

Lx OX,x

Lη OX,η

∼

∼
f

Mx OX,x

Mη OX,η

∼

∼
g

commute. Then there exist unique isomorphisms (L ⊗OX M )x
∼−→ OX,x and (L ⊗OX M )η

∼−→ OX,η making
the diagram

Lx ⊗OX,x Mx OX,x ⊗OX,x OX,x

(L ⊗OX M )x OX,x

Lη ⊗OX,η Mη OX,η ⊗OX,η OX,η

(L ⊗OX M )η OX,η.

∼

∼ ∼

∼

∼
f⊗g

∼ ∼
m

∼

commute (where the vertical maps are all inclusions). By the construction of νx, we have

νx(s⊗ t) = ν0x(m((f ⊗ g)(s⊗ t))) = ν0x(m(f(s)⊗ g(t))) = ν0x(f(s)g(t)) = ν0x(f(s)) + ν0x(g(t)) = νx(s) + νx(t).

Since this holds for all closed points x ∈ X, we have div(s⊗ t) = div s+ div t.

Lemma 15. Let X be a Dedekind scheme, let L be an invertible sheaf on X, and let s ∈ Lη be nonzero.
Then there exists a unique nonzero element s∨ ∈ L ∨ with s⊗ s∨ = 1 ∈ OX,η and div s∨ = −div s.

Proof. There is an OX,η-module isomorphism Lη ⊗ (L ∨)η
∼−→ OX,η where Lη and (L ∨)η are OX,η-vector

spaces of dimension 1. Then there exists a unique nonzero element s∨ ∈ L ∨ with s ⊗ s∨ = 1 ∈ OX,η. By
Lemma 14, div s∨ = − div s.

We can now state the main result of this first section. Recall that the Picard group of X is the group of
isomorphism classes of invertible sheaves on X under tensor product.

Theorem 16. Let X be a Dedekind scheme.

1. The set PrDivX = {div s : nonzero s ∈ OX,η} is a subgroup of DivX.
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2. There is an isomorphism ϕ : PicX
∼−→ DivX/PrDivX given by ϕ(L ) = div s + PrDivX for any

nonzero s ∈ Lη. The inverse is given by ϕ−1(D + PrDivX) = OX(D).

3. Let L ,M be invertible sheaves on X. Then M ∼= L (div t−div s) for any nonzero s ∈ Lη and t ∈Mη.
In particular, L ∼= OX(div s) for any nonzero s ∈ Lη.

Proof. We will prove each part separately.

1. By Lemma 14, there is a group homomorphism div : O×X,η → DivX with image PrDivX.

2. Note that if s, t ∈ Lη are nonzero, then by Lemmas 14 and 15, s⊗ t∨ ∈ OX,η is nonzero and satisfies
div(s⊗ t∨) = div s−div t. In particular, div s−div t ∈ PrDivX so div s+ PrDivX = div t+ PrDivX.
This shows that ϕ is well-defined. By Lemma 14, ϕ is a homomorphism. Injectvitity of ϕ (or rather,
kerϕ = 0) follows from Lemma 12. Surjectivity of ϕ follows from Proposition 13 which implies that
ϕ(OX(D)) = D + PrDivX for any divisor D ∈ DivX.

3. Let D = div t−div s. By Proposition 13, there is a nonzero u ∈ L (D)η with div u = div s+D = div t.
Then ϕ(M ) = ϕ(L (D)) so M ∼= L (D). Setting M = OX gives the final statement.

Example 17. Let X = P1
k. Then O×X,η = k(t) and taking the image under div : O×X,η → DivX shows that

PrDivX is the subgroup of divisors whose coefficients sum to 0. Equivalently, PrDivX is the kernel of the
degree homomorphism deg : DivX → Z. Then PicX ∼= DivX/PrDivX ∼= DivX/ ker deg ∼= Z.

Example 18. Let R be a Dedekind domain with field of fractions k, and let X = SpecR. Unique factoriza-
tion of fraction ideals shows that the group of fractional ideals of R is isomorphic to DivX. Also, O×X,η = k×

and taking the image under div : O×X,η → DivX shows that PrDivX is isomorphic to the subgroup of
principal fractional ideals of R. Then the quotient DivX/PrDivX is the ideal class group of X.

