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Restricted Stacks

Background

Stack sort

Knuth’s Stack Sort

If the stack is currently empty or if the leftmost element of the
input is larger than the top element of the stack, then move the
leftmost element onto the stack. Otherwise, move the top element
off the stack and append it to the output.

This algorithm is called stack sort. We will denote the map as s.
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Background

Stack sort

Pattern Avoidance

Order Isomorphic

Let σ and τ be length n words. We say that σ is order isomorphic
to τ , in symbols σ ∼= τ , if and only if for all i , j ≤ n we have

σ(i) < σ(j) if and only if τ(i) < τ(j)

σ(i) > σ(j) if and only if τ(i) > τ(j).

For example 425 ∼= 213 but 312 6∼= 213.
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Definitions

Pattern Avoidance

Pattern Avoidance

Let σ be a word of length n and τ a permutation of length m. We
say that σ contains τ if and only if σ has a (not necessarily
contiguous) subsequence which is order-isomorphic to τ .

Otherwise we say that σ is τ -avoiding. We say that σ is
T -avoiding, for a set T of permutations, if and only if π avoids
every element of T .

For example 34521 contains 231 while 14325 does not.
For any length 3 permutation σ, the subset of Sn which avoids σ is
of size Cn.
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The T -Avoiding Stack

Let T be a set of permutations. The map sT sorts permutations
(or words) according to the following algorithm: If adding the next
element of the input to the stack keeps the stack T -avoiding, then
move that element onto the stack. Otherwise, move the top
element off the stack and append it to the output.

Let T = {123, 132}. sT (52413) =
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The T -Avoiding Stack

Let T be a set of permutations. The map sT sorts permutations
(or words) according to the following algorithm: If adding the next
element of the input to the stack keeps the stack T -avoiding, then
move that element onto the stack. Otherwise, move the top
element off the stack and append it to the output.

Let T = {123, 132}. sT (52413) =
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The T -Avoiding Stack

Let T be a set of permutations. The map sT sorts permutations
(or words) according to the following algorithm: If adding the next
element of the input to the stack keeps the stack T -avoiding, then
move that element onto the stack. Otherwise, move the top
element off the stack and append it to the output.

Let T = {123, 132}. sT (52413) =
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Let T be a set of permutations. The map sT sorts permutations
(or words) according to the following algorithm: If adding the next
element of the input to the stack keeps the stack T -avoiding, then
move that element onto the stack. Otherwise, move the top
element off the stack and append it to the output.
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The T -Avoiding Stack

The T -Avoiding Stack

Let T be a set of permutations. The map sT sorts permutations
(or words) according to the following algorithm: If adding the next
element of the input to the stack keeps the stack T -avoiding, then
move that element onto the stack. Otherwise, move the top
element off the stack and append it to the output.

Let T = {123, 132}. sT (52413) =

5

4231

3
2
1

2
3
1



Restricted Stacks

Background

Definitions

The T -Avoiding Stack

The T -Avoiding Stack

Let T be a set of permutations. The map sT sorts permutations
(or words) according to the following algorithm: If adding the next
element of the input to the stack keeps the stack T -avoiding, then
move that element onto the stack. Otherwise, move the top
element off the stack and append it to the output.

Let T = {123, 132}. sT (52413) =

42315
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Reduced T

One might wonder if there are distinct sets of permutations T 6= R
such that sT = sR .
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Background

Definitions

Reduced T

One might wonder if there are distinct sets of permutations T 6= R
such that sT = sR .

Reduced

Let T be a set of permutations. We say that T is reduced if and
only if there are no σ, τ ∈ T such that σ contains τ .

For distinct sets of reduced permutations T and R we have that
sT and sR are distinct. It is also straightforward that for any set of
permutations T ′ there exists a reduced set T such that sT ′ = sT .
Thus, it is sufficient to only consider sT for reduced sets T .
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When is sT Bijective?

For any length k permutation σ, let σ(i) denote the ith entry of σ.
We also let σ̂ denote σ(2)σ(1)σ(3) · · ·σ(k).
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When is sT Bijective?

For any length k permutation σ, let σ(i) denote the ith entry of σ.
We also let σ̂ denote σ(2)σ(1)σ(3) · · ·σ(k).

Theorem 1 (B.)

Let T be a reduced set of permutations. The map sT is bijective if
and only if for every σ ∈ T , we also have σ̂ ∈ T .
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When is sT Bijective?

For any length k permutation σ, let σ(i) denote the ith entry of σ.
We also let σ̂ denote σ(2)σ(1)σ(3) · · ·σ(k).

Theorem 2 (B.)

Let T be a reduced set of permutations. The map sT is bijective if
and only if for every σ ∈ T , we also have σ̂ ∈ T .

Let r be the map which reverses permutations. When sT is bijective,
its inverse is r ◦ sT ◦ r . inverse is r ◦ sT ◦ r .
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A Corollary

Corollary 3 (B.)

Let σ be a permutation. Then |s ◦ s−1
σ,σ̂(idn)| = Cn.



Restricted Stacks

Bijectivity

A Corollary

A Corollary

Corollary 3 (B.)

Let σ be a permutation. Then |s ◦ s−1
σ,σ̂(idn)| = Cn.

