Separating complexity classes of LCL problems on grids

Katalin Berlow, Anton Bernshteyn, Clark Lyons, Felix Weilacher

SEALS 2025

Separating complexity classes of LCL problems on grids

SEALS 2025 1 / 25

Table of Contents

1 Locally Checkable Labeling Problems (LCLs)

Separating complexity classes of LCL problems on grids

Table of Contents

1 Locally Checkable Labeling Problems (LCLs)

- 2 Different Notions of Definability
- 3 Our Results

5 Open Questions

Separating complexity classes of LCL problems on grids

Definition:

Let $\Gamma = \langle S \rangle \curvearrowright X$ be a Borel action of a finitely generated group on a standard Borel space. The **Schreier graph** of this action is the Borel graph $G \subseteq X \times X$ where we have $(x, y) \in G$ iff $\exists s \in S \ s \cdot x = y$.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Definition:

Let $\Gamma = \langle S \rangle \curvearrowright X$ be a Borel action of a finitely generated group on a standard Borel space. The **Schreier graph** of this action is the Borel graph $G \subseteq X \times X$ where we have $(x, y) \in G$ iff $\exists s \in S \ s \cdot x = y$.

Example 1: Fix $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Take $\mathbb{Z} = \langle a \rangle \curvearrowright \mathbb{R} / \mathbb{Z}$ by $a \cdot x = x + \alpha$.

Definition:

Let $\Gamma = \langle S \rangle \curvearrowright X$ be a Borel action of a finitely generated group on a standard Borel space. The **Schreier graph** of this action is the Borel graph $G \subseteq X \times X$ where we have $(x, y) \in G$ iff $\exists s \in S \ s \cdot x = y$.

Example 1: Fix $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Take $\mathbb{Z} = \langle a \rangle \curvearrowright \mathbb{R}/\mathbb{Z}$ by $a \cdot x = x + \alpha$.

Definition:

Let $\Gamma = \langle S \rangle \curvearrowright X$ be a Borel action of a finitely generated group on a standard Borel space. The **Schreier graph** of this action is the Borel graph $G \subseteq X \times X$ where we have $(x, y) \in G$ iff $\exists s \in S \ s \cdot x = y$.

Example 1: Fix $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Take $\mathbb{Z} = \langle a \rangle \curvearrowright \mathbb{R} / \mathbb{Z}$ by $a \cdot x = x + \alpha$.

Each connected component will look like a copy of the Cayley graph of $\mathbb Z$ because the action is free.

• • = • • = •

Definition:

Let $\Gamma = \langle S \rangle \curvearrowright X$ be a Borel action of a finitely generated group on a standard Borel space. The **Schreier graph** of this action is the Borel graph $G \subseteq X \times X$ where we have $(x, y) \in G$ iff $\exists s \in S \ s \cdot x = y$.

Example 2: Fix independent $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$. Take $\mathbb{Z}^2 = \langle a, b \rangle \curvearrowright \mathbb{R}/\mathbb{Z}$ by $a \cdot x = x + \alpha$ and $b \cdot x = x + \beta$.

Definition:

Let $\Gamma = \langle S \rangle \curvearrowright X$ be a Borel action of a finitely generated group on a standard Borel space. The **Schreier graph** of this action is the Borel graph $G \subseteq X \times X$ where we have $(x, y) \in G$ iff $\exists s \in S \ s \cdot x = y$.

Example 2: Fix independent $\alpha, \beta \in \mathbb{R} \setminus \mathbb{Q}$. Take $\mathbb{Z}^2 = \langle a, b \rangle \curvearrowright \mathbb{R}/\mathbb{Z}$ by $a \cdot x = x + \alpha$ and $b \cdot x = x + \beta$.

Separating complexity classes of LCL problems on grids

Figure: Proper coloring on \mathbb{Z}^2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure: Proper coloring on \mathbb{Z}^2

< □ > < 同 > < 回 > < 回 > < 回 >

Figure: Proper coloring on \mathbb{Z}^2

Image: A matrix

A B A A B A

Figure: Proper coloring on \mathbb{Z}^2

Image: A matrix

A B A A B A

Figure: Proper coloring on \mathbb{Z}^2

Image: A matrix

A B b A B b

Figure: Proper coloring on \mathbb{Z}^2

Image: A matrix

A B b A B b

Figure: Proper coloring on \mathbb{Z}^2

A B b A B b

- ∢ /⊐ >

Figure: Proper coloring on \mathbb{Z}^2

< □ > < 同 > < 回 > < 回 > < 回 >

Figure: Proper coloring on \mathbb{Z}^2

< □ > < 同 > < 回 > < 回 > < 回 >

< □ > < 同 > < 回 > < 回 > < 回 >

3

5 / 25

Idea: Label the vertices of *G* according to some *rule* which can be verified *locally*.