2.5 An Example

We now give an example of how this theory applies to a specific elliptic curve. Hopefully this example will
illustrate the beautiful theory of elliptic curves without getting bogged down in machinery.

Motivating Question: Find a positive integer solution to the equation

x

y + z
+

y

x+ z
+

z

x+ y
= 4.

A while ago, this problem made its rounds on the internet in the form:

For this particular problem, 95% is a vast underestimate. Clearing denominators gives the equation

x3 + y3 + z3 + xyz = 3(x+ y)(x+ z)(y + z)
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which defines a curve C in P2
C. There are a few small points on C. For example, there is the point

O = [−1 : 0 : 1]. The nice feature of O is that the tangent line y = 6(x + z) passes through O with
multiplicity 3. This will be relevant later on.

Proposition 19. The curve C is a Dedekind scheme.

Proof. We need to check that C is nonsingular. By symmetry, it suffices to check that C is nonsingular on
the affine patch z = 1. On this affine patch, the equation for C becomes

x3 + y3 + 1 + xy = 3(x+ y)(x+ 1)(y + 1).

If C is singular at (x, y) then by the Jacobian criterion,

3x2 + y = 3(2x+ y + 1)(y + 1), (1)

3y2 + x = 3(2y + x+ 1)(x+ 1). (2)

Subtracting equation (2) from equation (1) gives (x − y)(6(x + y) − 1) = 0. Thus, x = y or x + y = 1
6 . If

x = y then (1) gives (x, y) = (− 1
3 ,−

1
3 ) or (x, y) = (− 3

2 ,−
3
2 ), neither of which are on C. If x + y = 1

6 then

(1) gives (x, y) = (1+
√
95

12 , 1−
√
95

12 ) or (x, y) = (1−
√
95

12 , 1+
√
95

12 ), neither of which are on C.

We now describe the group of principal divisors on C. Let deg : DivC → Z be the degree homomorphism
given by deg(

∑
x nx · [x]) =

∑
x nx. The group of degree zero divisors is denoted by Div0 C = ker deg.

Proposition 20. The group PrDivC of principal divisors on C satisfies:

1. If L1 and L2 are lines in P2 then each line Li intersects C at three points Pi, Qi, and Ri (counting
multiplicity), and [P1] + [Q1] + [R1]− [P2]− [Q2]− [R2] ∈ PrDivC.

2. PrDivC ⊆ Div0 C.

3. If [P ]− [Q] ∈ PrDivC then P = Q.

Proof. By Bezout’s theorem, each line Li intersects C at three points. Suppose that the line Li is defined
by the homogeneous equation aix+ biy + ciz = 0. Then the quotient

a1x+ b1y + c1z

a2x+ b2y + c2z

is a rational function on C with divisor [P1] + [Q1] + [R1]− [P2]− [Q2]− [R2].

More generally, consider a rational function f(x,y,z)
g(x,y,z) on C, where f(x, y, z) and g(x, y, z) are homogeneous

of the same degree d. By Bezout’s theorem, f(x, y, z) and g(x, y, z) will each intersect C at 3d points (counting
multiplicity), so the corresponding principal divisor will have degree 0. Another reference for this result is
Corollary II.6.10 of [1].

Now suppose that the rational function f(x,y,z)
g(x,y,z) on C has divisor [P ] − [Q]. This means that f(x, y, z)

and g(x, y, z) intersect C in at least 3d − 1 shared points (counting multiplicity). Note that f(x, y, z) and
g(x, y, z) are nonconstant so d ≥ 1 and 3d− 1 ≥ d+ 1. Since a curve of degree d is defined by d+ 1 points,

f and g must be scalar multiples of each other. Then f(x,y,z)
g(x,y,z) has trivial divisor so P = Q.

Now our special point O = [−1 : 0 : 1] comes in handy. The tangent line y = 6(x+ z) passes through O
with multiplicity 3. By Proposition 20, if L is a line in P2 that intersects C at three points P , Q, and R,
then [P ] + [Q] + [R]− 3[O] ∈ PrDivC.

