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Arrays of prime ideals in commutative rings
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Abstract

If R is a commutative ring,A andB ideals ofR, andS andT multiplicative submonoids ofR, we
note an elementary necessary and sufficient condition for there to exist prime idealsP andQ in R
such thatP containsA and is disjoint fromS,Q containsB and is disjoint fromT , andP ⊆Q. We
then study conditions for the existence of larger families of prime ideals satisfying similar systems
of relations. When the inclusion relations specified in the given system define a “tree order,” the
necessary and sufficient conditions are quite tractable; otherwise, they are much less so. We apply
these results to the case whereR is a tensor product of two algebras over a fieldk, and end with some
observations on the behavior of arrays of prime ideals in ak-algebra under base extension.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction and some basic results

Throughout this note,R will be a commutative ring.
We recall the following well-known result, useful for finding prime idealsP of R with

specified properties.

Lemma 1 ([2, Theorem 9.2.2], [7, Proposition 7.3], [8, Theorem 1], [11, Theorem 1.2.1]).
LetA be an ideal ofR, andS a multiplicative submonoid ofR (a subset ofR, containing1
and closed under multiplication) disjoint fromA. Then there exists a prime idealP of R
containingA and disjoint fromS.

Is there a result which could be used similarly to get pairs of primesP ⊆ Q? A first
guess might be that given a pair of idealsA ⊆ B and a pair of multiplicative monoids

E-mail address:gbergman@math.berkeley.edu.
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S ⊇ T such thatA is disjoint from S andB from T , there would exist prime ideals
P ⊆Q containingA andB respectively, and disjoint fromS andT , respectively. However,
this is not true, as may be seen by takingR = Z, A = 6Z, B = 3Z, S = {3n}, T = {1}.
Nevertheless, we shall see that there are elementary criteria for the existence of such a pair
of primes, and of larger arrays of primes satisfying similar families of conditions. (For the
“P ⊆Q” case, we shall see that the relevant conditions do not even include the hypotheses
A⊆ B andS ⊇ T suggested above.)

Let us first take a closer look at the preceding lemma. We make

Definition 2. If A is an ideal ofR andS a multiplicative submonoid ofR, then arealization
of the pair(A,S) will mean a prime ideal containingA and disjoint fromS.

So Lemma 1 says that the set of realizations of(A,S) is nonempty if and only if
A∩ S = ∅.

Let us next fix some notation for operations on sets of ring elements.

Definition 3. If X andY are subsets ofR, thenX+ Y will denote{x + y | x ∈X,y ∈ Y },
XY will denote{xy | x ∈X,y ∈ Y }, andX÷ Y will denote{r ∈ R | (∃y ∈ Y ) ry ∈X}.

In the absence of parentheses, the order of operations will be: multiplication, then÷,
then addition; and after all of these, intersection. (Thus,A ÷ ST + B ∩ U will mean
((A÷ (ST ))+B)∩U .)

We shall also writeR −X for {r ∈ R | r /∈X}.

Note that the sum of two ideals is an ideal, and the product of two multiplicative
monoids is a multiplicative monoid, that forA an ideal andS a multiplicative monoid,
S + A is a multiplicative monoid andA ÷ S an ideal, and that ifP is a prime ideal,
R − P is a multiplicative monoid. The above symbols do not give us a way of writing the
conventional “product” of two ideals, that is, the ideal of sums of products of elements; but
that construction will not be needed in this note.

Observe that the assumption in Lemma 1,

A∩ S = ∅, (1)

is equivalent to

A÷ S ∩ {1} = ∅, (2)

and also to

{0} ∩A+ S = ∅. (3)

Each of these equations says that a certain ideal is disjoint from a certain multiplicative
monoid, so in each case we may ask for a characterization of the prime ideals containing the
indicated ideal and disjoint from the monoid; in the language of Definition 2, of the prime
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ideals realizing the indicated pair. Of course, the condition that a prime ideal contain{0},
or be disjoint from{1}, is vacuous, so they can be dropped in the statements of our results:

Lemma 4. LetA be an ideal ofR andS a multiplicative submonoid ofR. Then

(i) A prime idealQ ofR contains the idealA÷ S if and only if it contains a prime ideal
P which realizes the pair(A,S).

(ii) A prime idealP ofR is disjoint from the monoidS +A if and only if it is contained in
a prime idealQ which realizes the pair(A,S).

Proof. To prove (i), first note that a prime idealP realizing(A,S) must containA÷ S;
hence so must any primeQ containingP . Conversely, if a primeQ containsA÷ S, then
the monoidR−Q is disjoint fromA÷ S, which means thatS(R−Q) is disjoint fromA,
hence by Lemma 1 we can find a prime idealP realizing the pair(A,S(R−Q)). HenceP
will realize (A,S) and be disjoint fromR −Q, i.e., contained inQ, as required.

Likewise, to get (ii), observe that a primeQ containingA and disjoint fromS must be
disjoint fromS + A, hence so must any primeP contained inQ; and conversely, ifP is
a prime disjoint fromS + A, thenP + A is disjoint fromS, hence there exists a prime
idealQ realizing(P +A,S), which will realize(A,S) and containP , as required. ✷

We can iterate the application of Lemma 4 starting with a single pair(A,S): Part (i) of
that lemma says that prime ideals which contain primes realizing(A,S) are those realizing
(A ÷ S, {1}). Applying part (ii) to this situation, we see that prime ideals contained in
primes of the latter sort, i.e., in primes which contain primes which realize(A,S) are those
realizing({0}, {1}+A÷S). Another iteration gives a characterization of primes containing
primes contained in primes containing primes realizing(A,S); and so on. This yields an
infinite family of successively weaker conditions, since rings can be found having pairs of
prime ideals connected by an up-and-down chain of any given length, but by no shorter
chain. For example, for any integern, consider the ring

R = {
(f1, . . . , fn) ∈Q[x]n ∣∣ fi(i)= fi+1(i) (i = 1, . . . , n− 1)

}
,

and in it, the prime ideals

{
(fi) | f1= 0

} ⊂ {
(fi) | f1(1)= 0= f2(1)

}
⊃ {

(fi) | f2= 0
}

⊂ {
(fi) | f2(2)= 0= f3(2)

}
...

⊃ {
(fi) | fn = 0

}
⊂ {

(fi) | fn(n)= 0
}
.
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If we letA be the first of these ideals, andS =R−A, then the first 2n of the conditions
discussed above give distinct sets of primes.

However, if R is an integral domain, then any two primes have the prime{0} as
a common lower bound, so we get only a small number of distinct conditions; and the
same is true ifR is a local ring, where any two primes have the maximal ideal as a common
upper bound.

A straightforward but useful observation is

Lemma 5. If A,A′ are ideals andS,S′ are multiplicative submonoids ofR, then a prime
P realizes both(A,S) and(A′, S′) if and only if it realizes(A+A′, SS′).

Let us now turn to conditions involving more than one prime ideal.

2. Pairs of primes

Lemma 6. LetA andB be ideals ofR, andS andT multiplicative submonoids ofR. Then
the following conditions are equivalent:

(i) There exist prime idealsP,Q such thatP realizes(A,S), Q realizes(B,T ), and
P ⊆Q.

