Restricted Stacks as Functions

Katalin Berlow

Carnegie Mellon University

kberlow@andrew.cmu.edu

August 1, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

Knuth's Stack Sort

If the stack is currently empty or if the leftmost element of the input is larger than the top element of the stack, then move the leftmost element onto the stack. Otherwise, move the top element off the stack and append it to the output.

This algorithm is called *stack sort*. We will denote the map as *s*.

Background

└─ Stack sort

Pattern Avoidance

Order Isomorphic

Let σ and τ be length *n* words. We say that σ is order isomorphic to τ , in symbols $\sigma \cong \tau$, if and only if for all $i, j \leq n$ we have

 $\sigma(i) < \sigma(j)$ if and only if $\tau(i) < \tau(j)$

 $\sigma(i) > \sigma(j)$ if and only if $\tau(i) > \tau(j)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For example $425 \cong 213$ but $312 \not\cong 213$.

Background

- Definitions

Pattern Avoidance

Pattern Avoidance

Let σ be a word of length n and τ a permutation of length m. We say that σ contains τ if and only if σ has a (not necessarily contiguous) subsequence which is order-isomorphic to τ .

Otherwise we say that σ is τ -avoiding. We say that σ is T-avoiding, for a set T of permutations, if and only if π avoids every element of T.

For example 34521 contains 231 while 14325 does not. For any length 3 permutation σ , the subset of S_n which avoids σ is of size C_n .

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let $T = \{123, 132\}$. $s_T(52413) =$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) = 52413$
 11
 23
 32

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) =$

$$2413$$

$$5 \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 2 \end{bmatrix}$$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) =$

$$\begin{array}{c}
413\\
2 \\
5 \\
3 \\
2
\end{array}$$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) =$

$$\begin{array}{c|c}
 & 13 \\
 & 4 \\
 & 2 \\
 & 5 \\
 & 3 \\
 & 2
\end{array}$$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) =$

$$4 \qquad 13$$

$$2 \qquad 3 \qquad 5 \qquad 3 \qquad 2$$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) =$

$$42 \qquad 3$$

$$1 \qquad 1 \qquad 1 \qquad 2 \qquad 3$$

$$1 \qquad 5 \qquad 3 \qquad 2$$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) = 42$
 $3 \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 5 & 3 & 2 \end{bmatrix}$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) =$

$$423$$

$$1 \\ 1 \\ 2 \\ 3 \\ 2$$

Background

Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) = 4231$
 $5 \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 2 \end{bmatrix}$

Background

- Definitions

The *T*-Avoiding Stack

The *T*-Avoiding Stack

Let T be a set of permutations. The map s_T sorts permutations (or words) according to the following algorithm: If adding the next element of the input to the stack keeps the stack T-avoiding, then move that element onto the stack. Otherwise, move the top element off the stack and append it to the output.

Let
$$T = \{123, 132\}$$
. $s_T(52413) = 42315$

Restricted Stacks	
Background	
└─ Definitions	

Reduced T

One might wonder if there are distinct sets of permutations $T \neq R$ such that $s_T = s_R$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Restricted Stacks	
Background	
Definitions	

Reduced T

One might wonder if there are distinct sets of permutations $T \neq R$ such that $s_T = s_R$.

Reduced

Let T be a set of permutations. We say that T is *reduced* if and only if there are no $\sigma, \tau \in T$ such that σ contains τ .

Restricted Stacks	
Background	

Reduced T

One might wonder if there are distinct sets of permutations $T \neq R$ such that $s_T = s_R$.

Reduced

Let T be a set of permutations. We say that T is *reduced* if and only if there are no $\sigma, \tau \in T$ such that σ contains τ .

For distinct sets of reduced permutations T and R we have that s_T and s_R are distinct. It is also straightforward that for any set of permutations T' there exists a reduced set T such that $s_{T'} = s_T$. Thus, it is sufficient to only consider s_T for reduced sets T.

Bijectivity

 \square When is s_T bijective?

When is s_T Bijective?

For any length k permutation σ , let $\sigma(i)$ denote the *i*th entry of σ . We also let $\hat{\sigma}$ denote $\sigma(2)\sigma(1)\sigma(3)\cdots\sigma(k)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Bijectivity

When is s_T bijective?

When is s_T Bijective?

For any length k permutation σ , let $\sigma(i)$ denote the *i*th entry of σ . We also let $\hat{\sigma}$ denote $\sigma(2)\sigma(1)\sigma(3)\cdots\sigma(k)$.

Theorem 1 (B.)