Examples of LCLs:

- proper vertex coloring
- proper edge coloring
- matchings
- sinkless orientation
- Wang tiling

Nonexamples of LCLs:

- Hamiltonian cycle
- spanning trees

Table of Contents

Locally Checkable Labeling Problems (LCLs)

2 Different Notions of Definability

3 Our Results

5 Open Questions

Separating complexity classes of LCL problems on grids

• = • •

For an LCL Π , we say:

- Π ∈ BOREL(Γ) iff every free Borel action Γ ∼ (X, B) on a standard Borel space admits a Borel solution.
- Π ∈ MEAS(Γ) iff every free Borel action Γ ∩ (X, μ) on a standard probability space admits a μ-measurable solution.
- Π ∈ BAIRE(Γ) iff every free Borel action Γ ∩ (X, τ) on a Polish space admits a Baire measurable solution.

A B b A B b

For an LCL Π , we say:

- Π ∈ BOREL(Γ) iff every free Borel action Γ ∼ (X, B) on a standard Borel space admits a Borel solution.
- Π ∈ MEAS(Γ) iff every free Borel action Γ ∩ (X, μ) on a standard probability space admits a μ-measurable solution.
- Π ∈ BAIRE(Γ) iff every free Borel action Γ ∩ (X, τ) on a Polish space admits a Baire measurable solution.

A B A A B A

For an LCL Π , we say:

- Π ∈ BOREL(Γ) iff every free Borel action Γ ∼ (X, B) on a standard Borel space admits a Borel solution.
- Π ∈ MEAS(Γ) iff every free Borel action Γ ∩ (X, μ) on a standard probability space admits a μ-measurable solution.
- Π ∈ BAIRE(Γ) iff every free Borel action Γ ∩ (X, τ) on a Polish space admits a Baire measurable solution.

For an LCL Π , we say:

- Π ∈ BOREL(Γ) iff every free Borel action Γ ∩ (X, B) on a standard Borel space admits a Borel solution.
- Π ∈ MEAS(Γ) iff every free Borel action Γ ∩ (X, μ) on a standard probability space admits a μ-measurable solution.
- Π ∈ BAIRE(Γ) iff every free Borel action Γ ∩ (X, τ) on a Polish space admits a Baire measurable solution.

Example: Proper 2*n*-coloring is in MEAS(\mathbb{F}_n) and BAIRE(\mathbb{F}_n) by Conley–Marks–Tucker-Drob (2016) but not in BOREL(\mathbb{F}_n) by Marks (2013).

イロト イヨト イヨト 一座

Complexity Classes

BOREL, MEAS, BAIRE, FIID, FFIID, ...

< □ > < 同 > < 回 > < 回 > < 回 >

Complexity Classes

BOREL, MEAS, BAIRE, FIID, FFIID, ... **Question:** Are all of these classes distinct? What inclusions can we establish?

(3)

Complexity Classes

BOREL, MEAS, BAIRE, FIID, FFIID, ...

Question: Are all of these classes distinct? What inclusions can we establish?

9 / 25

Previous Results

Grebík-Rozhoň (2021) have shown:

$$\mathsf{BOREL}(\mathbb{Z}) = \mathsf{BAIRE}(\mathbb{Z}) = \mathsf{MEAS}(\mathbb{Z}) = \mathsf{FIID}(\mathbb{Z}) = \mathsf{FFIID}(\mathbb{Z})$$

< □ > < □ > < □ > < □ > < □ > < □ >

Previous Results

Grebík-Rozhoň (2021) have shown:

$$\mathsf{BOREL}(\mathbb{Z}) = \mathsf{BAIRE}(\mathbb{Z}) = \mathsf{MEAS}(\mathbb{Z}) = \mathsf{FIID}(\mathbb{Z}) = \mathsf{FFIID}(\mathbb{Z})$$

Conley–Marks–Tucker-Drob (2016), Marks (2013), Bernshteyn and Brandt–Chang–Grebík–Grunau–Rozhoň–Vidnyánszky (2021), Conley–Miller (2011), and Conley–Kechris (2013) have shown:

$$\mathsf{BOREL}(\mathbb{F}_2) \subsetneq \mathsf{MEAS}(\mathbb{F}_2) \subsetneq \mathsf{BAIRE}(\mathbb{F}_2)$$