(ii) The idealA is disjoint from the multiplicative monoidS(T +B).
(iii) The idealB +A÷ S is disjoint from the multiplicative monoidT .

In fact, a prime idealP realizes(A,S) and is contained in a primeQ realizing(B,T )
if and only ifP realizes(A,S(T +B)); and a prime idealQ realizes(B,T ) and contains
a primeP realizing(A,S) if and only ifQ realizes(B +A÷ S,T ).

Proof. It will suffice to prove the assertions of the final paragraph. By Lemma 4(ii),P is
contained in a prime realizing(B,T ) if and only if it realizes({0}, T + B). By Lemma 5,
the conjunction of this condition and the condition thatP realize(A,S) is equivalent to the
condition of realizing(A+ {0}, S(T + B))= (A,S(T + B)). The last assertion is gotten
similarly, using Lemma 4(i). ✷

Can we see directly the equivalence of conditions (ii) and (iii) of the above lemma? Yes;
each of them says that

There donot exist elementsa ∈A, s ∈ S, b ∈ B, t ∈ T , x ∈ R satisfying

t + b+ x = 0, sx = a. (4)

Just as the condition of Lemma 1, namely (1), has the equivalent formulations (2)
and (3), so the equivalent conditions of Lemma 6(ii) and (iii), in symbols,

A∩ S(T +B)= ∅, (5)
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B +A÷ S ∩ T = ∅, (6)

which can be thought of as stating the nonexistence condition (4) in terms of the element
a and the elementt , respectively, can also be formulated in terms of the elementss, b, and
x respectively as

A÷ (T +B)∩ S = ∅, (7)

B ∩ T +A÷ S = ∅, (8)

A÷ S ∩ T +B = ∅. (9)

Again, since each of these equations says that an ideal is disjoint from a multiplicative
monoid, one can ask for characterizations of the primes realizing these ideal–monoid pairs.
Let us work this out for (7). A primeP realizes(A÷ (T +B),S) if and only if it contains
A ÷ (T + B) and is disjoint fromS. By Lemma 4(i) the former condition is equivalent
to containing an idealP ′ that realizes the pair(A,T + B), i.e., that containsA and is
disjoint fromT + B, and by Lemma 4(ii) the latter condition is equivalent to saying that
P ′ is contained in an idealQ that realizes(B,T ). Note that in the above situationP ,
which is disjoint fromS, containsP ′, which containsA; hence both of these prime ideals
containA and are disjoint fromS, i.e., realize(A,S). So the condition thatP realize
(A÷ (T +B),S) can be described as saying that it realizes(A,S) and contains a primeP ′
also realizing(A,S) which is contained in a primeQ realizing(B,T ). Note, incidentally,
that theexistenceof such aP is equivalent to the existence of a prime that realizes(A,S)

contained in a prime that realizes(B,T ) (for if such a pair exists, we can take bothP and
P ′ to be the former prime).

Similar reasoning shows that a prime realizes the pair indicated in (8) if and only if it
realizes(B,T ), and is contained in a prime which also realizes(B,T ) and contains a prime
realizing(A,S).

The condition corresponding to (9) is the most natural: An application of the two parts
of Lemma 4 shows that a prime realizes(A÷ S,T + B) if and only if it contains a prime
realizing(A,S) and is contained in a prime realizing(B,T ).

It is easy to see that the existence of a prime satisfying the above reformulation of any
of (7)–(9) is equivalent to the existence of a pair of primes as in Lemma 4(i), confirming
our observation that each of (7)–(9) is, like (5) and (6), a translation of (4). We could, of
course, go on and apply to each of (5)–(9) the fact that every condition (1) has equivalent
formulations (2) and (3), and get still more conditions equivalent to those listed; e.g.,
A÷ S(T +B)∩ {1} = ∅, {0} ∩ S(T +B)+A= ∅, etc.; and, using Lemma 4, characterize
the prime ideals realizing such pairs.

Here, as at the end of the first section, we have “played around” with equivalent
formulations of the conditions that we have characterized, getting results tangential to the
main point of the section, in order to develop some familiarity with our techniques, and see
where those tangents led. In subsequent sections, however, we shall limit ourselves more
closely to our main line of investigation.
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3. Realizing arrays of pairs

Generalizing the situation of the preceding section, suppose we are given a family of
ideal-and-monoid pairs(Ai, Si), and wish to know whether we can find a family of prime
idealsPi realizing these pairs, and satisfying specified inclusion relations. Let us set up the
language and notation to say this precisely.

Definition 7. By a template overR we shall mean a pair(I, (Ai, Si)i∈I ), whereI is
a partially ordered set, and for eachi ∈ I , Ai is an ideal ofR andSi a multiplicative
submonoid ofR. Given such a template, we shall denote by SpecR(I, (Ai, Si)i∈I ) the
set of allI -tuples(Pi)i∈I such that for eachi ∈ I , Pi is a prime ideal realizing the pair
(Ai, Si), and for alli, j ∈ I with i � j , we havePi ⊆ Pj . A member of this set will be
called a realization of the given template.

In writing a template(I, (Ai, Si)i∈I ), we will generally suppress the subscript on
the second component, simply writing(I, (Ai, Si)). In particular, if J is a subset of
the indexing partially ordered setI , the subtemplate(J, (Ai, Si)i∈J ) will be written
(J, (Ai, Si)). WhenI is a singleton, if the unique member of ourI -tuple of pairs is(A,S),
then we may abbreviate SpecR(I, (A,S)) to SpecR(A,S).

A template may be shown diagrammatically by drawing a picture of the partially
ordered setI , and writing in place of eachi ∈ I the pair(Ai, Si).

Note that SpecR({0}, {1}) can be identified with the underlying set of the usual prime
spectrum ofR. More generally, given a pair(A,S), SpecR(A,S) may be identified with
the spectrum of the localization ofR/A gotten by inverting the images of all elements ofS;
however we shall not use this observation.

Lemmas 1 and 6 give necessary and sufficient conditions for templates of the respective
forms

(A,S) and
(B,T )

(A,S)

to have nonempty spectra, and they describe the sets of primes occurring as each coordinate
of members of these spectra. The reader will not find it hard to obtain from those results
similar results for templates of the forms

(C,U)

(B,T )

(A,S)

,

(B,T ) (C,U)

(A,S)

, and
(C,U)

(A,S) (B,T )

,
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i.e., templates indexed by the 3-element partially ordered sets

.

.

.
,

. .

. , and
.

. . .

What is the most general partially ordered set for which we can get such results? To answer
this we need

Definition 8 (cf. [10, third paragraph of Introduction]). A finite partially ordered setI
will be called atree orderif its Hasse diagram (the graph showing the elements ofI as
vertices and the minimal order relations as edges), regarded as anunorientedgraph, is
a tree. A finite partially ordered set such that each connected component of its unoriented
Hasse diagram is a tree may similarly be called aforest order.

The above definition is indirect, since it uses the order structure ofI only via
a conventional way of diagramming it. In fact, the characterization of tree orders that
we will use below will not be the definition but the following easily verified recursive
description: the unique one-element partially ordered set is a tree order, and a connected
partially ordered setI of n + 1 elements is a tree order if and only if it can be obtained
from ann-element tree orderI0 by adjoining one elementi, and an order relation between
this new element and a single element ofI0. Such an elementi, i.e., a terminal vertex of
the associated unoriented graph, is called a “leaf;” we shall also use the fact, easily seen by
induction, that every finite tree order of more than one element has at least two leaves.