Let T be a reduced set of permutations. The map s_T is bijective if and only if for every $\sigma \in T$, we also have $\hat{\sigma} \in T$.

Bijectivity

When is s_T bijective?

When is s_T Bijective?

For any length k permutation σ , let $\sigma(i)$ denote the *i*th entry of σ . We also let $\hat{\sigma}$ denote $\sigma(2)\sigma(1)\sigma(3)\cdots\sigma(k)$.

Theorem 2 (B.)

Let T be a reduced set of permutations. The map s_T is bijective if and only if for every $\sigma \in T$, we also have $\hat{\sigma} \in T$.

Let *r* be the map which reverses permutations. When s_T is bijective, its inverse is $r \circ s_T \circ r$. inverse is $r \circ s_T \circ r$.

Restricted S	Stac	ks
--------------	------	----

— Bijectivity

A Corollary

A Corollary

Corollary 3 (B.)

Let σ be a permutation. Then $|s \circ s_{\sigma,\hat{\sigma}}^{-1}(id_n)| = C_n$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Restricted	Stacks
------------	--------

Bijectivity

A Corollary

A Corollary

Corollary 3 (B.)

Let
$$\sigma$$
 be a permutation. Then $|s \circ s_{\sigma,\hat{\sigma}}^{-1}(id_n)| = C_n$.

This corollary answers a question of Baril, Khalil, and Vajnovszki. Along with their result that $|s \circ s_{123,132}^{-1}(id_n)| = C_n$, this classifies all pairs of length 3 permutations with this property.

Restricted	Stacks
------------	--------

Bijectivity

A Corollary

A Corollary

Corollary 3 (B.)

Let
$$\sigma$$
 be a permutation. Then $|s \circ s_{\sigma,\hat{\sigma}}^{-1}(id_n)| = C_n$.

This corollary answers a question of Baril, Khalil, and Vajnovszki. Along with their result that $|s \circ s_{123,132}^{-1}(id_n)| = C_n$, this classifies all pairs of length 3 permutations with this property.

(123, 132)	1 2 5 14	(123, 321)	1247	(213, 231)	1 2 5 16
(123, 213)	12514	(132, 213)	1 2 5 15	(213, 321)	12412
(123, 231)	12621	(132, 312)	1 2 5 14	(231, 312)	12623
(123, 231)	12621	$\overline{(132, 321)}$	12410	(231, 321)	12514
(123, 312)	1 2 5 15	(213, 231)	1 2 6 23	(312, 321)	1 2 4 10

	Rest	ricted	Sta	cks
--	------	--------	-----	-----

Preimages

└─ Catalan?

Preimages

Theorem 4 (B.)

If T is a set of permutations, all of length at least k, then every permutation of length n has at most C_{n-k+2} preimages under the map s_T .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Restricted	Stacks
------------	--------

Preimages

└─ Catalan?

Preimages

Theorem 4 (B.)

If T is a set of permutations, all of length at least k, then every permutation of length n has at most C_{n-k+2} preimages under the map s_T .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

But when is this bound attained?

Restricted	Stacks
------------	--------

Preimages

Catalan?

Preimages

Theorem 4 (B.)

If T is a set of permutations, all of length at least k, then every permutation of length n has at most C_{n-k+2} preimages under the map s_T .

But when is this bound attained?

Theorem 5 (B.)

Let σ be a length k permutation. If $\sigma(1)$ and $\sigma(2)$ are consecutive numbers, then for every $n \ge k$, there exists a permutation $\pi \in S_n$ such that $|s_T^{-1}(\pi)| = C_{n-k+2}$. If $\sigma(0)$ and $\sigma(1)$ are not consecutive, then for every n > k there are no $\pi \in S_n$ such that $|s_T^{-1}(\pi)| = C_{n-k+2}$.

Preimages

Corollaries

A Specific Case

Corollary 6 (B.)

Let $\pi \in S_n$ be a permutation. Then $s_{213}(\pi) = id_n$ if and only if $\pi = n\rho$ for 231-avoiding $\rho \in S_{n-1}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Preimages

- Corollaries

A Specific Case

Corollary 6 (B.)

Let $\pi \in S_n$ be a permutation. Then $s_{213}(\pi) = id_n$ if and only if $\pi = n\rho$ for 231-avoiding $\rho \in S_{n-1}$.

Theorem 7

The maximal number of preimages for any permutation of length n under the map $s_{213,231}$ is C_{n-1} . This maximum is attained only by id_n and id_n^r .