Previous Results

Grebík-Rozhoň (2021) have shown:

$$\mathsf{BOREL}(\mathbb{Z}) = \mathsf{BAIRE}(\mathbb{Z}) = \mathsf{MEAS}(\mathbb{Z}) = \mathsf{FIID}(\mathbb{Z}) = \mathsf{FFIID}(\mathbb{Z})$$

Conley–Marks–Tucker-Drob (2016), Marks (2013), Bernshteyn and Brandt–Chang–Grebík–Grunau–Rozhoň–Vidnyánszky (2021), Conley–Miller (2011), and Conley–Kechris (2013) have shown:

$$\mathsf{BOREL}(\mathbb{F}_2) \subsetneq \mathsf{MEAS}(\mathbb{F}_2) \subsetneq \mathsf{BAIRE}(\mathbb{F}_2)$$

The following was left open:

- (Grebík–Rozhoň) Is BOREL(\mathbb{Z}^n) \subseteq MEAS(\mathbb{Z}^n) strict for n > 1?
- Does $MEAS(\Gamma) \subseteq BAIRE(\Gamma)$ hold for all Γ ?
- Is $FFIID(\Gamma) = FIID(\Gamma)$ for every Γ ?

Table of Contents

1 Locally Checkable Labeling Problems (LCLs)

2 Different Notions of Definability

5 Open Questions

Separating complexity classes of LCL problems on grids SEA

< 31

Figure: Complexity classes of LCLs on \mathbb{Z}^d , $d \geq 2$.

4 E b

Problems on \mathbb{Z}^d

Figure: Complexity classes of LCLs on \mathbb{Z}^d , $d \ge 2$.

Blue arrows are strict inclusions. \subsetneq Red dotted arrows are noninclusion. $\not\subseteq$

SEALS 2025 12 / 25

Theorem (B.–Bernshteyn–Lyons–Weilacher)

For $d \geq 2$, there is an LCL Π on \mathbb{Z}^d so that:

- $\Pi \in \mathsf{MEAS}(\mathbb{Z}^d)$,
- $\Pi \not\in \mathsf{BAIRE}(\mathbb{Z}^d)$,
- $\Pi \in \mathsf{FIID}(\mathbb{Z}^d)$,
- $\Pi \not\in \mathsf{FFIID}(\mathbb{Z}^d)$.

(B)

13 / 25

Theorem (B.-Bernshteyn-Lyons-Weilacher)

For $d \geq 2$, there is an LCL Π on \mathbb{Z}^d so that:

- $\Pi \in \mathsf{MEAS}(\mathbb{Z}^d)$,
- $\Pi \notin \mathsf{BAIRE}(\mathbb{Z}^d)$,
- $\Pi \in \mathsf{FIID}(\mathbb{Z}^d)$,
- $\Pi \notin \mathsf{FFIID}(\mathbb{Z}^d)$.

This is the first example of a group Γ with MEAS(Γ) $\not\subseteq$ BAIRE(Γ) and the first group with FFIID(Γ) \neq FIID(Γ).

A B A A B A

Table of Contents

1 Locally Checkable Labeling Problems (LCLs)

- 2 Different Notions of Definability
- 3 Our Results
- 4 New Ideas

5 Open Questions

Figure 1. A few pieces of a toast.

イロト イヨト イヨト イヨト

2

Definition

Let $\mathbb{Z}^n \curvearrowright X$ be a free Borel action inducing a graph G. We say that a collection of finite sets $\mathcal{T} \subseteq [X]^{<\omega}$ with $\bigcup \mathcal{T} = X$ is a Borel *q*-toast if the following two conditions hold for all $K, L \in \mathcal{T}$,

• either
$$K \cap L = \emptyset$$
, $K \subseteq L$, or $L \subseteq K$,

• we have $d(\partial K, \partial L) \ge q$ in the graph metric.

Note: Borel graphs are hyperfinite iff they admit a 0-toast.

Theorem (Gao–Jackson–Krohne–Seward, 2014-2024):

Borel graphs induced by free actions of \mathbb{Z}^d on a standard Borel space admit a Borel *q*-toast for any $q \in \mathbb{N}$.

イロト 不良 トイヨト イヨト

Borel graphs induced by free actions of \mathbb{Z}^d admit a Borel proper 3-coloring.

Separating complexity classes of LCL problems on grids SEALS 2025 17 / 25

★ ∃ ► < ∃ ►</p>

Borel graphs induced by free actions of \mathbb{Z}^d admit a Borel proper 3-coloring.

Figure: Proper coloring on \mathbb{Z}^2

Borel graphs induced by free actions of \mathbb{Z}^d admit a Borel proper 3-coloring.

Figure: Proper coloring on \mathbb{Z}^2

Borel graphs induced by free actions of \mathbb{Z}^d admit a Borel proper 3-coloring.