One can see that the spectrum of a general template(I, (Ai, Si)) overR is the direct
product of the spectra of the subtemplates indexed by the connected components of the
partially ordered setI ; so in studying such spectra we may restrict our attention to the case
whereI is connected. Thus, we shall not speak further of forest orders; results on these
will be implied by our results on tree orders.

Note that forI a finite connected partially ordered set andJ a subset connected under
the induced ordering, there is no implication between the conditions “I is a tree order”
and “J is a tree order.” That a connected partially ordered set which is not a tree order can
contain a subset which is a tree order is clear; the reverse situation is illustrated by the tree
order

. .

.

. .

(10)

and its subset

. .

. .

(11)

(Actually, McKenzie (unpublished) has shown that this is “essentially the only way”
a connected subset of a tree order can fail to be one. Namely, he has shown that a finite
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connected partially ordered setI is a tree order if and only if every minimal cycle inI is
of the form (11), and is contained in a subset ofI of the form (10).)

We can now prove

Theorem 9. Suppose(I, (Ai, Si)) is a finite template overR such thatI is a tree order.
Then

(i) The condition thatSpecR(I, (Ai, Si)) be nonempty is equivalent to the condition that
there be no solution inR to a certain system of2|I |− 1 equations, each having one of
the formsx + y + z= 0, xy − z, or x = y, in 4|I | − 2 variables, namely|I | variables
ai (i ∈ I), subject to the restrictionsai ∈ Ai , |I | variablessi (i ∈ I), subject to the
restrictionsi ∈ Si , and2|I | − 2 unrestricted variables.

(ii) For eachj ∈ I there exist an idealA(j) and a multiplicative monoidS(j) such that the
prime ideals which occur as thej th components,Pj , of realizations of the template
(I, (Ai, Si)) are precisely the realizations of the pair(A(j), S(j)). TheseA(j) andS(j)

are expressible in terms of the given ideals and monoidsAi and Si using the four
operations of adding idealsA andB to get an idealA+ B, multiplying monoidsS
andT to get a monoidST , adding a monoidS and an idealA to get a monoidS +A,
and enlarging an idealA with the help of a monoidS to get an idealA÷ S.

The explicit construction of the equations of(i) and the ideals and monoids of(ii) are
described in the proof below.

Proof. We shall use induction on|I |.
If |I | = 1, let us writeI = {0}. Then (i) holds using the single equationa0= s0, and (ii)

holds withA(0) =A0, S(0) = S0. For the inductive step, let me first outline the form of the
argument, then fill in the details for the respective assertions (i) and (ii).

Given|I |> 1, we shall choose a leaf in the Hasse diagram ofI , denote this leaf 1, and
denote the unique element ofI −{1} to which 1 is connected in that diagram 0. Assuming
inductively that the desired result holds for templates indexed by the partially ordered set
I − {1}, we will then consider the two cases 1> 0 and 1< 0.

If 1 > 0, we will apply the inductive assumption on templates indexed byI −{1} to the
template gotten from(I − {1}, (Ai, Si)) by the single change of replacing the monoidS0
with the monoidS0(S1+A1). By the second paragraph of Lemma 6, a primeP0 realizing
the pair(A0, S0(S1+A1)) is equivalent to a primeP0 realizing(A0, S0) and contained in
a primeP1 realizing(A1, S1); hence a family of primes will realize this modified template
if and only if it realizes the template(I −{1}, (Ai, Si)) and can be extended to a realization
of (I, (Ai, Si)).

If 1 < 0, we will use, in the same way, the template gotten from(I − {1}, (Ai, Si)) by
replacing the idealA0 with the idealA0+A1÷ S1.

Now for the details of the proof of (i). Let 0,1∈ I be as above, and assume we have
a system of equations of the desired sort for templates indexed byI − {1}. If 1 > 0,
we introduce four new variablesa1 ∈ A1, s1 ∈ S1, x01, y01 ∈ R, and two equations,
x01+s1+a1= 0 andy01= s0x01, and then replace all occurrences ofs0 in theequationsof
the original system withy01, but leave unchanged the membership relations0 ∈ S0 of that
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system. The newly added equations and relations and the old relations0 ∈ S0 together say
thaty01∈ S0(S1+A1); thus the nonexistence of a solution to these equations is equivalent
to the realizability of the template obtained from(I − {1}, (Ai, Si)) by replacingS0 with
S0(S1+A1), hence, as discussed above, to the realizability of our given template.

If 1 < 0, we again introduce variablesa1 ∈ A1, s1 ∈ S1, x01, y01 ∈ R, and this time
equationsx01s1 = a1, y01+ a0+ x01= 0, and replace all occurrence ofa0 in our earlier
equations (but not in the conditiona0 ∈A0) with y01. Thus,x01 now represents an element
of A1÷ S1, andy01 an element ofA0+ A1÷ S1, and our modified system of conditions
again has the desired property.

Turning to assertion (ii), note that an elementj ∈ I is singled out in that statement;
hence in proving the inductive step, let us use the fact that every finite tree order of more
than one element has at leasttwo leaves, to choose a leaf 1�= j . (This is for convenience;
we could alternatively choose an arbitrary leaf 1, and use different arguments when 1= j
and 1 �= j .) By induction we can get expressionsA(j), S(j) in the ideals and monoids
Ai,Si (i ∈ I − {1}) and the operations+, ÷, and multiplication, such that the realizations
of the pair (A(j), S(j) are precisely thej th coordinates of realizations of the template
(I − {1}, (Ai, Si)). Now if 1> 0 (where 0 again denotes the vertex to which 1 is attached,
which may or may not bej ), we modify the formulas forA(j) andS(j) by replacing all
occurrences ofS0 with S0(S1+A1), while if 1< 0 we instead replace occurrences ofA0

with A0+A1÷ S1. In each case, the resulting pair will, by our earlier discussion, have the
desired property. ✷

In Section 6 below we shall show that for templates based on finite partially ordered
sets that are not tree orders, such neat results cannot hold. On the other hand, we shall see
in the next section (the results of which will not be used in subsequent sections) that from
the results obtained above, wecanget similar results for infinite templates.

4. Infinite arrays of primes

Infinite templates may be studied in terms of their finite subtemplates using

Proposition 10. Let (I, (Ai, Si)i∈I ) be a template overR, and letF be a family of subsets
of I which is directed under inclusion(i.e., such that givenI ′, I ′′ ∈ F , there existsI ′′′ ∈ F
containingI ′ ∪ I ′′), and hasI as its union. Then

(i) SpecR(I, (Ai, Si)) can be identified with the inverse limit overI ′ ∈ F of the sets
SpecR(I

′, (Ai, Si)).
(ii) SpecR(I, (Ai, Si)) is nonempty if and only if for allI ′ ∈ F , SpecR(I

′, (Ai, Si)) is
nonempty.

(iii) For eachj ∈ I , the set of primesPj occurring asj th coordinates in realizations of
SpecR(I, (Ai, Si)) is the intersection, over allI ′ ∈ F which containj , of the sets of
primes occurring asj th coordinates in realizations ofSpecR(I

′, (Ai, Si)).
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Proof. Note that given arbitrary subsetsI ′ ⊇ I ′′ of I , there is a natural map SpecR(I
′,

(Ai, Si))→ SpecR(I
′′, (Ai, Si)), sending eachI ′-tuple(Pi)i∈I ′ to its restriction(Pi)i∈I ′′ .

Regarding our sets as connected by this family of mappings, assertion (i) is immediate
from the definition of SpecR(−,−).

We claim next that once we have proved statement (ii), statement (iii) will follow.
Indeed, given any primePj realizing the pair(Aj , Sj ), let us form a new template, agreeing
with (I, (Ai, Si)), except in thej th position, where(Aj , Sj ) is replaced by(Pj ,R − Pj ).
Then realizations of this new template correspond to realizations of our original template
havingPj asj th coordinate. Now (ii) applied to this modified template gives (iii).

The “only if” direction of (ii) is clear from (i). The “if” direction will be an application
of elementary model theory.

Note first that to specify a realization(Pi)i∈I of our given template is equivalent to
assigning a truth value to each member of the set of propositions “r ∈ Pi ,” wherer ranges
overR andi overI , in a way consistent with a certain family of implications. (These are:

(a) the conditions saying that eachPi is an ideal, namely 0∈ Pi , [(r ∈ Pi)∧ (r ′ ∈ Pi)⇒
(r + r ′ ∈ Pi)], and[(r ∈ Pi)⇒ (rr ′ ∈ Pi)], for all r, r ′ ∈ R;

(b) the condition saying that this ideal is prime, namely[(rr ′ ∈ Pi)⇒ (r ∈ Pi) ∨ (r ′ ∈
Pi)],

(c) the conditions saying that eachPi containsAi and is disjoint fromSi , and
(d) the implications saying that for alli, i ′ with i < i ′, one hasPi ⊆ Pi′ .)

By the Compactness Theorem of model theory [12], there will exist a set of truth values
satisfying all of these conditions if and only if for every finite subsetX of these conditions,
there is a set of truth values satisfying the members ofX. Now any such finiteX involves
the relation of membership inPi for only finitely manyi ∈ I , and these finitely manyi
will all be contained in someI ′ ∈ F . By assumption, SpecR(I

′, (Ai, Si)) is nonempty;
let (Pi)i∈I ′ ∈ SpecR(I

′, (Ai, Si)). This I ′-tuple determines an assignment of truth values
to all the propositions “r ∈ Pi ” with i ∈ I ′, which satisfies the finitely many conditions
in X. If we extend this assignment in an arbitrary way to the remaining propositions, it will
continue to satisfy these conditions; hence by the Compactness Theorem, our full set of
conditions can be satisfied simultaneously.✷

Remarks on the above proof:
What logicians call compactness results can, in fact, generally be obtained by

topological compactness arguments; let us note how this may be done in the above case. We
recall that the prime spectrum of a commutative ringR, in addition to the Zariski topology,
with its basis of open sets consisting of the setsUr = {P | r /∈ P } (r ∈ R), admits another
topology, which Hochster [5] names the “patch” topology, in which the setsUr and their
complementsform a subbasis of open sets; and that this topology is compact and Hausdorff.
It is straightforward to verify that each SpecR(I

′, (Ai, Si)) is closed in theI ′-fold direct
product of copies of SpecR under the product of these patch topologies, hence is compact
and Hausdorff in the subspace topology, and that the natural maps among these compact
spaces are continuous. Statement (ii) is now a consequence of the fact that the inverse limit
of a system of nonempty compact Hausdorff spaces and continuous maps is nonempty.
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For the reader who likes ultraproducts, here is a sketch of yet another version of the
above argument. SinceF is directed, the subsets ofF of the formCI ′ = {I ′′ ∈ F | I ′′ ⊇ I ′}
(I ′ ∈ F) generate a proper filter onF . Choose an ultrafilterU on F containing this
filter. For eachI ′ ∈ F choose a realization(PI ′,i)i∈I ′ of (I ′, (Ai, Si)), and extend each
of these realizations to anI -tuple of subsets ofR by lettingPI ′,i be arbitrary fori /∈ I ′. For
eachi, theF -tuple (PI ′,i )I ′∈F of subsets ofR will induce a subsetQi of the ultrapower
R+ = RF /U . Because of the way we choseU , each of the conditions required for an
I -tuple(Pi) of subsets ofR to be a realization of(I, (Ai, Si)) is satisfied by(PI ′,i)i∈I for
“almost all” (relative toU ) I ′ ∈ F . One can deduce that theQi will be prime ideals ofR+,
and that lettingPi =Qi ∩R, we get a realization of(I, (Ai, Si)).

We now want to use the above lemma to extend Theorem 9 to appropriate cases where
I may be infinite. But what should the infinite analog of a tree order be? An infinite par-
tially ordered set does not, in general, have a “Hasse diagram,” since it may have few or no
minimal order relations; so we cannot use the definition we gave in the finite case. It would
also not be appropriate to define a general partially ordered set to be a tree order if and only
if the induced partial orderings on all connected finite subsets are tree orders, because as
noted, even finite tree orders can have connected subsets that are not tree orders. The result
of McKenzie noted parenthetically following (11) above suggests that one might define
a not-necessarily-finite tree order to mean a partially ordered set in which every minimal
cycle is of the form (11), and is contained in a subset of the form (10); but it is not clear that
a partially ordered setI with this property must be a directed union of finite subsets with the
same property, as would be needed to apply Proposition 10. So I will not try to define “infi-
nite tree order;” rather, let us simply assume the condition needed to apply that proposition.

Corollary 11. Let (I, (Ai, Si)i∈I ) be a template overR, and suppose that for every finite
subsetJ ⊆ I there exists a finite subsetI ′ ⊆ I which containsJ and which is a tree order
under the induced ordering. Then

(i) (I, (Ai, Si)i∈I ) is realizable if and only if for every finiteI ′ ⊆ I which is a tree order,
the condition for realizability of the finite template(I ′, (Ai, Si)i∈I ′) referred to in
Theorem9(i) holds.

(ii) For eachj ∈ I , there exists an idealA(j) ⊆ R and a monoidS(j) ⊆ R such that the
prime ideals ofR occurring asj th coordinates of realizations of(I, (Ai, Si)i∈I ) are
the realizations of the pair(A(j), S(j)). HereA(j) is the union of a directed system of
ideals each obtained from finitely many of theAi andSi as described in Theorem9(ii),
and S(j) is the union of a similarly constructed directed system of multiplicative
monoids.

5. How to construct counterexamples

Consider a template(I, (Ai, Si)), whereI is the three-element chain 0< 1< 2. The
method of Theorem 9(ii) shows that the prime ideals occurring asi = 0 coordinates of
realizations of this template comprise the set

SpecR
(
A0, S0

(
S1(S2+A2)+A1

))
.
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One might wonder whether this description can be simplified to

SpecR
(
A0, S0(S1+A1)(S2+A2)

)
.