If P and Q are any two points of C, then consider the line L passing through P and Q. We know that L
intersects C at another point R, and that [P ]+ [Q]+ [R]−3[O] ∈ PrDivC. Then consider the line L′ passing
throughO andR. We know that L′ intersects C at another pointR′, and that [O]+[R]+[R′]−3[O] ∈ PrDivC.
Putting these together gives [P ] + [Q]− [R′]− [O] ∈ PrDivC. This result is important so we will summarize
it in a lemma.
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Lemma 21. Let P and Q be two points of C. Let L be the line passing through P and Q. Let R be the third
point of intersection of L with C. Let L′ be the line passing through O and R. Let R′ be the third point of
intersection of L′ with C. Then [P ] + [Q]− [R′]− [O] ∈ PrDivC.

Recall that if a line L intersects C at P , Q, and R, then [P ] + [Q] + [R] − 3[O] ∈ PrDivC. We can
write this as ([P ] − [O]) + ([Q] − [O]) + ([R] − [O]) ∈ PrDivC. With this in mind, we define a function
f : C → Div0 C/PrDivC by f(P ) = [P ]− [O] + PrDivC.

Theorem 22. The function f : C → Div0 C/PrDivC is a bijection.

Proof. If f(P ) = f(Q) then [P ]− [O] + PrDivC = [Q]− [O] + PrDivC so we have [P ]− [Q] ∈ PrDivC. By
Proposition 20, P = Q. This shows that f is injective. Now consider a coset of Div0 C/PrDivC. By adding
many copies of [P ] + [Q] + [R] − 3[O], we know that this coset contains an element D =

∑
x nx · [x] such

that nx ≥ 0 for all x 6= O. Among such elements, let D be one that minimizes the quantity q =
∑
x 6=O nx.

If q ≥ 2, then subtracting a divisor of the form [P ] + [Q] − [R′] − [O] ∈ PrDivC (from Lemma 21) gives a
contradiction. Thus, q ≤ 1. Since degD = 0, either D = 0 = [O] − [O] or D = [P ] − [O]. This shows that
every coset of Div0 C/PrDivC is in the image of f .

Since f is a bijection, the abelian group structure on Div0 C/PrDivC induces an abelian group structure
on C. For example, in the notation of Lemma 21 we have f(P ) + f(Q) = f(R′) so P +Q = R′. Thus, the
group law on C is given by the geometric process described in Lemma 21.

We now use the group law on C to solve our motivating question. The idea is to take small rational
points that are easy to find, and add them together to obtain a rational point with positive coordinates.

Let’s start with the point P = [−1 : −1 : 1]. To compute 2P , take the tangent line x+y+2z = 0 through
P . Its third point of intersection with C is the point −2P = [−1 : 1 : 0]. The line through O = [−1 : 0 : 1]
and −2P is the line x + y + z = 0. Its third point of intersection with C is the point 2P = [0 : −1 : 1].
Repeating this process constructs the rational points

O = [−1 : 0 : 1], P = [−1 : −1 : 1], 2P = [0 : −1 : 1],

3P = [1 : −1 : 1] 4P = [−1 : 1 : 0], 5P = [−1 : 1 : 1].

The graph below depicts these points in the affine patch z = 1.
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The good news is that we’ve found a subgroup of C of order 6. The bad news is that we’re stuck until we
find a new rational point. A small search finds the rational point Q = [4 : −1 : 11]. Then taking multiples
of Q give the rational points

1Q =

 4
−1
11

 , 2Q =

−5165
−9499
8784

 , 3Q =

−375326521
883659076
679733219

 , 4Q =

 6696085890501216
−6531563383962071
6334630576523495


5Q =

−5048384306267455380784631
−5824662475191962424632819
2798662276711559924688956

 , 6Q =

−399866258624438737232493646244383709
434021404091091140782000234591618320
287663048897224554337446918344405429


7Q =

3386928246329327259763849184510185031406211324804
−678266970930133923578916161648350398206354101381
1637627722378544613543242758851617912968156867151


8Q =

−2110760649231325855047088974560468667532616164397520142622104465
−343258303254635343211175484588572430575289938927656972201563791
2054217703980198940765993621567260834791816664149006217306067776


9Q =

 36875131794129999827197811565225474825492979968971970996283137471637224634055579
4373612677928697257861252602371390152816537558161613618621437993378423467772036

154476802108746166441951315019919837485664325669565431700026634898253202035277999


The graph below depicts these points in the affine patch z = 1.