Figure: Proper coloring on \mathbb{Z}^2

Borel graphs induced by free actions of \mathbb{Z}^d admit a Borel proper 3-coloring.

Figure: Proper coloring on \mathbb{Z}^2

Borel graphs induced by free actions of \mathbb{Z}^d admit a Borel proper 3-coloring.

Figure: Proper coloring on \mathbb{Z}^2

Rectangular Toast

Figure 3. A rectangular toast for \mathbb{Z}^2 .

Definition

A rectangular q-toast is a q-toast whose pieces are all rectangles.

• = • •

Rectangular Toast

Figure 3. A rectangular toast for \mathbb{Z}^2 .

Definition

A rectangular q-toast is a q-toast whose pieces are all rectangles.

Theorem (folklore):

Free Borel actions of \mathbb{Z}^d on a standard probability space admit rectangular q-toast on a conull set (but not on a comeager set).

Separating complexity classes of LCL problems on grids

Naive Attempt

What if we try to encode rectangular toast as an LCL?

< 31

Naive Attempt

What if we try to encode rectangular toast as an LCL?

Naive Attempt

What if we try to encode rectangular toast as an LCL?

Consider the LCL whose solutions 3-color \mathbb{Z}^d so it *locally* looks like the picture above.

Issues with this

These diagrams locally look the same.

Separating complexity classes of LCL problems on grids

EALS 2025 20 / 25

The Fix

Separating complexity classes of LCL problems on grids SEALS 2025 21 / 25

The Fix

Require the green regions to be 2-colored. This is our new LCL CRT.

We then have $CRT \in MEAS(\mathbb{Z}^d)$ by the existence of a rectangular toast.

Separating complexity classes of LCL problems on grids SEALS 2025 21 / 25

CRT has no Baire Measurable Solution

Theorem (B.–Bernshteyn–Weilacher–Lyons):

CRT does not always admit a Baire measurable solution.

Proof.

Let Z^d ∩ X be an appropriate action. Assume for contradiction f : X → {RED, BLUE, GREEN0, GREEN1} be a Baire measurable solution to CRT. Let T be the corresponding (possibly partial) rectangular toast encoded by f.

CRT has no Baire Measurable Solution

Theorem (B.–Bernshteyn–Weilacher–Lyons):

CRT does not always admit a Baire measurable solution.

Proof.

- Let Z^d ∩ X be an appropriate action. Assume for contradiction f : X → {RED, BLUE, GREEN0, GREEN1} be a Baire measurable solution to CRT. Let T be the corresponding (possibly partial) rectangular toast encoded by f.
- Consider the generic orbit \mathcal{O} , which we show does not admit complete rectangular toast. Therefore we can show $X \setminus \bigcup \mathcal{T}$ is connected.

CRT has no Baire Measurable Solution

Theorem (B.–Bernshteyn–Weilacher–Lyons):

CRT does not always admit a Baire measurable solution.

Proof.

- Let Z^d ∩ X be an appropriate action. Assume for contradiction f : X → {RED, BLUE, GREEN0, GREEN1} be a Baire measurable solution to CRT. Let T be the corresponding (possibly partial) rectangular toast encoded by f.
- Consider the generic orbit \mathcal{O} , which we show does not admit complete rectangular toast. Therefore we can show $X \setminus \bigcup \mathcal{T}$ is connected.
- Then, *f* can be extended uniquely to a Baire measurable 2-coloring. Contradiction.

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

1 Locally Checkable Labeling Problems (LCLs)

- 2 Different Notions of Definability
- 3 Our Results

< 31

Some arrows are still missing.

Some arrows are still missing. Lets make it a complete graph!

Some arrows are still missing. Lets make it a complete graph! Question: Does $BAIRE(\mathbb{Z}^d) = BOREL(\mathbb{Z}^d)$?

Some arrows are still missing. Lets make it a complete graph!

Question: Does $BAIRE(\mathbb{Z}^d) = BOREL(\mathbb{Z}^d)$?

Question: Does $MEAS(\mathbb{Z}^d) = FIID(\mathbb{Z}^d)$?

Some arrows are still missing. Lets make it a complete graph!

Question: Does $BAIRE(\mathbb{Z}^d) = BOREL(\mathbb{Z}^d)$?

Question: Does $MEAS(\mathbb{Z}^d) = FIID(\mathbb{Z}^d)$?

Question: What is the relationship between $BOREL(\mathbb{Z}^d)$ and $FFIID(\mathbb{Z}^d)$?

Thanks!

Separating complexity classes of LCL problems on grids SEALS 2025 25 / 25

・ロト ・四ト ・ヨト ・ヨト

3