Now in fact, the latter set can be seen to be the set ofi = 0 coordinates of realizations of
the template based on the same family of ideals and monoids, but with the order relations
on I reduced to 0< 1 and 0< 2, with 1 and 2 incomparable. So our question is whether
the sets ofi = 0 coordinates of realizations of these two templates are always the same.

To see that they are not, take any ringR with three prime idealsP0,P1,P2 such that
P0⊆ P1 andP0⊆ P2, butP1 �⊆ P2. For eachi, let

Ai = Pi, Si =R − Pi.
Then regardless of what ordering we put onI , the only element that could possibly
belong to SpecR(I, (Ai, Si)) is (Pi)i∈I . Under the ordering noted above with 1 and 2
incomparable, this unique element indeed belongs to SpecR(I, (Ai, Si)) but under the
original ordering it clearly does not.

Here is a similar question. ForI again the set{0,1,2} with 0< 1< 2, and(I, (Ai, Si))
a template indexed by thisI , is the condition for readability of this template just the
conjunction of the realizability conditions for the three subtemplates({0,1}, (Ai, Si)),
({1,2}, (Ai, Si)), and({0,2}, (Ai, Si)), where each 2-element subset is given the induced
ordering?

Again the answer is “no,” and we can prove it in a similar way. LetR be a ring in
which four prime idealsP0,P1,P

′
1,P2 satisfyP0 ⊆ P1, P ′1 ⊆ P2, andP0 ⊆ P2, but no

other inclusion relations:

P2

P1 P ′1

P0

.

DefineAi andSi as in the previous example fori = 0,2, and defineA1 = P1 ∩ P ′1,
S1=R − (P1 ∪P ′1). Then fori = 0,2,Pi is again the only prime realizing(Ai, Si), while
it is easy to check that the set of primes realizing the pair(Ai, Si) is precisely{P1,P

′
1}.

From these facts we can see that the three subtemplates referred to above are all realizable,
but the original template is not.

In these examples, we have taken for granted that we could find rings with families of
prime ideals satisfying specified inclusion and non-inclusion relations; and indeed, such
rings are not hard to find in the cases considered above. But in later sections we will need
examples of more complicated situations; hence let us record

Lemma 12. Let I be a partially ordered set. Then there exists a ringR having a family of
prime ideals(Pi)i∈I such that fori, j ∈ I ,

Pi ⊆ Pj ⇔ i � j.
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In fact,R can be taken to be a polynomial ring in anI -tuple of indeterminates over any
integral domaink, and thePi to be ideals generated by subsets of the set of indeterminates.

Proof. Recall that any partially ordered setI is isomorphic to a family of subsets of some
setJ under the inclusion ordering; in particular, we can takeJ = I , mapping eachi ∈ I to
Li = {j ∈ I | j � i}. We next note that if we form the polynomial algebra over any integral
domaink in aJ -tuple of indeterminatesXj , then the ideal generated by any subset of the
indeterminates is prime, and the order structure on this set of primes is that of the power
set ofJ . The desired conclusion follows immediately.✷

We also used in the second of our above examples the observation that for primesP1

andP ′1 which are incomparable under inclusion, the realizations of the pair(P1∩P ′1, (R−
(P1 ∪ P ′1))) are preciselyP1 andP ′1. Let us record a few general observations of this sort
(whereR is once again an arbitrary commutative ring).

Lemma 13. Let X be a set of prime ideals ofR. Then the following conditions are
equivalent:

(i) X = SpecR(A,S) for some idealA and multiplicative monoidS in R.
(ii) X contains all prime idealsQ such that

⋂
P∈X P ⊆Q⊆

⋃
P∈X P .

If we call a set of primes satisfying these equivalent conditions convex, then for any set
Y of primes, the least convex set of primes containingY is

SpecR

( ⋂
P∈Y

P, R −
( ⋃
P∈Y

P

))
.

If Y is finite, this can be described as the set of all primesQ such thatP0 ⊆Q ⊆ P1 for
someP0, P1 ∈ Y . Hence ifY is finite and no two distinct primes inY are comparable,Y is
itself convex.

Proof. Assuming (i),
⋂
P∈X P will contain A, and

⋃
P∈X P will be contained in the

complement ofS, from which we can see (ii). Conversely, assuming (ii), the choices
A = ⋂

P∈X P andS = R −⋃
P∈X P give (i). The first sentence of the final paragraph

is clear from these observations.
To see the characterization of the convex closure of a finite setY of primes, it suffices

to know that for such aY the only primes containing
⋂
P∈Y P are the primes that

contain someP0 ∈ Y , and the only primes contained in
⋃
P∈Y P are those contained in

someP1 ∈ Y . The former fact is well-known, the latter less so; for both, see [1, §II.1.1,
Propositions 1–2]. (In each statement, only the ideal(s) on the larger side of the inclusion
must be assumed prime.)

The final assertion clearly follows.✷
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6. What if I is not a tree order?

We saw in Section 3 that ifI is a tree order, the conditions for a template(I, (Ai, Si))
to be realizable, and the set of primes occurring asith coordinates in its realizations, have
convenient descriptions. What ifI is not a tree order? The simplest non-tree orders are the
“diamond” and the “two-peaked crown,”

2

1 3

0

and

1 3

0 2

. (12)

We shall investigate the “diamond” below.
Let (I, (Ai, Si)) be a template overR such thatI is the above diamond, and suppose we

want to characterize prime idealsP0 that can occur asi = 0 coordinates in realizations of
this template. Using the methods of Section 3, we can write down the conditions for a prime
P0 realizing(A0, S0) to be contained in a prime realizing(A1, S1) which is contained in
a prime realizing(A2, S2); or the stronger condition for a prime realizing(A0, S0) to be
contained in a prime realizing(A1, S1) which is contained in a prime realizing(A2, S2)

which contains a prime realizing(A3, S3) which contains a prime realizing(A0, S0); and
so forth. We may ask whether if we go sufficiently far along in this family of conditions,
or perhaps take the infinite conjunction of this family, the resulting condition, clearly
necessaryfor P0 to occur as thei = 0 coordinate of a realization of our template, is also
sufficient.

The answer is no. To see this, we note that by Lemma 12 there exists a ringR containing
8 primes whose inclusion relations are precisely those shown below:

.
P2 .
P ′2

.P1 .P ′1 .P3 .P ′3

.
P0

.
P ′0

. (13)

Let us now define the ideals and monoids of our template byAi = Pi ∩ P ′i , Si =
R − (Pi ∪ P ′i ) (i = 0, . . . ,3). Then by Lemma 13, the only primes realizing each pair
(Ai, Si) arePi andP ′i . We see thatP0 satisfies all the conditions just referred to (being
contained in a prime which is contained in a prime which contains a prime which contains
a prime, etc.), but is not thei = 0 coordinate of a realization of our template; indeed, the
template has no realizations, since (13) clearly contains no isotone image of the “diamond”
with vertices in the required subsets.