Once we reach 9Q, we obtain a rational point with positive coordinates. In fact, this is the smallest positive
integer solution to our equation!

x = 36875131794129999827197811565225474825492979968971970996283137471637224634055579,

y = 4373612677928697257861252602371390152816537558161613618621437993378423467772036,

z = 154476802108746166441951315019919837485664325669565431700026634898253202035277999.
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We should mention that the group C(Q) of rational points of C is isomorphic to Z/6Z⊕ Z, generated by P
and Q. In other words, C(Q) has rank 1 and torsion subgroup Z/6Z.

We conclude by determining PicC. There is a short exact sequence of abelian groups

0 Div0 C DivC Z 0.
deg

Taking the quotient by PrDivC gives a short exact sequence

0
Div0 C

PrDivC

DivC

PrDivC
Z 0.

deg

By Theorems 16 and 22, we can rewrite this short exact sequence as

0 C PicC Z 0.
deg

Abstractly, this sequence splits (noncanonically) so we obtain PicC ∼= C ⊕ Z.

3 Ramification Theory

3.1 Finite Morphisms

We will restrict our attention to nonconstant finite morphisms of Dedekind schemes. These morphisms are
the natural generalization of the “AKLB” setup for Dedekind domains (see Lemma 24).

Lemma 23. Let f : Y → X be a nonconstant finite morphism of Dedekind schemes.

• f(ηY ) = ηX .

• The field homomorphism OX,ηX → OY,ηY is injective and the field extension OY,ηY /OX,ηX is finite.

• If U is an affine open subscheme of X then V = f−1(U) is an affine open subscheme of Y , and OY (V )
is the integral closure of OX(U) in OY,ηY .

Proof. We know that f(Y ) = f({ηY }) ⊆ {f(ηY )}. Since f is nonconstant, f(ηY ) cannot be a closed
point of X. Then we must have f(ηY ) = ηX . Let U be a nonempty affine open subscheme of X and
let V = f−1(U). Since f is finite, we know that V is an affine open subscheme of Y , and that the ring
homomorphism ϕ : OX(U)→ OY (V ) makes OY (V ) into a finite OX(U)-module. Since f(ηY ) = ηX , we have
kerϕ = ϕ−1((0)) = (0) which shows that ϕ is injective. Passing to the fields of fractions shows that the field
homomorphism OX,ηX → OY,ηY is injective. Since OY (V ) is a finite OX(U)-module, passing to the fields of
fractions shows that OY,ηY /OX,ηX is finite. By Lemma 5, OY (V ) is integrally closed in its field of fractions
OY,ηY . Since OY (V ) is integral over OX(U), OY (V ) must be the integral closure of OX(U) in OY,ηY .

Lemma 23 shows that if Y → X is a nonconstant finite morphism of Dedekind schemes, then the rings
OY (V ) are determined by the finite extension OY,ηY /OX,ηX . We now show how to reconstruct the Dedekind
scheme Y from just the Dedekind scheme X and the finite extension OY,ηY /OX,ηX . We will need the
following result from number theory. Many books only state this result for L/K separable, but it is true in
general (see the Krull-Akizuki theorem).

Lemma 24. Let A be a Dedekind domain with field of fractions K, let L be a finite extension of K, and let
B be the integral closure of A in L. Then B is a Dedekind domain with field of fractions L.