This corollary answers a question of Baril, Khalil, and Vajnovszki.
Along with their result that |s ◦ s−1

123,132(idn)| = Cn, this classifies all
pairs of length 3 permutations with this property.
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A Corollary

A Corollary

Corollary 3 (B.)

Let σ be a permutation. Then |s ◦ s−1
σ,σ̂(idn)| = Cn.

This corollary answers a question of Baril, Khalil, and Vajnovszki.
Along with their result that |s ◦ s−1

123,132(idn)| = Cn, this classifies all
pairs of length 3 permutations with this property.

(123, 132) 1 2 5 14 (123, 321) 1 2 4 7 (213, 231) 1 2 5 16

(123, 213) 1 2 5 14 (132, 213) 1 2 5 15 (213, 321) 1 2 4 12

(123, 231) 1 2 6 21 (132, 312) 1 2 5 14 (231, 312) 1 2 6 23

(123, 231) 1 2 6 21 (132, 321) 1 2 4 10 (231, 321) 1 2 5 14

(123, 312) 1 2 5 15 (213, 231) 1 2 6 23 (312, 321) 1 2 4 10
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Preimages

Theorem 4 (B.)

If T is a set of permutations, all of length at least k, then every
permutation of length n has at most Cn−k+2 preimages under the
map sT .
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Catalan?

Preimages

Theorem 4 (B.)

If T is a set of permutations, all of length at least k, then every
permutation of length n has at most Cn−k+2 preimages under the
map sT .

But when is this bound attained?

Theorem 5 (B.)

Let σ be a length k permutation. If σ(1) and σ(2) are consecutive
numbers, then for every n ≥ k , there exists a permutation π ∈ Sn
such that |s−1

T (π)| = Cn−k+2. If σ(0) and σ(1) are not
consecutive, then for every n > k there are no π ∈ Sn such that
|s−1
T (π)| = Cn−k+2.
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Corollaries

A Specific Case

Corollary 6 (B.)

Let π ∈ Sn be a permutation. Then s213(π) = idn if and only if
π = nρ for 231-avoiding ρ ∈ Sn−1.
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Corollaries

A Specific Case

Corollary 6 (B.)

Let π ∈ Sn be a permutation. Then s213(π) = idn if and only if
π = nρ for 231-avoiding ρ ∈ Sn−1.

Theorem 7

The maximal number of preimages for any permutation of length n
under the map s213,231 is Cn−1. This maximum is attained only by
idn and idrn.
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Definitions

Periodicity

Periodic Point

Given a map f : A→ B, an element a ∈ A is a periodic point if for
some n ∈ (with n > 0) we have that f n(a) = a.
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Definitions

Periodicity

Periodic Point

Given a map f : A→ B, an element a ∈ A is a periodic point if for
some n ∈ (with n > 0) we have that f n(a) = a.

For a given set of permutations T , what are the periodic points of
sT
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s{123,132}

Periodicity of S{123,132}

Half-Decreasing

Let π be a permutation of length n. We say that π is
half-decreasing if the subsequence

π(n − 1)π(n − 3) · · ·π(2) for odd n

π(n − 1)π(n − 3) · · ·π(3) for even n

is the identity of length bn2c. (Being order isomorphic to the
identity is not sufficient.) We will refer to this subsequence as its
decreasing half.
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Periodicity of S{123,132}

Half-Decreasing

Let π be a permutation of length n. We say that π is
half-decreasing if the subsequence

π(n − 1)π(n − 3) · · ·π(2) for odd n

π(n − 1)π(n − 3) · · ·π(3) for even n

is the identity of length bn2c. (Being order isomorphic to the
identity is not sufficient.) We will refer to this subsequence as its
decreasing half.

For example, 647352819 and 75382614 are half-decreasing,
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s{123,132}

s{123,132} Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.
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Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
s0
{123,132}(647352819) = 647352819
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s{123,132} Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
s1
{123,132}(647352819) = 745382916
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s{123,132} Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
s2
{123,132}(647352819) = 548392617
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s{123,132} Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
s3
{123,132}(647352819) = 849362715
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Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
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s{123,132} Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
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{123,132}(647352819) = 946372518
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s{123,132} Acting on Half-Decreasing Permutations

Lemma 8

If π is a half-decreasing permutation of length n then the map
s{123,132} acts on it as follows:

s{123,132}(π) = π(3)π(2)π(5) · · ·π(n)π(n − 1)π(1) for odd n

s{123,132}(π) = π(2)π(4)π(3)π(6) · · ·π(n)π(n − 1)π(1) for even n.

In other words, the decreasing half is fixed under s{123,132} and the
remaining elements shift cyclically to the left.

So,
s6
{123,132}(647352819) = 647352819
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Periodic Points of s{123,132}

Lemma 9

Let π be a permutation. Then sm{123,132} is half-decreasing for some
m ∈.
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s{123,132}

Periodic Points of s{123,132}

Lemma 9

Let π be a permutation. Then sm{123,132} is half-decreasing for some
m ∈.

Theorem 10

The periodic points of s{123,132} are exactly the half-decreasing
permutations.
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Open Problems

Further Research

Conjecture

The only periodic points of s132,213 and s231,213 are the identity
and its reverse.

Other Questions:

Given a set of permutations T , can one find a classification
based on T of the maximum number of preimages under the
map sT ?

For a given set of permutations T what is the size of the
image of sT ?
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