So let us take a slightly different approach. Given as before a template(I, (Ai, Si)) with
I the “diamond” of (12), if we specify a primeP0 realizing(A0, S0), can we determine
whether there existP1,P2,P3 such that the 4-tuple(Pi) is a realization of our template? In
such a realization,P1 must be a realization of(A1, S1)which containsP0; in other words, it
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must be a realization of(A1+P0, S1); similarly,P3 must be a realization of(A3+P0, S3).
In fact, we see that the necessary and sufficient condition for the desiredP1,P2,P3 to exist
is that the template

(A2, S2)

(A1+ P0, S1) (A3+ P0, S3)

be realizable. The proof of Theorem 9 shows that this condition is equivalent to

(
A2+ (A1+ P0)÷ S1+ (A3+P0)÷ S3

)∩ S2= ∅. (14)

Note thatP0 is the only prime or monoid occurring more than once in (14); thus a failure of
(14) means the existence oftwoelementsx, x ′ ∈ P0 that together satisfy a certain family of
equations involving elements,oneeach, ofA1,A2,A3, S1, S2, S3, and a certain number of
unrestricted elements ofR. Let us now drop the assumption thatP0 has been pre-chosen,
and letX denote the collection of all pairs(x, x ′) of elements ofR for which there exist
elements ofA1, . . . , S3 andR which satisfy, withx andx ′, the family of equations just
referred to. Then we see that a primeP0 occurs as thei = 0 component of a realization of
our template if and only ifP0 is a realization of(A0, S0) such that for every(x, x ′) ∈ X,
P0 containsat most oneof x, x ′. This characterization of such primes is, in its way, as
“concrete” as the conditions of Theorem 9, but it is certainly not as simple. I do not know
whether this set of primes will in general be convex in the sense of Lemma 13.

If we look for conditions for a primeP2 to occur as thei = 2 component of a realization
of our template, the analysis begins in much the same way. The condition we get is that

A0∩ S0
(
S1(R− P2)+A1

)(
S3(R− P2)+A3

)= ∅,
which says that for each member of a certain set of pairs(y, y ′), at most one ofy, y ′ should
belong toR−P2. But note that this says thatat least oneof y, y ′ should belong toP2, and
sinceP2 is to be a prime ideal, this is equivalent to the condition that the productyy ′
belong toP2. Hence if we writeA+2 for the ideal ofR generated byA2 and the set of such
productsyy ′, the primes occurring as thei = 2 components of realizations of our template
are precisely the realizations of the pair(A+2 , S2).

So in this case, the set of such primesis convex. This is more like the criterion of
Theorem 9; except that the idealA+2 does not have as simple a description as the idealsA(i)

of that theorem. The nature of the constructionsA÷ S, S + A, etc., has the consequence
that in the situation of that theorem, the predicate of membership in each of the setsA(i)

andS(i) is expressible by a first-order sentence in the ring operations and the predicates of
membership in the ideals and monoids of the given template; but here the conditionb ∈A+2
is equivalent to the existence of an equationb= a+∑

i riyiy
′
i with an unspecified number

of terms in the summation. It would be interesting to know whether this difference has any
significant consequences for the behavior of these sets.
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Finally, if we turn to the set of primes occurring as thei = 1 coordinates of realizations
of our template, this isnot in general convex. To show this, letR be a ring containing
a family of 9 primes with precisely the order relations shown below:

.
P ′2

.P2

.P ′1 .P ′3

.P ′′1

.P1 .P3
.
P ′0
.
P0

,

and let us construct a template(I, (Ai, Si)) by defining, fori = 0,2,3, Ai = Pi ∩ P ′i ,
andSi = R − (Pi ∪ P ′i ) as before, while for(A1, S1) we take any pair whose realizations
include bothP1 andP ′1. (For instance, the pair(P1,R − P ′1), or the pair({0}, {1}).) For
i = 0,2,3, the fact thatPi andP ′i are incomparable means thatPi andP ′i are the only
primes that can occur in theith coordinate of a realization of our template. From this fact
and the order relations among our primes, we see that every such realization must have
in these coordinates either preciselyP0, P2 andP3, or preciselyP ′0, P ′2 andP ′3. Turning
to the i = 1 coordinate, we see from the two obvious realizations(P0,P1,P2,P3) and
(P ′0,P ′1,P ′2,P ′3) of our template thatP1 andP ′1 can each occur in this position; however
P ′′1 cannot, since it neither containsP ′0 nor is contained inP2. Thus the set of primes
occurring asi = 1 coordinates of realizations of this template includesP1 andP ′1, but not
the primeP ′′1 lying between them; so it is not convex.

Let us end this section by returning to the “double covering of the diamond,” (13), and
recording for later use a simpler example of a family of prime ideals having that order
structure than the one produced by the construction of Lemma 12. Letk be a field of
characteristic�= 2 andR = k[x, y, z]. It is immediate that the desired order relations are
satisfied by the prime ideals

P0,P
′
0= (xy ± z), P1,P

′
1= (x − z, y ± 1), P2,P

′
2= (x, z, y ± 1),

P3,P
′
3= (x + z, y ± 1), (15)

where in each case, the minus sign goes with the unprimed symbol and the plus sign with
the primed symbol. We illustrate this below by showing the corresponding subvarieties
of affine 3-space, each expressed as the set of points of a given form. (E.g.,{(s,−1, s)}
denotes the set of points whose first and third coordinates are equal, and whose middle
coordinate is−1. The two varieties at the top and the two at the bottom are labeled
explicitly, while the pairs at the middle level are combined using the± sign, for reasons
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of spacing. Which sign corresponds to which vertex at that level can easily be seen by
comparing with the precisely labeled vertex above or below.)

.
{(0,1,0)}

.
{(0,−1,0)}

.{(s,±1, s)} . . .{(s,±1,−s)}
.{(s, t, st)} .{(s, t,−st)}

. (16)

We note a further property of this example, that the varieties determined by corresponding
“primed” and “unprimed” ideals are interchanged by the map(s, t, u)↔ (−s,−t,−u);
equivalently, the ideals are interchanged by thek-algebra automorphism ofR which acts
by x �→ −x, y �→ −y, z �→ −z.

7. Prime ideals in tensor products

I will confess at this point that the origin of this note was the desire to prove for
myself the known fact that the Krull dimension of a tensor product algebraR(0) ⊗k R(1)
over a fieldk is at least the sum of the Krull dimensions ofR(0) andR(1). (Recall that
the Krull dimensionof a commutative ring is the supremum of the lengthsn of chains
P0 ⊆ P1 ⊆ · · · ⊆ Pn of prime ideals ofR.) Using the standard result Lemma 1, it is
easy to show that given prime idealsP (0) ⊆ R(0), P (1) ⊆ R(1), there exists a prime
P ⊆ R(0) ⊗k R(1) which intersects the given rings inP (0) andP (1), respectively. But it
was not clear whetherinclusionsof ideals could similarly be lifted to the tensor product,
as would be needed to estimate its Krull dimension. This led me to look for an analog of
Lemma 1 for inclusions of primes, which led to the results of the preceding sections, which
I then tried to apply to the original question about tensor product rings.

I have realized subsequently that a better approach to the lifting of general arrays of
prime ideals to tensor product rings is probably via the fact that whenk is algebraically
closed, a tensor product overk of integral domains is an integral domain ([6, Lemma 1.54,
p. 97]; cf. [4, Exercises 1.3.15, p. 22, II.3.15, p. 93]); hence that in this situation, if
P (0),P (1) are prime ideals ofR(0) andR(1), the idealP (0) ⊗k R(1) + R(0) ⊗k P (1) of
R(0)⊗k R(1), i.e., the kernel of the map

R(0)⊗k R(1)→
(
R(0)

/
P (0)

)⊗k (
R(1)

/
P (1)

)
,

will be prime, giving us a choice-free order-preserving way of lifting primes. For non-
algebraically-closedk, the corresponding problem should probably be approached by first
studying the lifting of arrays of primes in the given algebras under algebraic extension of
the base field, which is where the complications come in, and then using the above result
on tensor products over algebraically closed fields.