Restr	icted	Sta	cks
	u	oru	

Periodicity

└─ Definitions

Periodicity

Periodic Point

Given a map $f : A \to B$, an element $a \in A$ is a *periodic point* if for some $n \in (\text{with } n > 0)$ we have that $f^n(a) = a$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Restr	icted	Sta	cks
	u	oru	

Periodicity

└─ Definitions

Periodicity

Periodic Point

Given a map $f : A \to B$, an element $a \in A$ is a *periodic point* if for some $n \in (\text{with } n > 0)$ we have that $f^n(a) = a$.

For a given set of permutations T, what are the periodic points of s_T

- Periodicity

-s_{{123,132}}

Periodicity of $S_{\{123,132\}}$

Half-Decreasing

Let π be a permutation of length *n*. We say that π is *half-decreasing* if the subsequence

$$\pi(n-1)\pi(n-3)\cdots\pi(2)$$
 for odd n

$$\pi(n-1)\pi(n-3)\cdots\pi(3)$$
 for even n

is the identity of length $\lfloor \frac{n}{2} \rfloor$. (Being order isomorphic to the identity is not sufficient.) We will refer to this subsequence as its *decreasing half*.

- Periodicity

-s{123,132}

Periodicity of $S_{\{123,132\}}$

Half-Decreasing

Let π be a permutation of length *n*. We say that π is *half-decreasing* if the subsequence

$$\pi(n-1)\pi(n-3)\cdots\pi(2)$$
 for odd n

$$\pi(n-1)\pi(n-3)\cdots\pi(3)$$
 for even n

is the identity of length $\lfloor \frac{n}{2} \rfloor$. (Being order isomorphic to the identity is not sufficient.) We will refer to this subsequence as its *decreasing half*.

For example, 647352819 and 75382614 are half-decreasing,

Restricted	Stacks
Periodi	city

⁵{123,132}

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

Res	tricted	Stacks	
	Periodi	city	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s^0_{\{123,132\}}(647352819) = 647352819$$

Res	tricted	Stacks	
	Periodi	city	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s^1_{\{123,132\}}(647352819) = 745382916$$

Res	tricted Stacks	
	Periodicity	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s^2_{\{123,132\}}(647352819) = 548392617$$

Res	tricted Stacks	
	Periodicity	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s^3_{\{123,132\}}(647352819) = 849362715$$

Res	tricted Stacks	
	Periodicity	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s^4_{\{123,132\}}(647352819) = 946372518$$

Res	tricted Stacks	
	Periodicity	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s_{\{123,132\}}^5(647352819) = 946372518$$

Res	tricted	Stacks	
	Periodi	city	

$s_{123,132}$ Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map $s_{\{123,132\}}$ acts on it as follows:

 $s_{\{123,132\}}(\pi) = \pi(3)\pi(2)\pi(5)\cdots\pi(n)\pi(n-1)\pi(1)$ for odd n

 $s_{\{123,132\}}(\pi) = \pi(2)\pi(4)\pi(3)\pi(6)\cdots\pi(n)\pi(n-1)\pi(1)$ for even n.

In other words, the decreasing half is fixed under $s_{\{123,132\}}$ and the remaining elements shift cyclically to the left.

So,

$$s^6_{\{123,132\}}(647352819) = 647352819$$

- Periodicity

*⊾*_{123,132}

Periodic Points of s_{123,132}

Lemma 9 Let π be a permutation. Then $s_{\{123,132\}}^m$ is half-decreasing for some $m \in .$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Periodicity

s{123,132}

Periodic Points of $s_{\{123,132\}}$

Lemma 9

Let π be a permutation. Then $s^m_{\{123,132\}}$ is half-decreasing for some $m \in$.

Theorem 10

The periodic points of $s_{\{123,132\}}$ are exactly the half-decreasing permutations.

Wrapping Up

-Open Problems

Further Research

Conjecture

The only periodic points of $s_{132,213}$ and $s_{231,213}$ are the identity and its reverse.

Other Questions:

■ Given a set of permutations *T*, can one find a classification based on *T* of the maximum number of preimages under the map s_T?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

■ For a given set of permutations T what is the size of the image of s_T?

Wrapping Up

Acknowledgements

Acknowledgements

This research was conducted through the Duluth REU and was funded through NSF grant 1949884 and NSA grant H98230-20-1-0009. We would like to thank Joe Gallian for the REU, and Ilani Axelrod-Freed, Colin Defant, and Mihir Singhal for helpful discussions as well as Joe Gallian, Noah Kravitz, Yelena Mandelshtam, and Colin Defant for valuable comments.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Restricted Stacks			
Wrapping Up			
└─ The End			

The End

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで