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STRONG INNER INVERSES IN ENDOMORPHISM RINGS

OF VECTOR SPACES

GEORGE M. BERGMAN

Abstract. For V a vector space over a field, or more generally, over a division ring, it is well-known that
every x ∈ End(V ) has an inner inverse; that is, that there exists y ∈ End(V ) satisfying xyx = x. We show

here that a large class of such x have inner inverses y that satisfy with x an infinite family of additional

monoid relations, making the monoid generated by x and y what is known as an inverse monoid (definition
recalled). We obtain consequences of these relations, and related results.

P. Nielsen and J. Šter [16] show that a much larger class of elements x of rings R, including all elements
of von Neumann regular rings, have inner inverses satisfying arbitrarily large finite subsets of the abovemen-

tioned set of relations. But we show by example that the endomorphism ring of any infinite-dimensional

vector space contains elements having no inner inverse that simultaneously satisfies all those relations.
A tangential result gives a condition on an endomap x of a set S that is necessary and sufficient for x

to have a strong inner inverse in the monoid of all endomaps of S.

1. Background

A basic property of the endomorphism ring R = End(V ) of a vector space V over a division ring is that
for every x ∈ R, there exists a y ∈ R such that

(1) xyx = x.

Such a y is called an “inner inverse” to x. (Note that for any endomap x of any set S, an inner inverse to
x, i.e., an endomap y of S which satisfies (1), is simply a map that carries every element of the image of x
to a preimage of itself under x. For V a vector space and x ∈ End(V ), an inner inverse to x in End(V )
can be constructed by mapping each member of a vector-space basis B0 of x(V ) to a preimage of itself,
and acting arbitrarily on the remaining elements of a basis B ⊇ B0 of V.) If R is a ring and y ∈ R is an
inner inverse of x ∈ R, we see from (1) that xy and yx are idempotent elements of R.

A ring such as End(V ) in which every element has an inner inverse is called von Neumann regular, often
shortened to regular.

In general, if y is an inner inverse to x, this does not make x an inner inverse to y. (For instance, every
element of a ring is an inner inverse to the element 0.) However, if an element x has an inner inverse y0,
it also has an inner inverse y to which it is, itself, an inner inverse, namely y = y0xy0.

I had naively thought that yxy = y was the strongest additional relation one could hope to ask of an
inner inverse y to an element x in a general regular ring. Hence I was surprised to see, in an unpublished
note by Kevin O’Meara, a construction, from any x in such a ring, of an inner inverse y which not only
satisfies this additional relation, but also the relation saying that the idempotents xy and yx commute.
Note that this commutativity relation, xyyx = yxxy, implies that xxyyxx = x(yxxy)x = (xyx)(xyx) = xx;
in other words, that y2 is an inner inverse to x2; and by the symmetry of the relations satisfied, x2 is also
an inner inverse to y2.

2010 Mathematics Subject Classification. Primary: 16E50, 16S50, 16U99, 20M18. Secondary: 16S15, 16S36.
Key words and phrases. endomorphism ring of a vector space; inner inverse to a ring element; inverse monoid.
http://arxiv.org/abs/1611.00972 .
After publication of this note, updates, errata, related references etc., if found, will be recorded at http://math.berkeley.

edu/~gbergman/papers/ .

1



2 GEORGE M. BERGMAN

This suggested that one try to obtain an inner inverse y to x that satisfied further relations making yn

an inner inverse to xn for higher n. And indeed, looking at a particularly nice class of regular rings, namely
direct products of matrix rings (in general, of unbounded sizes) over fields, I was able to find an infinite
family of relations that an inner inverse to an element of such a ring can be made to satisfy, which includes
the relations xnynxn = xn and ynxnyn = yn.

A second surprise came when I mentioned this to Pace Nielsen. It turned out that in a paper [16] that
he and Janez Šter had submitted for publication, they showed that for any ring R, any element x ∈ R,
and any positive integer n such that x, x2, . . . , xn all have inner inverses, one can find an inner inverse y
to x satisfying many of the same relations that I had found; in particular, such that yj is an inner inverse
to xj for all j ≤ n. After this discussion, they were able to extend the relations they obtained so that the
union, over all n, of their families of relations coincided with my family. (Their result appears, so revised,
as [16, Theorem 4.8]. Moreover, the form in which they had originally formulated their relations led to
improvements in the present note. So [16] and this note each contain material inspired by the other.)

The family of relations in x and y referred to above are monoid relations, and a third surprise was to
discover, after drafting most of these pages, that the monoid F that they define is well known to semigroup
theorists, as the free inverse monoid on one generator x, and that there is considerable literature on inverse
monoids and their monoid algebras, e.g., [17], [11], parts of [8] and [9], [2, §4], [12], and [14].

In §2 below, I develop that monoid essentially “as I found it” (though I have borrowed the notation F
from [2, §4]). In §3, the concept of inverse monoid is sketched, and in §4 we verify the characterization of
F in terms of that concept. In subsequent sections, though F is referred to in those terms, the results are
mostly independent of the literature on the subject.

2. The monoid F

Let us motivate the monoid we will be studying by considering a natural family of pairs of mutually inner
inverse vector-space maps. We write maps to the left of their arguments, and compose them accordingly.

Suppose V is an n-dimensional vector space with basis {b1, . . . , bn}, let x : V → V be the map that
sends bh to bh+1 for h < n and sends bn to 0, and let y : V → V be the map that sends bh to bh−1 for
h > 1 and sends b1 to 0.

Note that for p, q ≥ 0, the map yp annihilates the first p of b1, . . . , bn, while xq annihilates the last
q. (In this motivating sketch, it will help to think of p and q as small compared with n.) If we want to
annihilate both the first p and the last q basis elements, we can first apply yp to get rid of the former, then
xp to bring those that remain back to their original values, and then xq to annihilate the last q of them; in
other words, apply xp+qyp. In addition to annihilating the first p and the last q of the b’s, this leaves the
b’s that remain shifted q steps to the right. If we want to pull them back some distance to the left, we can
then apply yr for some r. Here we may as well take r ≤ p + q, since if we used a larger value, this would
kill some of the elements at the left-hand end of our string, which we could just as well have achieved by
using a larger p at the first step. Thus, our combined operation has the form yrxp+qyp with p ≥ 0, q ≥ 0,
and r ≤ p + q.

Clearly, we could have achieved the same result by first annihilating the last q of the b’s using xq, then the
first p using yp+q, and finally shifting those that remained using xp+q−r. Thus, xp+q−ryp+qxq = yrxp+qyp.
Renaming the exponents p + q − r, p + q and q as i, j and k gives the first set of relations in the next
result, which records some basic properties of the monoid these relations define.

Lemma 1. The monoid F presented by two generators x and y, and the infinite system of relations

(2) xiyjxk = yj−ixjyj−k for all i, j, k such that 0 ≤ i ≤ j and 0 ≤ k ≤ j

can also be presented by the subset consisting of the relations

(3) x yjxj = yj−1xj , yjxjy = yjxj−1, for 1 ≤ j

(the cases of (2) where the 3-tuple (i, j, k) has one of the forms (1, j, j) or (0, j, j− 1), with the two sides
of the relation interchanged in the latter case); and, likewise, by the subset consisting of the relations

(4) xjyjx = xjyj−1, y xjyj = xj−1yj , for 1 ≤ j

(the cases where (i, j, k) has one of the forms (j, j, 1), (j− 1, j, 0), with the same interchange of sides in
the latter case).
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In F , every element is equal to the left-hand side of (2) for a unique choice of i, j, k satisfying the
indicated inequalities; hence, equivalently, to the right-hand side of (2) for the same i, j, k.
F embeds in the direct product of monoids x, y | xy = 1 × x, y | yx = 1 via the homomorphism

x 7→ (x, x), y 7→ (y, y).

Proof. Since the set of relations (3) is a subset of (2), to get our first assertion we must show that (3) implies
all the relations in (2). Let us first show that it implies the family

(5) xiyjxj = yj−ixj , yjxjyi = yjxj−i, for 0 ≤ i ≤ j.

Here the cases with i = 0 are vacuous, and those with i = 1 are (3). For i > 1, we note that the left-
hand side of the first equation of (5) can be written xi−1(x yjxj), which by (3) reduces to xi−1yj−1xj .
Writing this as (xi−1yj−1xj−1)x, we may assume by induction on i that this can be reduced using (3) to
(y(j−1)−(i−1)xj−1)x = yj−ixj , the desired expression. The second equation of (5) is obtained by the same
calculation, with the order of factors reversed and x and y interchanged.

To get the full set of relations (2), take any i, j, k as in those relations, and note that the expression
xiyjxjyj−k can be reduced using (5) in two ways: On the one hand, xi (yjxjyj−k) = xi (yjxj−(j−k)) =
xiyjxk, which is the left-hand side of (2); on the other hand, (xiyjxj)yj−k = (yj−ixj)yj−k, which is the
right-hand side. So these are equal, as desired.

By left-right symmetry, (2) is similarly equivalent to (4).
Let us show next that every a ∈ F can be represented by an expression as in (2). Let w be an expression

for a of minimal length in x and y. We can write w as an alternating product of nonempty “blocks” of
x’s and y’s. If it consists of ≤ 2 blocks, it is immediate that it has one of the forms shown in (2), so assume
it has at least 3 blocks. I claim that w cannot consist of ≥ 4 blocks. For if it does, consider two adjacent
blocks which are neither the rightmost nor the leftmost pair. By the right-left symmetry of the statements
we are dealing with, we may assume for simplicity that the length of the first of these blocks is at least that
of the second, and by symmetry in x and y, that the first block is a power of x and the second a power
of y; so our product of two blocks can be written xiyj with i ≥ j ≥ 1. Since this pair of blocks does not
occur at the right end of w, it must be followed by an x; so w has a subword xiyjx, which in turn has
the subword xjyjx, which can be reduced by (4) to the shorter word xjyj−1, contradicting our minimality
assumption. So w must have just three blocks, and we can assume without loss of generality that it has the
form xiyjxk. If j is ≥ both i and k, we are done. If not, assume without loss of generality that i > j.
Then w has the subword xjyjx, which, as above, leads to a contradiction to minimality. Putting aside our
“w.l.o.g” assumptions, what we have shown is that a word w of minimal length representing a will be of
one of the forms shown in (2). Whichever of those forms it has, (2) allows us to represent a in the other
form as well (though that may not be a minimal-length expression for it).

To show that the expression for a in each of these forms is unique, and simultaneously obtain the
embedding of the final assertion of our lemma, let us first note that the generators x and y of each of the
monoids x, y | xy = 1 and x, y | yx = 1 clearly satisfy (3). Hence we get a homomorphism

(6) h : F → x, y | xy = 1 × x, y | yx = 1

carrying x to (x, x) and y to (y, y). Now in x, y | xy = 1 , the expressions yixj give a normal form
(as is easily checked by the method of [4]), while in x, y | yx = 1 , the same is true of the expressions
xiyj . The image under h of an element xiyjxk with 0 ≤ i ≤ j and 0 ≤ k ≤ j, written using these normal
forms, is (yj−ixk, xiyj−k). Here the first component determines k, the second determines i, and with these
known, either component determines j. So elements represented by distinct expressions xiyjxk as in (2)
have distinct images under h, showing, on the one hand, that (6) is an embedding, and on the other, that
distinct expressions as in the left-hand side of (2) represent distinct elements of F . �

Intuitively, the first relation of (3) says that after a factor xjyj−1, one can “drop” a factor yx; in other
words, that xjyj−1 behaves like x in that respect. The other relation of (3) and those of (4) have the
obvious analogous interpretations. More generally, I claim that

(7)
If w is a word in x and y which has strictly more x’s than y’s, then in the monoid F we have
wyx = w = xyw.

(8)
If w is a word in x and y which has strictly more y’s than x’s, then in the monoid F we have
wxy = w = yxw.
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Indeed, by symmetry in x and y, it suffices to prove (7), and by right-left symmetry it suffices to prove
the first relation thereof, wyx = w. The last sentence of Lemma 1 shows that it suffices to prove that relation
in each of the monoids x, y | xy = 1 and x, y | yx = 1 . The result is trivially true in the latter monoid.
In the former, w can be reduced to a word yixj such that j − i = ( number of x’s in w)− ( number of y’s
in w). This difference is positive by the hypothesis of (7), so j > 0; so w is equal in x, y | xy = 1 to a
word ending in x, so by the relation xyx = x, we indeed have wyx = w.

3. A quick introduction to inverse monoids

The concept of inverse monoid, mentioned in the Introduction, has as its motivating case the set of partial
one-to-one maps of a set S into itself; i.e., the one-to-one maps from subsets of S to S.

Clearly, the composite of two partial one-to-one maps is again such a map, as is the identity map of S, so
such maps form a monoid. Further, if x is such a partial map, and we view it as a relation, hence a subset
of S × S, then the inverse relation y = {(t, s) | (s, t) ∈ x} is again a partial one-to-one map. If we consider
all identities satisfied by such partial maps, under the monoid operations and this “inverse” operation, these
determine a variety of monoids with an additional unary operation. We shall call objects of this variety
inverse monoids.

Among semigroup-theorists, the “inverse” operation is generally written y = x−1. But this would conflict
badly with the usage of ring theory, so, following [2, §4], I will instead write x∗.

It turns out that (as with the inverse operation of a group) if a monoid admits any unary operation ∗

satisfying the identities of the above variety, then that operation is unique [8, Theorem 1.17], [11, Theo-
rem 1.3]; so (like groups) inverse monoids can be identified with a subclass of the monoids, and they are in
fact generally so described in the literature. Precisely, it is easy to see that the identities of inverse monoids
include x = xx∗x and x∗ = x∗xx∗, and the standard definition is that an inverse monoid is a monoid M
such that

(9)
For every x ∈M there is a unique y ∈M satisfying xyx = x and yxy = y
[11, p. 6, conditions (1) and (2)], [17, Definition II.1.1], [8, p. 28, lines 9-11].

(Caveat: Given an element x in an inverse monoid, an element y satisfying xyx = x, but not necessarily
yxy = y, will not, in general, be unique. For instance, in the monoid of partial one-to-one endomaps of a
set S, if x is the empty partial map, every y satisfies that relation.)

Actually, most of the literature in this area describes its subject as inverse semigroups, where no identity
element is assumed. Those that are monoids are indeed considered, but as a subcase. However, as with the
relationship between ordinary semigroups and monoids, or nonunital and unital rings, either version of the
theory can be reduced to the other, so which is treated as primary is largely a matter of taste; and I will
talk about inverse monoids here.

The most commonly used characterizations of inverse monoids are not given by identities; (9) is such a
characterization. We recall two others: if M is a monoid and ∗ a unary operation on its underlying set,
then each of the following conditions is equivalent to (M,∗ ) being an inverse monoid.

(10)
(M, ∗) can be embedded in the monoid of one-to-one partial endomaps of some set S, in such a
way that ∗ acts as the relational inverse map [17, Corollary IV.1.9], [11, p. 36, Theorem 1.5.1],
[8, Theorem 1.2].

(11)
For every x ∈ M, one has x = xx∗x, and, further, every pair of idempotent elements of M
commute [11, p. 6, Theorem 3], [8, Theorem 1.17(i)], cf. [17, Theorem II.1.2].

To move toward a characterization by identities, note that the identities satisfied by partial one-to-one
operations on a set include the conditions making ∗ an involution of M,

(12) (ab)∗ = b∗a∗ and a∗∗ = a.

From these it follows that if an inverse monoid (M,∗ ) is generated by a subset X, then as a monoid, M
is generated by X ∪X∗. Indeed, the submonoid generated by that set will contain X and be closed under
the monoid operations, and by (12) it will be closed under ∗, hence it will be all of M.

Now the reason why (11) is not a set of identities is that the condition that idempotents commute is not
an equation in arbitrary elements of M. However, given the identity x = xx∗x of (11) and the identities
of (12), we see that if e is an idempotent, then e = ee∗e = e(e∗e∗)e = (ee∗)(e∗e∗∗), a product of two
idempotents of the form xx∗. Hence if we combine the monoid identities with the identity x = xx∗x, the
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identities of (12), and the identity saying that any two elements of the forms xx∗ and yy∗ commute, then
these together imply (11), and so define the variety of inverse monoids.

A feature that inverse monoids share with groups, though not nearly as easy to prove, is

(13)
If (M,∗ ) is an inverse monoid, and N is a homomorphic image of M as a monoid, then the
operation ∗ on M induces an operation on N, whence N becomes an inverse monoid [9,
Theorem 7.36], [17, Lemma II.1.10].

In view of the uniqueness of the inverse monoid structure on a monoid when one exists, I will sometimes
take the shortcut of saying that a monoid “is” an inverse monoid (as in the standard usage in the field) when
I mean that it admits an operation ∗ making it an inverse monoid.

Alongside groups, and monoids of partial one-to-one maps of sets, another important class of inverse
semigroups are the semilattices, where ∗ is taken to be the identity map.

Extensive developments of the theory of inverse semigroups can be found in [11] and [17].

4. F as a free inverse monoid

In §2, we motivated the structure of our monoid F in terms of endomorphisms of certain finite-dimensional
vector spaces. What we did can be looked at as a partial-one-one-map construction in a different guise.
Each of x and y, and hence also every monoid word in those elements, sends certain members of our basis
{b1, . . . , bn} to members of that basis, and does so in a one-to-one fashion, while it maps the remaining
elements of that basis to 0. If we associate to every endomorphism z of V that acts in such a way on our
basis the partial endomap of that basis which agrees with z on elements that z sends to basis elements, and is
undefined on those z sends 0, then the resulting partial maps compose like the given linear endomorphisms.

On each of our finite-dimensional vector spaces, the monoid of endomorphisms generated by x and y is
finite; but if we think of x and y as acting simultaneously on n-dimensional spaces for all natural numbers
n, we shall find that we get the infinitely many distinct elements of F . We will deal with actions on vector
spaces in the next section; here, let us show monoid-theoretically that

Lemma 2. The monoid F of Lemma 1 is the free inverse monoid on one generator x, with y = x∗.

Proof. To see that F is an inverse monoid, we shall use its representation, established in Lemma 1, as a
subdirect product of

(14) x, y | xy = 1 and x, y | yx = 1 .

These are two copies of the same monoid, called the bicyclic monoid, which has a natural representation by
partial endomaps of the natural numbers, with the left-invertible generator acting as the right shift and the
right-invertible generator as the left shift (undefined at 0). The involution ∗ of each of the inverse monoids
of (14) interchanges the generators x and y of that monoid, so the submonoid F generated by (x, x) and
(y, y) is closed under coordinatewise application of ∗, hence is itself an inverse monoid.

To show that the inverse monoid (F , ∗) is free on {x}, it suffices to show that for any element x of an
inverse monoid, if we write x∗ = y, then x and y satisfy the relations of (3). To get the first of these
relations, let us write xyjxj as (xy)(yj−1xj−1)x. Since y = x∗, we see from (12) that (yj−1)∗ = xj−1,
hence both xy and yj−1xj−1 are idempotent, hence by (11) they commute, so we can write (xy)(yj−1xj−1)x
as (yj−1xj−1)(xy)x = yj−1xj−1(xyx) = yj−1xj−1x = yj−1xj , giving the desired relation. Applying the
involution ∗, we get the other relation of (3). �

The normal form for elements of the free inverse monoid on one generator given by the expressions on
either side of (2) is also obtained in [2, proof of Lemma 4.1]. I do not know whether a system of defining
monoid relations as economical as (3) or (4) has previously been noted.

The multiplicative monoids of the rings we will be looking at in this note are not, in general, inverse
monoids; but we will nonetheless be interested in pairs of elements x and y of these rings that satisfy the
relations holding between elements x and x∗ of an inverse monoid. Let us therefore make

Definition 3. If x is an element of a monoid M, we shall call an element y ∈M a strong inner inverse to
x if the submonoid of M generated by x and y can be made an inverse monoid with y = x∗; equivalently,
if there exists a monoid homomorphism F → M carrying x, y ∈ F to the elements of M denoted by
these same symbols; equivalently, if x, y ∈M satisfy any of the equivalent systems of monoid relations (2),
(3), (4).



6 GEORGE M. BERGMAN

Clearly, the relation “is a strong inner inverse of” is symmetric.
From our observations on the bicyclic monoid x, y | xy = 1 ∼= x, y | yx = 1 , we see that any right

or left inverse of an element x of a monoid (and hence in particular, any 2-sided inverse) is a strong inner
inverse to x.

We shall see below that in many rings, every element has a strong inner inverse, without these being
unique.

(We remark that our use of “strong” in “strong inner inverse” should not be confused with the use of
“strongly” in the existing concept of a “strongly regular ring”, a regular ring in which all idempotents are
central. That condition is much more restrictive than the condition that every element have a strong inner
inverse in our sense.)

5. Many vector space endomorphisms have strong inner inverses . . .

We shall show here that if V is a vector space over a division ring D, then a large class of elements
x ∈ EndD(V ) have strong inner inverses. Our proof will make use of the following weak version of Jordan
canonical form, which holds over division rings.

Lemma 4. Suppose V is a finite-dimensional vector space over a division ring D, and x a vector-space
endomorphism of V. Let us call a nonzero x-invariant subspace W of V “x-basic” if it admits a basis
b1, . . . , bn such that x(bh) = bh+1 for h < n, and x(bn) = 0. Then V can be written as the direct sum of
a subspace on which x acts invertibly, and a family of x-basic subspaces.

Proof. By Fitting’s Lemma [13, Theorem 19.16], there exists an N ≥ 1 such that

(15) V = im(xN ) ⊕ ker(xN ).

Clearly, each of these summands is x-invariant, and x acts injectively (hence invertibly) on the former, since
otherwise the summands would have nonzero intersection. So it will suffice to show that ker(xN ) is a direct
sum of x-basic subspaces. This can be done in a well-known manner which we now sketch.

Noting that ker(x) ∩ im(xN ) ⊆ ker(xN ) ∩ im(xN ) = {0}, we look at the chain of subspaces

(16) ker(x) ∩ im(xN−1) ⊆ ker(x) ∩ im(xN−2) ⊆ . . . ⊆ ker(x) ∩ im(x) ⊆ ker(x).

We take a basis BN−1 of the first of these, extend it to a basis BN−1 ∪ BN−2 of the second, and so on,
getting a basis BN−1∪ · · · ∪B1∪B0 of ker(x), with the Bi disjoint. For 0 ≤ i ≤ N −1, since Bi ⊆ im(xi)
we can write each b ∈ Bi as xi(b′) for some b′, which we see will still lie in ker(xN ). If we consider the set

(17)
⋃

0≤i≤N−1, b∈Bi
{xh(b′) | 0 ≤ h ≤ i},

then this is easily shown to form a D-basis for ker(xN ), and for each i and each b ∈ Bi, the span of the set
{xh(b′) | 0 ≤ h ≤ i} is x-basic, since x carries xh(b′) to xh+1(b′) for h < i, and xi(b′) = b ∈ Bi ⊆ ker(x)
to 0. �

We can now prove

Theorem 5. Let D be a division ring, V a right vector space over D, and x a vector space endomorphism
of V such that V can be written as a direct sum of x-invariant subspaces, each of which is either finite-
dimensional, or has the property that the action of x on it is one-to-one, or has the property that the action
of x on it is surjective. Then x has a strong inner inverse y in EndD(V ), which carries each of those
direct summands into itself.

If, moreover, our decomposition of V includes, for each positive integer n, at least one n-dimensional
summand which is x-basic in the sense of Lemma 4, then a strong inner inverse y to x can be chosen so
that the ring of additive-group endomorphisms of V generated by the action of D and the actions of x and
y has precisely the structure of the monoid ring DF . In particular, if D is a field k, this says that the
k-algebra of endomorphisms of V generated by x and y is isomorphic to the monoid algebra kF .

Proof. In proving the assertion of the first paragraph we may, by the preceding lemma, assume that each of
the given x-invariant summands of V either has x acting surjectively on it, or has x acting injectively on
it, or is x-basic; so we are reduced to proving that x has a strong inner inverse if x acts in one of these
three ways on V itself.
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If x is surjective or injective, then it is right or left invertible in End(V ), and a right or left inverse will
be the desired strong inner inverse.

So suppose V is x-basic, and let {b1, . . . , bn} be a basis of V such that x carries each bh with h < n to
bh+1, and carries bn to 0. As in the motivating sketch of §2, define y to carry bh to bh−1 for h > 1, and
b1 to 0. We could verify that y is a strong inner inverse to x using the correspondence between one-to-one
partial maps on our basis of V and certain endomorphisms of V, as noted at the beginning of §4, but the
hands-on proof that x and y satisfy the relations of (3) is quick enough, so I will sketch it.

To prove, first, the relation x yjxj = yj−1xj for 1 ≤ j, let us compare the effect of these two monomials
on some bh. If j +h > n, then the xj at the right end of each monomial annihilates bh, so the two sides of
the relation indeed agree on bh. If j + h ≤ n (so in particular, h < n), it is immediate to check that each
side gives bh+1, and the relation again holds.

Similarly, on checking the results of applying the two sides of the relation yjxjy = yjxj−1 for 1 ≤ j to
bh, we find that if h = 1 or h + (j − 1) > n, both sides give 0, while in the contrary case, both sides give
bh−1. This completes the proof of the assertion of the first paragraph of the theorem.

To get the assertion of the second paragraph, let y be constructed on each x-basic summand of our
decomposition of V as in the proof of the first assertion. Since y is a strong inner inverse to x, the
elements x and y satisfy the relations defining F , and since they are D-linear, they commute with the
action of the elements of D; hence the actions of x, y and the elements of D yield a DF-module structure
on V. It remains to show that this module is faithful, so let a ∈ DF −{0}, and let us show that the action
of a on V is nonzero.

To this end, let xiyjxk, with i, j, k as in (2), be the element of F having nonzero D-coefficient in
a which gives the least 3-tuple (k, j, i) under lexicographic order. (Note the reversed order of indices.)
Choose an x-basic subspace V ′ in our given decomposition of V which has dimension exactly j + 1, and
let {b1, . . . , bj+1} be a basis for V ′ on which x and y act as right and left shift operators.

I claim that the element bj−k+1 is not annihilated by a. Consider first how xiyjxk acts on bj−k+1. The
factor xk carries it to bj+1 (note that any higher power of x would kill it), yj carries this to b1 (here any
higher power of y would kill it), and xi brings this to bi+1. So it will suffice to show that none of the other

terms occurring in a carry bj−k+1 to an expression in which bi+1 appears. Let xi′yj
′
xk′

be any other term
occurring in a.

By our minimality assumption on (k, j, i), we must have k′ ≥ k. If this inequality is strict, then bj−k+1

is killed on applying xk′
to it. On the other hand, if k′ = k, then j′ ≥ j, and if this inequality is strict,

our basis element is killed on applying yj
′
xk. Finally, if k′ = k and j′ = j, we must have i′ 6= i, and

we see that xi′yjxk will carry bj−k+1 to bi′+1 6= bi+1. Hence in a(bj−k+1), only the term xiyjxk(bj−k+1)
contributes to the coefficient of bi+1, so a(bj−k+1) 6= 0, so a indeed acts nontrivially on V. �

We shall see in the next section that in the first assertion of the above theorem, the restriction to endo-
morphisms x such that V is an appropriate direct sum of sorts of x-invariant subspaces cannot be dropped.
Here is a case where that condition holds automatically.

Corollary 6. Let D be a division ring, and R the direct product of the endomorphism rings of a family of
finite-dimensional D-vector-spaces, R =

∏
i∈I End(Vi) (i.e., a direct product of full matrix rings of various

sizes over D). Then every element of R has a strong inner inverse under multiplication.

Proof. Apply the preceding theorem with V =
⊕

Vi, and R identified with the ring of endomorphisms of
V that carry each Vi into itself. �

We mentioned earlier that for M a monoid, the statement that every element of M has a strong inner
inverse does not entail that such strong inner inverses are unique. For an explicit example, consider the
monoid End(V ), where V is a vector space with basis {b1, . . . , bn} for some n > 1, and x and y again
act by right and left shifts. Then x and y are nilpotent, and do not commute. Since x is nilpotent, 1 + x
is invertible, hence conjugation by that element is an automorphism of End(Vi) which fixes x but not y.
Hence (1 + x)−1y (1 + x) is a strong inner inverse to x distinct from y.

One may ask

Question 7. Given endomorphisms x1, . . . , xr of a vector space V over a field, or more generally, over a
division ring, under what natural conditions can we find strong inner inverses y1, . . . , yr to these elements,
such that the monoid generated by x1, . . . , xr and y1, . . . , yr is an inverse monoid?
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If r > 1, such strong inner inverses need not exist for general x1, . . . , xr ∈ End(V ), even if V is
finite-dimensional. For instance, if we take x1 and x2 to be noncommuting idempotents, no submonoid
of End(V ) containing them satisfies (11). A sufficient condition is that there exist a basis B for V such
that every xi carries each member of B either to another member of B, or to 0, and acts in a one-to-one
fashion on those that it does not send to 0. But this is not necessary. For example, if we take for x1, . . . , xr

any automorphisms of V, then they generate a group, which is an inverse monoid; but if any of them has
determinant 6= ±1, it cannot permute a basis of V.

(I will mention one result that has a vaguely related feel. Given a vector space V and a finite family of
subspaces S1, . . . , Sn, one may ask under what conditions there exists a basis B for V such that each Si

is the subspace spanned by a subset Bi ⊆ B. By [5, Exercise 6.1:16], such a basis exists if and only if the
lattice of subspaces generated by S1, . . . , Sn, is distributive.)

There is an interesting analog, for families of endomorphisms x1, . . . , xr of vector spaces, of the class of
x-basic spaces. Namely, for every finite connected subgraph S of the Cayley graph of the free group on r
generators g1, . . . , gr, let VS be a vector space with a basis {bs} indexed by the vertices s of S, and for
i = 1, . . . , r, let xi act on VS by taking bs to bt if S has a directed edge from s to t indexed by gi, or
to 0 if no edge indexed by gi comes out of s; and likewise, let x∗i act by taking bt back to bs in cases of
the first sort, while taking bt to 0 if t has no edge indexed by gi coming into it. From a description of the
free inverse monoid on r generators due to Munn [15] [17, §VIII.3], [11, §6.4], one finds that the algebra of
operations on

⊕
S VS generated by the resulting maps xi and x∗i is isomorphic to the monoid algebra of

the free inverse monoid on r generators.

6. . . . but some do not

Let us show that in Theorem 5, the hypothesis that V have a decomposition as a direct sum of well-
behaved x-invariant subspaces cannot be dropped. We will use the next result, which concerns monoids of
ordinary (everywhere defined, not necessarily one-to-one) endomaps of sets.

Lemma 8. Let x be an endomap of a set S. Then a necessary condition for x to have a strong inner
inverse in the monoid of all endomaps of S is

(18) x (
⋂

n≥0 xn(S)) =
⋂

n≥0 xn(S).

Proof. Suppose x has a strong inner inverse y. Since in (18), the relation “⊆ ” clearly holds, we must show
the reverse inclusion.

So consider any s ∈
⋂
xn(S). In view of the relations xn = xnynxn, we have

(19) s = xnyns for all n ≥ 0.

If we take n ≥ 1, apply y to both sides of this equation, and then apply to the right-hand side the second
relation of (4) with n for j, we get ys = xn−1yns. Hence ys ∈

⋂
xn(S); and applying x to both sides of

this relation, and invoking the n = 1 case of (19), we conclude that s ∈ x (
⋂

xn(S)), as desired. �

We shall see in the next section that the condition of the above lemma is sufficient as well as necessary;
but we only need necessity for the example below.

That example will be obtained by slightly tweaking the well-behaved example, implicit in Theorem 5, of
a space V which is a direct sum of x-basic subspaces of all natural number dimensions.

Proposition 9. Let V be a vector space over a division ring D, with a basis consisting of elements bn,i
for all positive integers n and i with i ≤ n, and one more basis element, b+; and let x ∈ End(V ) be given
by

(20) x(bn,i) = bn,i+1 if i < n, x(bn,n) = b+ for all n, x(b+) = 0.

Then x has no strong inner inverse in End(V ). (In fact, it has no strong inner inverse in the monoid of
all set-maps V → V.)

Proof. Clearly,
⋂

n≥0 x
n(V ) is the 1-dimensional subspace of V spanned by b+. The image of this subspace

under x is the zero subspace, so (18) is not satisfied, hence Lemma 8 gives the desired conclusion. �
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The next result gets further mileage out of the above example. The first assertion of that proposition
answers a question posed in an earlier version of [16]; the second shows that in Lemma 8 and Proposition 9,
the relations characterizing a strong inner inverse y to x cannot be replaced by the subset consisting of the
relations xnynxn = xn and ynxnyn = yn for all n ≥ 0.

Proposition 10. Let V and x be as in Proposition 9. Let Vn, for each n ≥ 1, be the subspace of V
spanned by bn,1, . . . , bn,n, let V+ be the subspace spanned by b+, let R0 be the ring of all endomorphisms
of V that carry each of these subspaces into itself, and let L be the space of endomorphisms of V of finite
rank.

Then R0 + L is a unit regular ring R containing x, but containing no y that satisfies xnynxn = xn

for all n.
On the other hand, the full ring End(V ) contains an element y which satisfies both xnynxn = xn and

ynxnyn = yn for all n ≥ 0, though by Proposition 9, y is not a strong inner inverse to x.

Proof. Let us prove the above claims in reverse order: first (easiest) the existence of a y as in the final
sentence, then the non-existence result of the preceding sentence, and finally, the unit-regularity of R =
R0 + L.

A y as in the final sentence of the proposition is defined by the familiar formulas y(bn,i) = bn,i−1 for
i > 1, together with the unexpected formulas y(b+) = b1,1 and y(bn,1) = bn+1,1 (n ≥ 1). In checking that
for every n we have xnynxn = xn, let us think of that relation as saying that xnyn fixes all elements of
xn(V ). Now xn(V ) is spanned by the elements bm,i with i > n, and b+; and it is straightforward to check
that elements of each of these sorts are fixed by xnyn. Similarly, the desired relation ynxnyn = yn says
that all elements of yn(V ) are fixed by ynxn. Now when y is applied to a basis element bm,i, we see that
the difference m− i is increased by 1, whether we are in the case i > 1 or i = 1; so the result of applying
yn to a basis element bm,i is a basis element of the form bm′,i′ with m′ − i′ ≥ n. It is immediate to check
that any basis element with this property is fixed by ynxn. On the other hand, in evaluating ynxnyn(b+),
we can use the fact that b+ ∈ xn(V ), so by our observations on the relations xnynxn = xn, b+ is fixed
under xnyn. Now applying yn, we get ynxnyn(b+) = yn(b+), as desired.

We turn next to R = R0 + L. It is clear that R is a ring and L an ideal of R. The endomorphism of
V that carries all basis elements of the form bn,n to b+, and all other basis elements to zero, has rank 1,
hence belongs to L, and if we subtract it from x we get a member of R0; so x ∈ R.

To prove the nonexistence of a y ∈ R satisfying the relations xnynxn = xn, consider any y = y0+y1 ∈ R,
where y0 ∈ R0 and y1 ∈ L. Since y1 has finite rank, its range lies in the sum of V+ and finitely many of
the Vn. Also, being a member of V, the element y(b+) lies in the sum of V+ and finitely many of the Vn.
Hence we can choose an n0 > 0 such that both the space y1(V ) and the element y(b+) have zero projection
in all of the spaces Vn for n ≥ n0.

Now consider the element xn0yn0xn0(bn0,1). The xn0 that acts on bn0,1 carries it to b+, and subsequent
iterations of y will, by our choice of n0, carry this into a member of V+ +

∑
n<n0

Vn. But every member of

this sum is annihilated by xn0 ; so xn0yn0xn0(bn0,1) = 0, though xn0(bn0,1) = b+. Hence xn0yn0xn0 6= xn0 ,
as claimed.

It remains to show that R is unit regular; i.e., that every element has an inner inverse which is a unit.
We shall recall sufficient conditions for this to hold, given in [3, Lemma 3.5, p. 600] for a general ring R with
an ideal L, in terms of properties of R, R/L and L, and verify that these hold in the case at hand. (I am
indebted to Ken Goodearl and Pace Nielsen for supplying the tools for this part of the proof.)

First, we must know that R is regular. This follows from [10, Lemma 1.3], since L, being an ideal of
End(V ), is regular, and R/L ∼= R0/(R0 ∩L), a homomorphic image of the regular ring R0, is also regular.

Next, we must know that eLe is unit regular for every idempotent e ∈ L. But eLe ∼= End(eV ), the
endomorphism ring of a finite dimensional vector space, and so is unit regular by [10, Theorem 4.1(a)⇐⇒ (c)].

We must also know that R/L is unit regular. For this we again use the fact that R/L ∼= R0/(R0 ∩ L),
this time combined with the fact that R0, a direct product of unit regular rings, is unit regular.

Finally, we need to know that every unit of R/L lifts to a unit of R. Now a unit of R/L and its inverse
will be images of elements u, v ∈ R0. Hence uv−1 and vu−1 will both lie in R0∩L, hence will be members
of R0 whose components equal zero in all but finitely many of the algebras End(Vn) and End(V+). Hence
if we modify u and v only in their behavior on the finitely many factors where they are not inverse to
one another, replacing their actions there with, say, the identity elements of those factors, we get elements
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u′, v′ ∈ R0 which are inverse to one another, and these give the desired liftings to R of the original unit
and its inverse in R/L. �

In contrast to the first assertion of the above proposition, we know from [16, Theorem 4.8], mentioned
in §1, that the x of the above example has inner inverses in R which satisfy any finite subset of the
relations (2).

The referee has asked whether in a regular ring, a product of two elements with strong inner inverses
must have a strong inner inverse. Let us show that, in fact, the product of an element having a strong inner
inverse and an invertible element can fail to have a strong inner inverse. Clearly, this is equivalent to saying
that the product of an element x not having a strong inner inverse and an invertible element u can have a
strong inner inverse, and that is the form in which it will be convenient to describe the example.

Let V and x ∈ End(V ) again be as in Proposition 9, and let u be the automorphism of V which acts
on our basis by the following permutation:

(21) u(bn,i) = bn,i−1 for 1 < i ≤ n, u(bn,1) = bn,n for all n, u(b+) = b+.

Then xu fixes all elements bn,i with i > 1, carries all elements bn,1 to b+, and annihilates that element.
We know from Proposition 9 that x does not have a strong inner inverse; however xu does, by Theorem 5,
using the decomposition of V as the direct sum of the one-dimensional subspaces with bases {bn,i} (1 <
i ≤ n), the 2-dimensional subspace with basis {b1,1, b+}, and the one-dimensional subspaces with bases
{bn+1,1 − bn,1} (n ≥ 1). Each of these subspaces is easily seen to be xu-invariant, hence that theorem is
indeed applicable.

(J. Šter (personal communication) has pointed out a quicker way to see that the product of the above x
with some invertible element has a strong inner inverse, though it does not give that invertible element as
explicitly: By Proposition 10, x has an invertible inner inverse u′ in R0 + I ⊆ End(V ). This makes xu′

idempotent, and hence its own strong inner inverse.)
The referee has also raised the following question. Recall that for R a ring, its Pierce stalks (the stalks

of the Pierce sheaf of R) are the factor-rings R/I, as I ranges over the maximal members of the partially
ordered set of proper ideals of R generated by families of central idempotents [18], [7, p. 354]. Any ring R
is a subdirect product of its Pierce stalks.

Question 11. If x is an element of a regular ring R, and the image of x in every Pierce stalk R/I has
a strong inner inverse, must x have a strong inner inverse in R ?

If the answer is negative, a counterexample might look something like the following. Start with simple
regular rings Ri (i ≥ 1) in which all elements have strong inner inverses (for instance, full matrix rings
over fields), and let R ⊆

∏
Ri be a subdirect product of the Ri whose only central idempotents are the

elements of
∏

Ri with finitely many components 1 and all other components 0, and those with finitely
many components 0 and all other components 1. Then the Pierce stalks of R will be the rings Ri, and
one stalk “at infinity”, R∞. Suppose now that x and y are elements of R such that, of the relations (3),
all but one hold between their images x1, y1 ∈ R1, all but another hold between their images x2, y2 ∈ R2,
and so on. Then all these relations hold between their images x∞, y∞ ∈ R∞, while in each of the rings Ri,
the image xi of x has, by our hypothesis on those rings, some strong inner inverse. So the hypotheses of
Question 11 are satisfied. However, there is no evident reason why it should be possible to modify all the
yi so as to get a strong inner inverse to x which still lies in the chosen subring R ⊆

∏
Ri. On the other

hand, it is not clear how one might come up with an R in which such an inner inverse was guaranteed not
to exist.

Even if the above idea of what a counterexample could look like is roughly correct, it may be naive to
assume that one could have only one of the equations (3) fail in each Ri. This suggests

Question 12. For which subsets S of the set of equations (3) is it the case that there exist a ring R and
elements x, y ∈ R which satisfy all the relations in S, but none of the other relations of (3)?

7. Digression: A characterization of set-maps having strong inner inverses

Here is the promised strengthening of Lemma 8. (It will not be used in subsequent sections.)

Theorem 13. Let x be an endomap of a set S. Then condition (18) is necessary and sufficient for x to
have a strong inner inverse y in the monoid of all endomaps of S.



STRONG INNER INVERSES 11

Proof. In view of Lemma 8, we only have to prove sufficiency, so assume x satisfies (18), and let us con-
struct y.

For every s ∈ S, we define its “depth”,

(22)
d(s) = greatest integer n ≥ 0 such that s ∈ xn(S) if this exists, or ∞ if s ∈

⋂
n≥0 x

n(S).

(In statements such as (23) and (24) below, we will understand ∞+ 1 =∞ =∞− 1.)

In particular, d(s) = 0 if and only if s /∈ x(S). Clearly,

(23) For all s ∈ S, we have d(x(s)) ≥ d(s) + 1.

Moreover, I claim that

(24) If d(s) > 0, then s can be written as x(t) for some t with d(t) = d(s)− 1.

Indeed, for 0 < d(s) <∞, (24) is straightforward, while the case where d(s) =∞ is our assumption (18).
We will begin the construction of y by defining it on all s ∈ x(S). In this case, the criterion for choosing

y(s) will be fairly natural, but with one nonobvious restriction, applying to elements s ∈ S that satisfy

(25) d(xn(s)) = d(s) + n for all n ≥ 0 (cf. (23)).

For such an s, if the function y that we shall define below satisfies

(26) y xn(s) = xn−1(s) for all n ≥ 1,

let us call s y-stable. We now specify y on x(S) by the rule

(27)
For each s ∈ x(S), let y(s) be an element t such that s = x(t) and d(t) = d(s)−1 (as in (24)).
Moreover, if there are any s ∈ S satisfying (25), then we make our choice of y satisfy (26) for
at least one such s (i.e., we make at least one such s y-stable).

Can we achieve the second condition of (27)? If x is one-to-one on the x-orbit of some s satisfying (25),
we can clearly define y on elements xn(s) by (26). If, on the other hand, x is not one-to-one on the orbit
of s, then that orbit must eventually become periodic, and taking a new s in the periodic part, x will be
one-to-one on the orbit of that element, and we can define y on that orbit by (26). So the second sentence
of (27) can indeed be achieved.

Note that, in view of (23), and the condition d(t) = d(s)− 1 in (27), we can say that

(28)
Once y has been defined on x(S) so as to satisfy (27), we can use this partial definition of y to
evaluate yn(s) for any s ∈ S with d(s) ≥ n.

We now want to define y on elements s /∈ x(S).
A fairly easy case is that in which d makes a “jump” somewhere on the x-orbit of s :

(29)
If s ∈ S with d(s) = 0, and if for some positive integer n, d(xn(s)) > n, then letting n be the
least value for which this is true, we define y(s) = yn+1xn(s).

In view of the hypothesis of (29) that d(xn(s)) > n, we see by (28) that yn+1xn(s) is determined by the
partial definition of y that we have so far; so (29) makes sense.

Finally, let us define y on those s /∈ x(S) such that d(xn(s)) = n for all n ≥ 0. We will need the
following equivalence relation.

(30)
For s, s′ ∈ S such that d(xn(s)) = n = d(xn(s′)) for all n ≥ 0, we shall write s ≈ s′ if there
exists some n such that xn(s) = xn(s′).

We now specify

(31)
If s ∈ S satisfies d(xn(s)) = n for all n ≥ 0, then we take y(s) to be any y-stable element (any
element satisfying (26)), subject only to the condition that if s ≈ s′, then y(s) = y(s′).

To see that we can do this, note that the situation “ d(xn(s)) = n for all n ≥ 0 ” is a case of (25), hence
by the second sentence of (27), if there exist s as in (31), then there also exist y-stable elements, which is
all we need to carry out (31).

This completes the construction of y. Let us record two immediate consequences of the first sentence
of (27). First, the fact that y(s) is chosen to be a preimage of s under x can be reworded:

(32) If d(s) > 0, then xy(s) = s.
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Second, combining the condition on d(t) in (27) with the fact that for s /∈ xS, d(y(s)) ≥ 0 > d(s)− 1, we
see that

(33) For all s ∈ S, we have d(y(s)) ≥ d(s)− 1 (cf. (23)).

Let us now show that x and the y we have constructed satisfy the relations (3). The first of these,
xyjxj = yj−1xj , says that for every s ∈ S, the element yj−1xj(s) is fixed under xy. This is easy: by (23)
and (33), every s ∈ S satisfies d(yj−1xj(s)) ≥ 1, so by (32), yj−1xj(s) is indeed fixed under xy.

The other relation from (3),

(34) yjxjy = yjxj−1,

automatically holds when applied to elements s with d(s) > 0, since the two sides differ by a right factor
of xy, again allowing us to apply (32).

So suppose d(s) = 0.
Assume first that s has the property that d(xn(s)) > n for some n, and as in (29), let n ≥ 1 be the

least such value. Applying the two sides of (34) to s, and using (29) on the left-hand side, we see that we
need to prove

(35) yjxjyn+1xn(s) = yjxj−1(s).

Now because we have assumed the element s satisfies d(xn(s)) ≥ n + 1, we see that on the left-hand side
of (35), each of the terms in the string yn+1 gets applied to an element of positive depth; hence by (32), we
can repeatedly cancel sequences x y at the interface between the strings xj and yn+1. The outcome of these
cancellations depends on the relation between j and n in (35). Suppose first that j > n. Then the above
repeated cancellations turn the left-hand side of (35) into yjxj−n−1xn(s), which equals the right-hand, as
desired.

If, rather, j ≤ n, then the cancellation mentioned turns the left-hand side of (35) into yjyn+1−jxn(s) =
yn+1xn(s), which by (29) is the value we have assigned to y(s). We want to compare this with the right-
hand side of (35). To do so, let us write that expression as y(yj−1xj−1)(s). Since j < n, and n is chosen
as in (29), we have d(xj−1(s)) = j − 1, hence by (27), d(yj−1xj−1(s)) = 0. So what we need to show is
that y, when applied to the depth-zero element yj−1xj−1(s), gives the same output as when applied to
the depth-zero element s. I claim that this will again hold by (29). To see that, we have to know how
the element yj−1xj−1(s), and in particular, its depth, behave under n successive applications of x. Now
by (32), the first j−1 of these n applications of x simply strip away the same number of y’s, increasing d
by 1 at each step. Hence the result of applying xj−1 to yj−1xj−1(s) is xj−1(s); so from that point on,
we get the same outputs as when we apply the corresponding powers of x to s. So since (29) applies to
the evaluation of y(s), it also applies to the evaluation of y(yj−1xj−1(s)), and the resulting values are the
same, as desired.

Finally, suppose we are in the case where d(xn(s)) = n for all n. Then by (31), y(s) will be a y-stable
element, i.e., will satisfy (26). This implies that it is fixed under yjxj , so the result of applying the left-hand
side of (34) to s is y(s). When we apply the right-hand side of (34), yjxj−1, to s, if we write that operation
as y(yj−1xj−1), then the factor yj−1xj−1 will take s to an element s′ again having d(s′) = 0. Moreover,
by repeated application of (32), s′ will again satisfy d(xn(s′)) = n for all n, and will have the same image
as s under xj−1, hence will be ≈-equivalent to s. So by the last condition of (31), the images of s and
s′ under y are the same. So the two sides of (34), applied to s, give the common value y(s) = y(s′),
completing the proof of the theorem. �

Pace Nielsen has pointed out that the proof of Lemma 8 can be modified so that the only relations on x
and y called on are xyx = x and xn−1ynxn = yxn for all n > 0 (the (1, 1, 1) and (n−1, n, n) cases of (2)).
Namely, if we think of xn−1ynxn = yxn as saying that xn−1yn and y have the same effect on elements of
xnS, then applied to elements s ∈

⋂
n≥0 x

n(S), this brings us directly to the relation xn−1yns = ys used

in that proof; after which only the relation xyx = x is used. (Contrast this with the second assertion of
Proposition 10, which shows that we cannot get such a result using only the family of relations xnynxn = xn

and ynxnyn = yn.) Consequently, Theorem 13 can be strengthened to assert the equivalence of three
conditions on an endomap x of a set: (i) condition (18), (ii) the existence of a strong inner inverse to x,
and (iii) the existence of an element y satisfying the relations xyx = x, and xn−1ynxn = yxn for all n > 0.
The relations of (iii) are strictly weaker than y itself being a strong inner inverse to x, as may be seen from
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the construction, in §9 below, of the element y′ of (51), which by (53) satisfies those relations, but by (52)
does not satisfy y′ = y′xy′.

It is natural to ask whether (18) is also a sufficient condition for an endomorphism x of a vector space V
to have a strong inner inverse in End(V ). Nielsen (personal communication) has an example showing that
it is not.

8. A closer look at kF

In this and the next section we shall, for conceptual simplicity, assume our division ring D is a field
k, so that actions of DF on D-vector spaces V, which for general D are not actions by D-vector-space
endomorphisms, become actions of kF by k-vector-space endomorphisms. But the reader will see that
virtually nothing about k is used, so that the corresponding statements for DF , if desired, are available.

So let k be a field, and V a countable-dimensional k-vector space with basis {bn,h | 1 ≤ h ≤ n}, and let
x and y be the endomorphisms of V defined by

(36)
x(bn,h) = bn,h+1 if h < n, while x(bn,n) = 0,
y(bn,h) = bn,h−1 if h > 1, while y(bn,1) = 0.

By Theorem 5, the monomials on the left-hand side of (2) form a k-basis of the subalgebra of End(V )
generated by x and y, and so, in particular, are k-linearly independent.

But letting Vn denote, for each n, the subspace of V spanned by bn,1, . . . , bn,n, consider the following
four monomials in x and y, and their actions on such a space Vn :

(37)

1 fixes all bn,h,
xy annihilates bn,1, and fixes all other bn,h,
yx annihilates bn,n, and fixes all other bn,h,
xyyx annihilates bn,1 and bn,n, and fixes all other bn,h.

These descriptions suggest that 1 + xyyx = xy + yx on each Vn.
What is wrong here?
The relation 1 + xyyx = xy + yx does in fact hold on all Vn with n > 1. But for n = 1, the above

considerations implicitly “double-count” the basis element b1,1 in looking at the effect of xyyx. On V1, the
elements xy, yx and xyyx all act as 0, while 1 does not; so the asserted relation fails on V1 – and only
there.

This suggests that operators on V that, like 1 +xyyx−xy−yx, have “small” images, may be of interest
in understanding kF . Let us define on V, for each i ≥ 1, operators `i and ri, by

(38)

`i fixes, for each n ≥ i, the element bn,i, and annihilates all other
elements bn,h (n ≥ 1, 1 ≤ h ≤ n),

ri fixes, for each n ≥ i, the element bn,n+1−i, and annihilates all other
elements bn,h (n ≥ 1, 1 ≤ h ≤ n).

Here ` and r are mnemonic for “left” and “right”, since if we list the basis of Vn as bn,1, . . . , bn,n, then `i
projects to the i-th basis element from the left (if any), and ri to the i-th from the right (if any).

These operators are represented by elements of kF . Namely, identifying elements of that algebra with
their actions on V, it is not hard to check that for all i ≥ 1,

(39)
`i = xi−1yi−1 − xiyi,
ri = yi−1xi−1 − yixi.

Elements with still smaller images are given by products of the above operators. Namely, for each i, j ≥ 1,

(40) `irj fixes the single basis element bi+j−1,i, and annihilates all the other bn,h (1 ≤ h ≤ n).

Let us note some relations which x, y, and the `i and ri satisfy. First, the i = 1 cases of (39) give the
following formulas, which can be applied to reduce any string of x’s and y’s which contains both letters to
a linear combination of shorter strings in x, y, `1 and r1 :

(41) xy = 1− `1, yx = 1− r1.

In the next list of relations we make the temporary convention that `0 and r0 represent the zero operator.
Then we have the following equalities for all i ≥ 1 (in which the i = 1 cases each say that a certain product
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is 0).

(42) `i x = x `i−1, ri−1 x = x ri, `i−1 y = y `i, ri y = y ri−1.

These relations are easily deduced from (36) and (38), and allow us to reduce expressions in x, y and the
`i and ri to linear combinations of monomials in which no `i or ri occurs to the left of an x or y, and
which also contain no products x r1 or y `1.

The i = 1 cases of the second and third relations of (42) can be seen to generalize to

(43) xiri = 0, yi`i = 0 (i ≥ 1).

Finally, from (38) it is easy to see that

(44)

`2i = `i, while `i`j = 0 for i 6= j,

r2i = ri, while rirj = 0 for i 6= j,

`irj = rj`i for all i, j.

Using (41)-(44), we can reduce any element of kF to a k-linear combination of elements of the following
four sorts.

(45) ym (m ≥ 1), 1, xm (m ≥ 1).

(46) ym `i (i > m ≥ 1), `i (i ≥ 1), xm `i (i,m ≥ 1).

(47) ym ri (i,m ≥ 1), ri (i ≥ 1), xm ri (i > m ≥ 1).

(48) ym ri `j (i,m ≥ 1; j > m), ri `j (i, j ≥ 1), xm ri `j (j,m ≥ 1; i > m).

In fact, we have

Lemma 14. The elements listed in (45)-(48) form a k-basis of kF .

Proof. We have seen that the elements (45)-(48) span kF , so it will suffice to show that every nontrivial
k-linear combination f of those elements has nonzero action on V.

Suppose first that f involves at least one of the elements in (45), say u ∈ {ym, 1, xm}, with nonzero
coefficient in k. I claim that we can find an element bn,i in our basis for V which is annihilated by all
the monomials occurring in f that lie in (46)-(48), but not by u. Indeed, for each n > 0, each term
in (46)-(48) has nonzero action on at most one of bn,1, . . . , bn,n, while the number of members of each such
set annihilated by our element u is bounded, independent of n, by the exponent on x or y in u (if any).
Hence for large enough n, there exists a bn,i which is neither an element on which the finitely many terms
of f in (46)-(48) have nonzero value, nor one annihilated by u; let us choose any such bn,i. Note that each
member of (45) other than u which is nonzero on bn,i carries it to a basis element other than u(bn,i), since
by (36), distinct members of (45) shift second subscripts of the bn,i by different amounts. Hence in f(bn,i),
the basis-element u(bn,i) has nonzero coefficient; so f has nonzero action on V.

Suppose, next, that f involves no members of (45), but has some member of (46) or (47) with nonzero
coefficient. Assume without loss of generality that it involves an element u of (46), and let `i be the `-factor
occurring. Thus, u acts nontrivially only on basis elements bn,i (n ≥ i), and I claim we can find some
n for which u, but none of the elements of (47) or (48) occurring in f, does so. Note that u annihilates
bn,i for at most finitely many n. Each element of (47) acts nontrivially on members of our basis that are a
fixed distance from the right end of the families {bn,1, . . . , bn,n}, so for n large enough, none of the finitely
many such elements which occur in f will act nontrivially on the i-th element from the left. Moreover, each
member of (48) is nonzero on bn,i for at most one n. Hence for all but finitely many n, the element bn,i
has nonzero image under u but not under any of the members of (47) or (48) occurring in f ; let us pick
such a bn,i. Of the other members of (46) occurring in f, those that involve `j for some j 6= i annihilate
bn,i, while those that involve `i but begin with a different factor xm, 1 or ym send bn,i to a different basis
element. So again, the basis element u(bn,i) has nonzero coefficient in f(bn,i), so f has nonzero action
on V.

Finally, if f involves no members of (45)-(47), we take a member u of (48) that it involves, and let
ri`j be the factors other than a power of x or y in that operator. Then u(bi+j−1,j) 6= 0, and we easily
check that all other elements of (48) (which are the only other terms that can appear in f) either annihilate
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bi+j−1,j , or send it to a basis element different from the one to which u sends it. Hence f(bi+j−1,j) 6= 0,
so in this case, too, f has nonzero action on V, completing the proof of the lemma. �

Although F has trivial center, kF has nontrivial central idempotents. Namely, for each n ≥ 1, the
element

(49) pn = rn`1 + rn−1`2 + · · ·+ r1`n

acts on V by projection to Vn; and since all members of kF carry each Vm into itself, pn commutes with
all such elements. (For results on the centers of monoid algebras of free inverse monoids on more than one
generator, see [12].)

The above material on the structure of kF has considerable overlap with [2, §4]. In particular, our `irj
and pn would be, in the notation of display (4.4) and Lemma 4.3 of that note, q−i+1,j−1, and hn−1; and
Proposition 4.5 of that paper shows, inter alia, that the latter elements generate the socle of kF (which is
equivalent to saying that the socle is spanned over k by the former elements).

In the above discussion, we have been regarding kF as an algebra of operators on the space V =
⊕

Vn,
but the results on its structure that we have deduced necessarily hold for the abstract algebra kF ; so we
can look at the elements considered above in connection with any action of kF on any vector space. For
instance, if x is an invertible endomorphism of a vector space V, and y its inverse, then we get an action in
which, it is easy to see, all `i and ri act trivially (i.e., as the zero operator). If x acts by a one-to-one but
not invertible endomorphism of a space V, and we let y act by a left inverse thereof, we get an action under
which the ri are trivial, but not all the `i; and we have the obvious dual statement if x is surjective but
not one-to-one. In these cases, all the products ri `j , and hence the central idempotents pn, act trivially.

Note that there is a homomorphism F → Z taking x to 1 and y to −1, and that this induces a grading
on kF , under which the basis elements (45)-(48) are homogeneous: those whose expressions begin with ym

have degree −m, those beginning with xm have degree +m, and those beginning with neither have degree
0. The homogeneous component of kF of degree 0 is commutative, generated over k by the idempotent
elements `i and ri.

The following result, which relates the behavior of ri and `i with that of x under an arbitrary action of
kF on a k-vector space, will be used in the next section.

Lemma 15. Let V be a k-vector space given with a left action of kF . Then for each i ≥ 1,

(i) The action of the projection map ri on V annihilates the subspace ker(xi−1), and has as image a
complement of that subspace in the (generally larger) subspace ker(xi).

(ii) The action of the projection map `i on V annihilates the subspace im(xi), and has as image a
complement of that subspace in the (generally larger) subspace im(xi−1).

(In these statements, x0 is understood to be the identity operator. Thus, in the i = 1 case of (i),
since ker(id) = 0, the conclusion simply means that the projection r1 has image ker(x); and in (ii), since
im(id) = V, the conclusion means that `1 is a projection of V along im(x) onto a complement of that
subspace.)

The corresponding statements hold with x replaced by y, and the roles of `i and ri interchanged.

Proof. Since ri and `i are idempotent elements of kF , they act on V by projection operators.
Since ri = yi−1xi−1 − yixi, this element is right divisible by xi−1, hence annihilates ker(xi−1); while

its image lies in ker(xi) by the first equation of (43). Since it is a projection, to show that its image is a
complement of ker(xi−1) in ker(xi), it remains only to show that the only elements of ker(xi) annihilated
by ri are the elements of ker(xi−1). And indeed, if v ∈ ker(xi) is annihilated by ri = yi−1xi−1−yixi, then
it is annihilated by yi−1xi−1, hence by that element’s left multiple xi−1yi−1xi−1 = xi−1, as required.

Turning to `i, this annihilates im(xi) by repeated application of the first equation of (42). Since `i =
xi−1yi−1−xiyi, it is left divisible by xi−1, so its image lies in im(xi−1). Thus, as above, it remains to show
that any element of im(xi−1) annihilated by `i lies in im(xi). And indeed, the condition that an element
xi−1(v) ∈ im(xi−1) be annihilated by `i is xi−1yi−1xi−1(v)− xiyixi−1(v) = 0. Applying (2) to each term
of this relation, it becomes xi−1(v)− xiy(v) = 0, showing that xi−1(v) indeed lies in im(xi).

The final assertion is clear by symmetry. (We will not need it below.) �

The referee has asked whether the ideas of this note might be of use in connection with the question of
whether all von Neumann rings regular satisfy the separativity condition on their monoids of finitely generated
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projective modules (see [1]). My one attempt to contribute to that problem was [6], which examines the ring
R′ obtained by universally adjoining to a k-algebra R an inner inverse to an element x ∈ R. The hope was
that by applying that construction recursively to an algebra with non-separative monoid of projectives, one
might get a regular k-algebra with the same property. But though results were obtained on the element-
structures of R′-modules M ⊗R R′, there was no evident way to go from these to results on the monoid of
finitely generated projectives.

One might similarly study the result of adjoining to a k-algebra R a universal strong inner inverse to an
element x ∈ R, with the same goal. I do not know whether such an approach would have a better chance
of success.

9. Inner inverses satisfying other systems of relations

In this section, we will regard the monoid relations (2), (3), (4) by which we have defined F as k-algebra
relations defining kF . It is natural to ask whether the relations satisfied by x and y in kF comprise the
“strongest” family of k-algebra relations that one can force an inner inverse y of a general element x of a
“good” regular k-algebra (such as an infinite product of full matrix algebras over k) to have.

An easy observation which suggests a negative answer is the following: It is known that for all n, the
ring R of n×n matrices over k is unit regular, i.e., that for every x there exists an invertible y such that
xyx = x [10, Lemma 1.3]. Now if x is not invertible and y is, we can’t have yxy = y; so for noninvertible
x, the condition that y be invertible is incompatible with the relations (2). Unfortunately, the condition
that y be invertible is not a k-algebra relation in x and y; so the above does not contradict the possibility
that the relations defining kF might be the strongest set of k-algebra relations in those two elements that
we can force an inner inverse y to have in R.

We shall see at the end of this section that a modification of the above idea does work. But let us first
show that the set of k-algebra relations defining kF , even if not a greatest element in the partially ordered
set of families of relations that can be so forced, is a maximal element. For this, we will need

Corollary 16 (to Lemma 15). An action of kF on a vector space V is faithful if and only if for all positive
integers i,

(50) im(xi) ∩ ker(x) 6= im(xi−1) ∩ ker(x).

Proof. Since the left-hand side of (50) is contained in the right-hand side, it suffices to show that the given
action is faithful if and only if for every i, there is an element of the right-hand side of (50) that is not in
the left-hand side.

It is easy to verify that every nonzero two-sided ideal of kF contains at least one of the elements (48);
and with the help of (42), one can deduce that every such ideal contains an element `ir1 (i ≥ 1). We shall
now show that for each i, the existence of an element belonging to the right-hand side of (50) but not the
left is equivalent to the condition that `ir1 act nontrivially on V, i.e., not be in the kernel of our action.
Thus, the inequalities (50) will hold for all i if and only if that kernel is zero, giving the desired result.

Suppose first that some v ∈ V belongs to im(xi−1) ∩ ker(x) but not to im(xi) ∩ ker(x). Since v ∈ ker(x),
we see from the parenthetical statement in Lemma 15 that it is fixed under r1, while since it lies in im(xi−1)
but not in im(xi), statement (ii) of that lemma shows that it is not annihilated by `i. Hence `ir1(v) 6= 0,
so `ir1 indeed acts nontrivially.

Conversely, suppose `ir1 acts nontrivially on some v ∈ V. Then I claim that `ir1(v) lies in the right-hand
side of (50) but not in the left-hand side. Indeed, since `ir1(v) is a nonzero element of `i(V ), Lemma 15(ii)
tells us that it belongs to im(xi−1) but not to im(xi), while since `ir1 = r1`i, it also lies in r1(V ) = ker(x),
as required. �

We deduce

Proposition 17. Let R be a k-algebra, and ϕ and ϕ′ k-algebra homomorphisms kF → R such that
ϕ(x) = ϕ′(x). Then ϕ is one-to-one if and only if ϕ′ is.

Hence no proper homomorphic image (kF)/I has the property that for every element x in a direct
product R of full matrix rings over k, there exists y ∈ R which, with x, satisfies the relations of (kF)/I.

Thus, the set of k-algebra relations satisfied by x and y in kF is maximal among sets S of k-algebra
relations in two noncommuting indeterminates such that for every element x in a direct product R of full
matrix algebras, one can find a y ∈ R such that x and y together satisfy S.
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Proof. Embedding R in an algebra of the form End(V ), we get from the preceding corollary a condition
which is necessary and sufficient both for ϕ and for ϕ′ to be one-to-one, in terms of the action of x on V.
Since ϕ(x) = ϕ′(x), this yields the first assertion.

We know from the second paragraph of Theorem 5 that there exist elements x and y in an infinite
direct product of matrix rings over k which satisfy the relations of kF but no others, hence the preceding
assertion shows that for such x, there exists no y′ such that x and y′ satisfy the relations of a proper
homomorphic image (kF)/I of kF .

The third assertion then follows. �

One can easily strengthen the above proof to show that for any ϕ and ϕ′ as in the first sentence of the
proposition, their kernels have the same intersection with the ideal of kF spanned by the elements (48) (the
socle of kF). It seems likely that these kernels must in fact be equal; I leave this for others to investigate.

Let us now prove, on the other hand, that the set of relations satisfied by x and y in kF is not the
only maximal set of k-algebra relations that can be forced in this way. We will use the idea of the second
paragraph of this section in our example, but instead of trying to make y everywhere invertible, we shall
only do this on x-basic subspaces of one chosen dimension m. To see how, let us again think in terms the
action of kF on the vector space V =

⊕
Vn spanned by elements bn,h, as in §8. If we let

(51) y′ = y + xm−1`1rm,

we see that y′ acts like y on the spaces Vn with n 6= m (since `1rm acts trivially on those spaces), but
that on Vm, it cyclically permutes the m basis elements bm,i. Since x does not act invertibly on Vm,
neither does y′xy′, so since y′ does, we have

(52) y′ 6= y′x y′.

On the other hand, the reader can easily verify, by calculation in End(V ), that for all natural numbers i,

(53) (y′)i xi = yi xi, and xi (y′)i = xi yi.

Hence all `i and ri are expressible in terms of x and y′ by the same formulas (39) that express them in
terms of x and y. In particular, the subalgebra of kF generated by x and y′ contains all `i and ri, and
so contains y = y′ − xm−1`1rm (see (51)), so it is all of kF . From the i = 1 case of (53), we also see that
x = xy′x; i.e., y′ is an inner inverse to x.

The difference in behavior between y and y′ can be attested concretely by the easily checked relations

(54) (y′)m pm = pm, ym pm = 0.

Since pm is an expression in the `i and ri, which can be expressed in terms of x and y′ by the same
formulas that express them in terms of x and y, the equations of (54) can be regarded as contrasting
relations satisfied in kF by x and y′ and by x and y, respectively.

Thus, we get

Proposition 18. In the k-algebra kF , the element y′ given by (51) is another inner inverse to x, which
together with x generates the whole algebra, but which, by (54), satisfies with x a family of relations
incomparable with the family of relations satisfied by y. Hence these two sets of relations are distinct maximal
elements among the families S of k-algebra relations referred to in the last sentence of Proposition 17. �

This leaves open the question of whether every algebra presented by generators x and y, and a maximal
set of relations which include the relation x = xyx, and which can be “forced” in the sense we have been
discussing, must be isomorphic to kF by an isomorphism fixing x. In addition to questions about relations
satisfied by x and y alone, one might want to look at variants, such as what relations can be forced on an
invertible inner inverse y to an element x, when one exists.
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