Proposition 25. Let X be a Dedekind scheme with function field K = OX,ηX . Let L/K be a finite extension.
Then there exists a unique nonconstant finite morphism of Dedekind schemes Y → X such that the associated
field homomorphism OX,ηX → OY,ηY is the inclusion K ↪→ L.
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Proof. Let {Ui}ni=1 be a finite affine open cover of X. Let Ai = OX(Ui), let Bi be the integral closure of Ai
in L, and let Vi = SpecBi. The inclusion Ai ↪→ Bi induces a morphism of schemes ϕi : Vi → Ui. For indices
i 6= j, set Uij = Ui ∩ Uj and Vij = ϕ−1i (Uij). Since Uij is an intersection of the affine open subschemes Ui
and Uj of X, we can cover Uij with open subsets Wijk which are simultaneously basic affine open subsets of
both Ui and Uj . If Wijk = Spec((Ai)f ) then Wijk consists of the primes of Ai not containing f so ϕ−1i (Wijk)
consists of the prime ideals of Bi not containing f . Then ϕ−1i (Wijk) = Spec((Bi)f ). Since integral closure
commutes with localization, (Bi)f is the integral closure of (Ai)f in L. In other words, ϕ−1i (Wijk) is the
spectrum of the integral closure in L of the global sections of Wijk. The same holds for ϕ−1j (Wijk). Thus,

ϕ−1i (Wijk) = ϕ−1j (Wijk). Taking the union over k gives Vij = Vji. We also have

Vij ∩ Vik = ϕ−1(Uij) ∩ ϕ−1(Uik) = ϕ−1(Uij ∩ Uik) = ϕ−1(Uji ∩ Ujk) = ϕ−1(Uji) ∩ ϕ−1(Ujk) = Vji ∩ Vjk.

Then we can glue the schemes Vij to obtain a scheme Y . By construction, there is a nonconstant morphism
Y → X. Since each Bi is finite over Ai, this morphism is finite. By Lemma 5, each Ai is a field or Dedekind
domain with field of fractions K. By Lemma 24, each Bi is a field or Dedekind domain with field of fractions
L. Then Y is a Dedekind scheme with OY,ηY = L, and the field homomorphism OX,ηX → OY,ηY is the
inclusion K ↪→ L. It remains to show uniqueness. By Lemma 23, any such morphism Y → X arises via this
construction. Then uniqueness of Y follows from uniqueness of gluing schemes.

We have demonstrated how to go back and forth between finite morphisms of Dedekind schemes Y → X
and finite extensions OX,ηX . The reader who knows some category theory may realize that we have actually
given an equivalence (or rather, a duality) of categories. The details are left to the reader.

Corollary 26. Let X be a Dedekind scheme. Then there is a duality of categories between nonconstant
finite morphisms of Dedekind schemes Y → X and finite extensions of OX,ηX .

3.2 Divisors

We now define the ramification and inertia degrees of nonconstant finite morphisms of Dedekind schemes.

Definition 27. Let Y → X be nonconstant finite morphism of Dedekind schemes. Let y ∈ Y be a closed
point and let x = f(y). Let π be a uniformizing parameter for the discrete valuation ring OX,x. We define
ey/x = νy(π). We define fy/x = [κy : κx] where κx and κy are the residue fields of x and y respectively.

Note that for a nonsingular curve over an algebraically closed field, we always have fy/x = 1. The
following lemma will show that ramification degree is well-defined.

Lemma 28. Let Y → X be nonconstant finite morphism of Dedekind schemes. Let y ∈ Y be a closed point
and let x = f(y). Then the valuation νy(π) does not depend on the choice of uniformizing parameter π for
the discrete valuation ring OX,x.

Proof. If π′ is another uniformizing parameter for the discrete valuation ring OX,x, then π and π′ differ by
a unit of OX,x. Passing to OY,y shows that π and π′ differ by a unit of OY,y, so νy(π) = νy(π′).

We can use our ramification indices to define a pullback homomorphism on divisors.

Definition 29. Let f : Y → X be a nonconstant finite morphism of Dedekind schemes. We define the
pullback homomorphism f∗ : DivX → Div Y by f∗([x]) =

∑
f(y)=x ey/x · [y].

The pullback homomorphism f∗ : DivX → Div Y is compatible with pullback of invertible sheaves.