However, it was fairly easy to obtain from the preceding results of this paper a result
which includes the abovementioned estimate of the Krull dimension of a tensor product
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algebra, and I will give this below. In the final section, I will give an example showing that
complications indeed arise in lifting arrays of primes under base field extension.

Definition 14. For the remainder of this sectionk will be an arbitrary field, andR(0),R(1)

nonzero commutativek-algebras. We shall writeR(0)⊗R(1) for R(0)⊗k R(1), and identify
R(0) and R(1) with their natural images in this ring. Thus, for subsetsX(0) ⊆ R(0),
X(1) ⊆R(1), we may writeX(0)X(1) for the set of productsx(0)x(1) ∈ R(0) ⊗ R(1)
(x(0) ∈X(0), x(1) ∈X(1)). On the other hand, ifA(0), A(1) are ideals of these respective
rings, we shall writeA(0) ⊗ R(1) andR(0) ⊗A(1) for the ideals ofR(0) ⊗ R(1) generated
by the images ofA(0) andA(1) therein (these ideals being clearly isomorphic to the
corresponding external tensor products).

Lemma 15. Let P (0) ⊆ R(0), P (1) ⊆ R(1) be prime ideals, letA denote the ideal
P (0) ⊗ R(1) + R(0) ⊗ P (1) ⊆ R(0) ⊗ R(1), and let S denote the multiplicative monoid
(R(0) − P (0))(R(1) − P (1)) of that ring. Then

(i) A∩ S = ∅.
(ii) A÷ S =A.
(iii) A primeP in R(0) ⊗R(1) is a realization of the pair(A,S) if and only ifP ∩R(0) =

P (0) andP ∩R(1) = P (1).
(iv) Every prime idealQ of R(0) ⊗ R(1) containingA contains a prime idealP which

realizes the pair(A,S); that is, every prime whose intersections withR(0) andR(1)

containP (0) andP (1), respectively, contains a primeP whose intersections with these
subrings are precisely those primes.

Proof. As noted,A is the kernel of a homomorphism fromR(0) ⊗ R(1) to a nontrivial
ring; hence it is a proper ideal, so (i) will follow from (ii). To prove (ii), note that
(ii) is equivalent to saying that no nonzero element of theR(0) ⊗ R(1)-module(R(0) ⊗
R(1))/A is annihilated by any element ofS. Now (R(0) ⊗ R(1))/A can be identified with
(R(0)/P (0)) ⊗k (R(1)/P (1)); hence it is free both as a module overR(0)/P (0) and as a
module overR(1)/P (1). Since each of these rings is a domain, no element of that module
is annihilated by a nonzero element ofR(0)/P (0) or of R(1)/P (1); i.e., looking at it as an
R(0)⊗R(1)-module, none of its nonzero elements is annihilated by a member ofR(0)−P (0)
or R(1) − P (1); hence no nonzero element is annihilated by a member of the productS of
these monoids, as required.

Statement (iii) holds because by Lemma 5 a prime realizes(A,S) = (P (0) ⊗ R(1) +
R(0)⊗P (1), (R(0)−P (0))(R(1)−P (1))) if and only if it realizes both(P (0)⊗R(1),R(0)−
P (0)) and(R(0) ⊗ P (1),R(1) − P (1)), i.e., meetsR(0) in P (0), andR(1) in P (1). Finally,
(iv) follows from (ii) in view of Lemma 4(i). ✷

From part (iv) of the above lemma, we see

Corollary 16. LetQ be a prime ideal ofR(0) ⊗R(1), and letQ(α) =Q∩R(α) (α = 0,1).
Then given any prime idealsP (α) ⊆ Q(α) in R(a) (α = 0,1), there exists a prime ideal
P ⊆Q ofR(0) ⊗R(1) such thatP ∩R(α) = P (α) (a = 0,1).
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To formulate our application of this result, let us make

Definition 17. A finite descending treewill mean a member of the class of finite partially
ordered sets defined recursively by the conditions that

(i) all one-element partially ordered sets are contained in the class, and
(ii) an (n+ 1)-element partially ordered setI is contained in the class if and only if it can

be obtained by adjoining to ann-element partially ordered setI0 in the class a single
elementj and a single order relation makingj less thansome elementi ∈ I0.

(Ascending treesmay be defined analogously, replacing “less than” with “greater than.”)

By starting at the top of such a tree and working downwards inductively, using
Lemma 15(i) and (iii) at the first step, and Corollary 16 at each subsequent step, we can
clearly get

Corollary 18. Let I be a finite descending tree(as defined above), and let(P (0)i )I , (P
(1)
i )I

be families of prime ideals ofR(0) andR(1), respectively, such that wheneveri � j in I ,
one hasP (α) ⊆ P (α)j in R(α) (a = 0,1).

Then there exists a family of prime idealsPi ⊆ R(0) ⊗R(1) such thatPi ∩R(α) = P (α)i

(i ∈ I, α = 0,1) andi � j ⇒ Pi ⊆ Pj (i, j ∈ I).

In particular, ifR(0) andR(1) have Krull dimensions at leastm andn, respectively, then
we can take forI a chain of lengthm+ n, and map it into the partially ordered sets of
prime ideals ofR(0) andR(1) so that each link of the chain goes to a nontrivial interval in
one or the other of those partially ordered sets. Then the above corollary gives a map into
the prime ideals ofR(0) ⊗R(1) under which no link collapses, hence the Krull dimension
of R(0)⊗R(1) is at leastm+ n.

Wadsworth [14] shows that the question of whether the Krull dimension ofR(0)⊗R(1)
is strictly larger than that ofm+ n, and if so, by how much, is quite subtle.

Finite descending trees can also be characterized as the finite connected partially
ordered setsI such that no two incomparable elements ofI have a common lower bound.
Using this characterization, one can define not-necessarily-finite descending trees, and use
Proposition 10 to extend Corollary 18 to that case.

Returning to Corollary 16, we remark that result does not remain true if we reverse the
direction of our inequalities. For example, ink[x, y] ∼= k[x] ⊗ k[y], “most” nonmaximal
prime idealsP intersectk[x] andk[y] in the zero ideal, but such aP cannot in general
be enlarged to a prime idealQ which restricts to a specified pair of nonzero prime ideals
of k[x] and ofk[y]. For example, the prime ideal(x − y) cannot be extended to a prime
ideal whose intersections withk[x] andk[y] are specified primes(x − a) and (y − b),
unlessa = b. This phenomenon is related to the fact that(x − y) is not minimal among
prime ideals meetingk[x] andk[y] in the zero ideal; it appears that to lift general arrays of
primes(P (0)i ), (P (1)i ) to R(0) ⊗k R(1), one should look at minimal primes containing the

idealsP (0)i ⊗k R(1)+R(0)⊗k P (1)i . These can be studied by forming the algebraic closurek̄
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of k, looking at primes ofR(0)⊗k k̄ that intersectR(0) in theP (0)i and primes of̄k⊗k R(1)
that intersectR(1) in theP (1)i , and using the facts noted earlier about tensor products over
an algebraically closed field. I suspect this method can be used to extend Corollary 18 to
the case whereI is a general finite tree order; and in fact, to show that given a family of
primes inR(0) indexed by a tree orderI (0), and a family inR(1) indexed by another tree
orderI (1), one can lift these to a family of primes inR(0) ⊗k R(1) indexed byI (0) × I (1),
although the latter is not in general a tree order. But I will not pursue these ideas.

8. Examples concerning algebraic extension of the base field

In this last section we shall give a counterexample, and a general technique for
constructing examples, on the behavior of arrays of prime ideals under algebraic extension
of the base field.

Let k be a field of characteristic�= 2 containing an elementc which is not a square. We
shall give below ak-algebra containing a “diamond” of prime ideals (four primes with the
order relations of the left-hand diagram in (12)), such that on extending scalars tok(

√
c ),

each of these primes splits into exactly two primes, and the resulting array has the order
structure (13). Hence the original “diamond” of primes cannot be lifted toR⊗k k(√c ).

The idea will be to work backwards: Start with a family of prime ideals of the form (13)
in a k(

√
c )-algebraR′ having an automorphismθ of order 2 which interchanges

√
c and

−√c, and also interchanges each pair of idealsPi andP ′i in that diagram. The fixed ring
of θ will then be ak-algebraR which, on extension of scalars tok(

√
c ), givesR′, and

each of those pairs of primes will be represented by a single prime inR, giving the desired
“diamond” configuration.

Let us apply this idea using the instance of (13) given in (15). In our discussion of that
example we referred to our pairs of primes as interchanged by the automorphism over the
base-field that sent the three indeterminates to their negatives. Now if we take that base-
field to bek(

√
c ), then since the descriptions of those primes do not involve the element√

c, thek-algebra automorphism that not only changes the signs ofx, y, andz but also that
of
√
c will permute these primes in the same way. The fixed ring of this automorphism is

the polynomial ringk[√c x,√c y,√c z]. Renaming
√
c x,

√
c y and

√
c z asx, y, z, and

lettingR = k[x, y, z], we get from (15) the array of prime ideals inR:

(x, z, y2− c)
(x − z, y2− c) (x + z, y2− c)

(x2y2− cz2)
. (17)

In R⊗k k(√c ), the bottom prime lifts to the two primes(xy +√c z) and(xy −√c z),
the prime on the left to(x− z, y+√c ) and(x− z, y−√c ), etc., and these have the order
structure (13). (The reader can verify these assertions now, or wait and see that they are
instances of general results that will be recalled in the proof of the next lemma.)
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Again, to visualize these properties, I find it helpful to look at the corresponding
subvarieties of affine 3-space, shown below. When the base field isk, each set shown
below represents the set ofk̄-valued points of an irreducible variety; but overk(

√
c ), each

represents two such varieties, one for each choice of sign. The reader can start with one
choice of signs in the bottom variety, note the choices of sign that allow one to traverse
the figure upward and downward, and verify that one must go around twice to return to the
original variety.

{(0,±√c,0)}
{(s,±√c, s)} {(s,±√c,−s)}

{(s, t,±st/√c)}
. (18)

The above technique can be applied to a quite general class of situations:

Lemma 19. Let K/k be a finite Galois field extension with Galois groupG, let I be
a finite partially ordered set, given with an action ofG on it by order automorphisms, and
let I/G be the orbit set of this action, with its natural induced partial ordering, under
which [i]< [j ] if and only if i is< some member of[j ], equivalently, if and only if some
member of[i] is< j .

Then there exists a finitely generatedk-algebraR, and a family of prime ideals ofR,
(P[i])[i]∈I/G, which has precisely the order structure ofI/G, and such that in the extension
ring R ⊗k K, the set of primes which lie over primes in the above family can be indexed
(Pi)i∈I , in such a way that this family, ordered by inclusion, has precisely the order
structure ofI , the map−∩R takes each idealPi to P[i], i.e., corresponds to the canonical
map I → I/G, and the action ofG = Gal(K/k) on {Pi} induced by its action on the
second tensor factor ofR⊗k K corresponds to the given action ofG on I .

Moreover,R can be taken to be a polynomial ring overk in |I | indeterminates, and
eachPi to be generated by a subspace of theK-vector space inR ⊗k K spanned by the
indeterminates.

Proof. As in the preceding example, we will start with theK-algebra that is to beR⊗k K
and theI -tuple of primes that are to be thePi , and obtainR as the fixed ring of an
appropriate action of Gal(K/k).

Let us construct ourK-algebra using Lemma 12, as a polynomial algebra

S =K[xi]i∈I ,
and for eachi ∈ I , takePi to be the ideal ofS generated by the set of indeterminates
{xj | j � i}. LettingG act on the indeterminatesxi via the given action on the index setI ,
and onK as its Galois group overk, we get an action ofG on the above ringS by k-algebra
automorphisms, which clearly acts as desired on thePi . Let R be the fixedk-algebra of
this action.

Now when we regardS as aK-vector space, the action ofG is “semilinear;” i.e., for
g ∈ G, c ∈ K, s ∈ S one hasg(cs) = g(c)g(s). By A. Speiser’s Theorem ([13], cf. [9,
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Proposition 1.3], [3, Proposition 5.7.1, p. 202]) S has aK-vector-space basisB consisting
of G-invariant elements, i.e., elements ofR. If we write elements ofS in terms of this
basis, then the action ofG on S is induced by its action on the coefficients; hence our
fixed ringR is precisely thek-linear span ofB, andS ∼= R ⊗k K. Since the subspace
K{xi} of S spanned by the indeterminatesxi isG-invariant, it likewise has aK-basis{yα}
of G-invariant elements, which necessarily has the same cardinality|I | as the original
basis of indeterminates. ThusS is also the polynomial algebra overK in theseG-invariant
elementsyα , so thek-subalgebra generated by these elements will be the fixed ringR; so
R is a polynomial algebra overk in |I | indeterminates, as claimed.

The prime idealsPi of S belonging to each orbit of the action ofG on such ideals will
contract to a common prime idealP[i] of the fixed ringR, and the members of the given
orbit will be the only primes contracting toP[i] [1, §V.2.2, Theorem 2]. It is not hard to
deduce (e.g., using [1, §V.2.1, Corollary 2 to Theorem 1]) that the partial ordering of these
contracted primes is that ofI/G, as desired.

Since theK-subspaceK{yα} of S spanned by theyα is the same as theK-subspace
K{xi} spanned by the original indeterminatesxi , each primePi , being generated by
a subset of{xi}, is generated by a subset, equivalently, by aK-subspace, ofK{yα}. ✷

We could have shortened the above proof slightly by skipping the choice of the basisB,
simply choosing{yα} as above and noting thatS =K[yα], soR = k[yα]; but the present
proof makes it clear that a large part of the argument goes over to the case of a family
of prime ideals of any commutativeK-algebra that is permuted by an action of the group
Gal(K/k) extending its action onK.
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