Lemma 30. Let f : Y → X be a nonconstant finite morphism of Dedekind schemes. Let L be an invertible
sheaf on X and let s ∈ LηX be nonzero. Then the pullback f∗s ∈ (f∗L )ηY satisfies div f∗s = f∗ div s.
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Proof. Let y ∈ Y be a closed point and let x = f(y). Let πx and πy be uniformizing parameters for the
discrete valuation ring OX,x and OY,y respectively. Then f∗πx and π

ey/x
y differ by a unit of OY,y. Under a

local trivialization of L , s differs from π
νx(s)
x by a unit of OX,x. Then f∗s differs from π

ey/xνx(s)
y by a unit

of OY,y. This shows that νy(f∗s) = ey/xνx(s). If we fix x and sum over y with f(y) = x then we obtain∑
f(y)=x

νy(f∗s) · [y] =
∑

f(y)=x

ey/xνx(s) · [y] = νx(s)
∑

f(y)=x

ey/x · [y] = νx(s)f∗([x]).

Finally, summing over x gives

div f∗s =
∑
y

νy(f∗s) · [y] =
∑
x

∑
f(y)=x

νy(f∗s) · [y] =
∑
x

νx(s)f∗([x]) = f∗

(∑
x

νx(s) · [x]

)
= f∗ div s.

Note that Lemma 30 completely determines the pullback homomorphism f∗ : DivX → Div Y since every
element D ∈ DivX is of the form div s for some nonzero s ∈ OX(D)ηX .

We can also view the compatibility result of Lemma 30 as stating the commutativity of a certain diagram.

Proposition 31. Let Y → X be a nonconstant finite morphism of Dedekind schemes. Then the diagram

O×X,ηX O×Y,ηY

DivX Div Y

PicX PicY

f∗

f∗

f∗

commutes.

Proof. The top square commutes by Lemma 30 with L = OX . For the bottom square, let D ∈ DivX. By
Proposition 13, there is a nonzero s ∈ OX(D)ηX with div s = D. By Lemma 30, div f∗s = f∗ div s = f∗D.
By Theorem 16, f∗OX(D) ∼= OY (f∗D) which shows that the bottom square commutes.

We remark that if PicX is torsion (as in the case of the ring of integers of a number field) then commutivity
of the top square completely determines the pullback homomorphism f∗ : DivX → Div Y .

3.3 Ramification Theory

Since ramification is local, we can take ramification theory for Dedekind domains and translate it over to
Dedekind schemes.

Theorem 32 (Ramification Theory for Dedekind Schemes). Let Y → X be a nonconstant finite morphism
of Dedekind schemes. Let K = OX,ηX and let L = OY,ηY .

1. Let x ∈ X be a closed point and let y1, . . . , yg ∈ Y be the closed points of Y lying over x. Then∑g
i=1 eyi/xfyi/x = [L : K]. In particular, g ≥ 1 so f is surjective.

2. There are only finitely many closed points y ∈ Y with ey/f(y) > 1.

3. If L/K is Galois then Gal(L/K) acts transitively on the closed points yi ∈ Y lying over a given closed
point x ∈ X, so ey1/x = · · · = eyg/x = e and fy1/x = · · · = fyg/x = f where efg = [L : K].

Proof. By ramification theory for Dedekind domains, these hold when X is affine. To obtain the general
result, take a finite affine open cover of X.
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Corollary 33. Let C → D be a nonconstant finite morphism of nonsingular curves over an algebraically
closed field k. Then deg f∗D = deg f · degD.

Proof. As mentioned earlier, fy/x = 1 since the residue fields κx and κy are finite extensions of k. Then

deg f∗([x]) = deg
∑

f(y)=x

ey/x · [y] =
∑

f(y)=x

ey/xfy/x = [L : K] = deg f

and the result follows from linearity.

Corollary 34. Let C be a nonsingular curve over an algebraically closed field k. Then PrDivC ⊆ Div0 C.

Proof. Let s ∈ O×C,η. If s is constant then div s = 0. If s is nonconstant then s gives a nonconstant finite

morphism ϕ : C → P1 and

deg div s = degϕ∗([0]− [∞]) = deg([0]− [∞]) · degϕ = 0 · degϕ = 0.

In either case, div s ∈ Div0 C.

This gives another proof of part 2 of Proposition 20.

References

[1] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in
Mathematics, No. 52, MR 0463157.

15


