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If R is a commutative ringd and B ideals ofR, andS andT multiplicative submonoids oR, we
note an elementary necessary and sufficient condition for there to exist prime RlaatsQ in R
such thatP containsA and is disjoint fromS, Q containsB and is disjoint fron’, andP € Q. We 20
then study conditions for the existence of larger families of prime ideals satisfying similar systems
of relations. When the inclusion relations specified in the given system define a “tree order,” zhe
necessary and sufficient conditions are quite tractable; otherwise, they are much less so. We gpply
these results to the case whé¥és a tensor product of two algebras over a fieldnd end with some ,,
observations on the behavior of arrays of prime idealskiratgebra under base extension.
0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction and somebasic results
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Throughout this noteR will be a commutative ring.
We recall the following well-known result, useful for finding prime ide&l®f R with
specified properties.
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Lemmal ([2, Theorem 9.2R[7, Proposition 7.3[8, Theorem ], [11, Theorem 1.2]).
Let A be anideal ofR, andS a multiplicative submonoid at (a subset oR, containingl
and closed under multiplicatigrdisjoint from A. Then there exists a prime ide&l of R
containingA and disjoint froms.

A B W W oW
, O © ®©

41
Is there a result which could be used similarly to get pairs of prith&s Q? A first

guess might be that given a pair of idealsC B and a pair of multiplicative monoids
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S D T such thatA is disjoint from S and B from T, there would exist prime ideals 1

P C Q containingA andB respectively, and disjoint frorfiandT , respectively. However, 2

this is not true, as may be seen by takiRg=Z, A =6Z, B=3%, S ={3"}, T ={1}. 3
Nevertheless, we shall see that there are elementary criteria for the existence of such & pair
of primes, and of larger arrays of primes satisfying similar families of conditions. (For the
“P C Q" case, we shall see that the relevant conditions do not even include the hypotheses
A C B andS 2 T suggested above.) 7

Let us first take a closer look at the preceding lemma. We make 8
9

© 0 N o g b~ W N P

[
o

Definition 2. If A is anideal ofR andS a multiplicative submonoid oR, then arealization 10
of the pair(A, S) will mean a prime ideal containing and disjoint froms. un
12

So Lemma 1 says that the set of realizationg 4f S) is nonempty if and only if **
ANS=4¢. 14

Let us next fix some notation for operations on sets of ring elements. 15
16

N N
N~ o 0 A W N P

Definition 3. If X andY are subsets oR, thenX + Y willdenote{x +y|xe X,yeY}, Y
XY will denote{xy | x € X,y € Y},andX = Y will denote{r e R | @y € Y) ry € X}. 18

In the absence of parentheses, the order of operations will be: multiplication=then'®
then addition; and after all of these, intersection. (Thtis; ST + B N U will mean 2°
(A= (ST)+B)NU.) 21

We shall also writeR — X for {r e R | r ¢ X}. 2
23

NN N NN R
A W N P O © ©

Note that the sum of two ideals is an ideal, and the product of two multiplicative
monoids is a multiplicative monoid, that fot an ideal andS a multiplicative monoid, #
S + A is a multiplicative monoid andt — S an ideal, and that if? is a prime ideal,
R — P is a multiplicative monoid. The above symbols do not give us a way of writing tfé
conventional “product” of two ideals, that is, the ideal of sums of products of elements; But
that construction will not be needed in this note. 29

Observe that the assumption in Lemma 1,

NN
o O
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a ANS =40, @
34 . . 34
s IS equivalent to o
36 36
37 A+-=8SNn{1}=4, (2 &
38 38
39 andalsoto 39
40 40
41 {O)NA+S=0. 3 =«

I
[}

42
Each of these equations says that a certain ideal is disjoint from a certain multiplicative
monoid, so in each case we may ask for a characterization of the prime ideals containingthe
indicated ideal and disjoint from the monoid; in the language of Definition 2, of the prire
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ideals realizing the indicated pair. Of course, the condition that a prime ideal c¢@jain 1
or be disjoint from{1}, is vacuous, so they can be dropped in the statements of our resuts:
3

Lemma 4. Let A be an ideal ofR and S a multiplicative submonoid a®. Then 4
5

(i) A prime idealQ of R contains the idealt + S if and only if it contains a prime ideal °©
P which realizes the pai¢A, S). 7

(i) A prime idealP of R is disjoint from the monoid + A if and only if it is contained in 8
a prime idealQ which realizes the pai¢A, S). °

© 0 N o g b~ W N P
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Proof. To prove (i), first note that a prime ide&l realizing (A, S) must containA — S;
hence so must any prim@ containingP. Conversely, if a prime containsA + S, then
the monoidR — Q is disjoint fromA = §, which means thaf(R — Q) is disjoint fromA,
hence by Lemma 1 we can find a prime id@alealizing the paiKA, S(R — Q)). HenceP
will realize (A, S) and be disjoint fronk — Q, i.e., contained irQ, as required.
Likewise, to get (ii), observe that a pring@ containingA and disjoint fromS must be
disjoint from S + A, hence so must any prime contained inQ; and conversely, ifP is
a prime disjoint fromS + A, then P + A is disjoint from S, hence there exists a prime *®
ideal Q realizing(P + A, S), which will realize(A, S) and containP, as required. O 19
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We can iterate the application of Lemma 4 starting with a single@aifS): Part (i) of
that lemma says that prime ideals which contain primes realizang) are those realizing
(A = S, {1}). Applying part (ii) to this situation, we see that prime ideals contained in
primes of the latter sort, i.e., in primes which contain primes which reéfiz&) are those
realizing({0}, {1} + A+ S). Another iteration gives a characterization of primes containin
primes contained in primes containing primes realizidg S); and so on. This yields an »r
infinite family of successively weaker conditions, since rings can be found having palrs of
prime ideals connected by an up-and-down chain of any given length, but by no shorter
chain. For example, for any integey consider the ring

W NN NN NN NN
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R={(f1..... f) €QIxI" | fi()) = fira() (=1,....n =D}, 32

33

and in it, the prime ideals 34
35
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{1 A=0} c {(f) | AQ) =0=f2(1)}

w
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38 > {(f) | f2=0} 38
39 39
0 c {(f)] £22=0= f32)} 0
41 41
42 42
* > {(fi) ] fr =0) “3
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1 If we let A be the first of these ideals, asid= R — A, then the first 2 of the conditions 1

2 discussed above give distinct sets of primes. 2

3 However, if R is an integral domain, then any two primes have the priieas 3

4 a common lower bound, so we get only a small number of distinct conditions; and the
5 sameistrueiR is alocal ring, where any two primes have the maximal ideal as a common
6 upper bound. 6

7 A straightforward but useful observation is 7

8 8

9 Lemmab. If A, A’ are ideals andS, S’ are multiplicative submonoids &, then a prime ¢
10 P realizes both(A, S) and(A’, §’) if and only if it realizes(A + A/, §§7). 10
11 11
12 Let us now turn to conditions involving more than one prime ideal. 12
13 13
14 14
15 2. Pairsof primes 15

=
[}

16

[
3

Lemma6. Let A and B be ideals ofR, and S andT multiplicative submonoids @¢. Then 17

the following conditions are equivalent 18
19

(i) There exist prime ideal®, QO such thatP realizes(A, S), Q realizes(B,T), and 2

N B e
S © ™

21 P g Q 21
22 (i) TheidealA is disjoint from the multiplicative monoi§(7 + B). 22
28 (iii) TheidealB + A = S is disjoint from the multiplicative monoifl. 23

N
EN

24

In fact, a prime idealP realizes(A, S) and is contained in a prim@ realizing(B,T) %5

if and only if P realizes(A, S(T + B)); and a prime idealD realizes(B, T') and contains 26
a prime P realizing (A, S) if and only if Q realizes(B+ A +~ S, T). 2
28

Proof. It will suffice to prove the assertions of the final paragraph. By Lemma £iiy  2°
contained in a prime realizin@, T) if and only if it realizes({0}, T + B). By Lemma5, 3
the conjunction of this condition and the condition tifatealize(A, S) is equivalentto the 3!
condition of realizing(A + {0}, S(T + B)) = (A, S(T + B)). The last assertion is gotten 22

similarly, using Lemma 4(i). O 3
34
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Can we see directly the equivalence of conditions (ii) and (iii) of the above lemma? Y&s;

each of them says that 3
37

38
39
t+b+x=0, sx =a. (4) 40
41

Just as the condition of Lemma 1, namely (1), has the equivalent formulations 42)
and (3), so the equivalent conditions of Lemma 6(ii) and (iii), in symbols, 43
44

ANS(T +B) =9, (5

w W w
0 ~N O

There donotexist elementst € A, s€ S, be B, t € T, x € R satisfying

N N O )
g A W N P O ©
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1 B+A+SNT =0, 6 1
2 2
*  which can be thought of as stating the nonexistence condition (4) in terms of the elenient
4 . . 4

a and the element, respectively, can also be formulated in terms of the elemeitsand
Z x respectively as Z
7 7
8 A= (T+B)NS=0, (7 e
9 9
10 BNT+A+-S=40, ()
H A=SNT+B=0. 9

[
N

12

[
w

13
Again, since each of these equations says that an ideal is disjoint from a multiplicative

monoid, one can ask for characterizations of the primes realizing these ideal-monoid pgirs.
Let us work this out for (7). A prime® realizes(A = (T + B), S) if and only if it contains 4
A = (T + B) and is disjoint fromS. By Lemma 4(i) the former condition is equivalent,
to containing an ideaP’ that realizes the paifA, T + B), i.e., that containsl and is 5
disjoint fromT + B, and by Lemma 4(ii) the latter condition is equivalent to saying that
P’ is contained in an ideap that realizes(B, T). Note that in the above situatioR, 5
which is disjoint fromS, containsP’, which containsA; hence both of these prime ideals,;
contain A and are disjoint froms, i.e., realize(A, S). So the condition thaP realize »,
(A= (T + B), S) can be described as saying that it realig#sS) and contains a prim&’ 3
also realizing A, S) which is contained in a prim@ realizing(B, T'). Note, incidentally, 24
that theexistencef such aP is equivalent to the existence of a prime that realizesS) 2
contained in a prime that realizéB, T') (for if such a pair exists, we can take bathand 26
P’ to be the former prime). 27
Similar reasoning shows that a prime realizes the pair indicated in (8) if and only it
realizeq B, T'), and is contained in a prime which also realig8sT) and contains a prime 29
realizing(A, S). 30
The condition corresponding to (9) is the most natural: An application of the two pais
of Lemma 4 shows that a prime realizes— S, T + B) if and only if it contains a prime sz
realizing(A, S) and is contained in a prime realizing, T). 33
It is easy to see that the existence of a prime satisfying the above reformulation of any
of (7)—(9) is equivalent to the existence of a pair of primes as in Lemma 4(i), confirmissg
our observation that each of (7)—(9) is, like (5) and (6), a translation of (4). We could zef
course, go on and apply to each of (5)—(9) the fact that every condition (1) has equivadent
formulations (2) and (3), and get still more conditions equivalent to those listed; esg.,
A=S(T+B)N{1}=0,{0}NS(T + B) + A =0, etc.; and, using Lemma 4, characterizes
the prime ideals realizing such pairs. 40
Here, as at the end of the first section, we have “played around” with equivalent
formulations of the conditions that we have characterized, getting results tangential torithe
main point of the section, in order to develop some familiarity with our techniques, and see
where those tangents led. In subsequent sections, however, we shall limit ourselves more
closely to our main line of investigation. 45

A B B DD DWW W W W W W W W WNN NN DN DN DN DNDNDNDN R R R R R
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3. Realizing arraysof pairs

1

2
Generalizing the situation of the preceding section, suppose we are given a famll§/ of

ideal-and-monoid pairé4;, S;), and wish to know whether we can find a family of prime4
idealsP; realizing these pairs, and satisfying specified inclusion relations. Let us set upsthe
language and notation to say this precisely.

© 0 N o g b~ W N P

6
7
8
Definition 7. By a template ovelR we shall mean a pai¢/, (A;, Si)icr), Wherel is
a partially ordered set, and for eatle 1, A; is an ideal ofR and S; a multiplicative 1
submonoid ofR. Given such a template, we shall denote by SE&c(A;, Si)ier) the 11
set of all I-tuples(P;);c; such that for eacth € 1, P; is a prime ideal realizing the pair 12
(4;,8;), and for alli, j € I with i < j, we haveP; € P;. A member of this set will be 13
called a realization of the given template. 14
In writing a template(l, (A;, Si)icr), We will generally suppress the subscript ons
the second component, simply writind, (A;, S;)). In particular, if J is a subset of 16
the indexing partially ordered sdt, the subtemplatéJ, (A;, S;)ics) Will be written 17
(J, (A;, Si)). Whenl is a singleton, if the unique member of adstuple of pairsigA, S), 18

I L
® N o o A W N P O

19 then we may abbreviate Spad, (A, S)) to Speg (A4, S). 19
20 A template may be shown diagrammatically by drawing a picture of the partiably
21 ordered sef, and writing in place of eache I the pair(A;, S;). 21

N
N

22

N
w

Note that Speg({0}, {1}) can be identified with the underlying set of the usual primé3
spectrum ofR. More generally, given a paiiA, S), Speg (A, S) may be identified with 2
the spectrum of the localization &/ A gotten by inverting the images of all elementsSof
however we shall not use this observation.

Lemmas 1 and 6 give necessary and sufficient conditions for templates of the respeﬁ:;tive
forms

NN
(SN

25

NN NN
© 0w N O

29

w
o

30

31 (B, T) 31
32 (A,S) and | 32
33 (A, S) 33

w
N

34
35
to have nonempty spectra, and they describe the sets of primes occurring as each coorelinate
of members of these spectra. The reader will not find it hard to obtain from those resttlts

w W w
~N o O

38 similar results for templates of the forms 38
39 39
40 40
41 (C, U) 41
42 \ (B,T) (C,U) (C,U) 42
43 (B,T), NS ., and VAN ) 43
44 | (A,S) (A,S) (B, T) 44

IS
a
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i.e., templates indexed by the 3-element partially ordered sets

1
2
3
4

LN A

5

What is the most general partially ordered set for which we can get such results? To an&wer
this we need !

8
Definition 8 (cf. [10, third paragraph of Introductipya A finite partially ordered sef  °
will be called atree orderif its Hasse diagram (the graph showing the elements a§ 1°
vertices and the minimal order relations as edges), regarded asagientedgraph, is
a tree. A finite partially ordered set such that each connected component of its unorietited

Hasse diagram is a tree may similarly be callddrast order 13
14

© 0 N o g b~ W N P

L e < e
o A W N P O

The above definition is indirect, since it uses the order structurd aily via *°
a conventional way of diagramming it. In fact, the characterization of tree orders tHat
we will use below will not be the definition but the following easily verified recursivé&’
description: the unigue one-element partially ordered set is a tree order, and a connétted
partially ordered sel of n + 1 elements is a tree order if and only if it can be obtainetf
from ann-element tree ordely by adjoining one elemerit and an order relation between?®
this new element and a single element/@f Such an elemerit i.e., a terminal vertex of 2!
the associated unoriented graph, is called a “leaf;” we shall also use the fact, easily seéh by
induction, that every finite tree order of more than one element has at least two leaves?®

One can see that the spectrum of a general templatei;, S;)) over R is the direct 2*
product of the spectra of the subtemplates indexed by the connected components &f the
partially ordered sef; so in studying such spectra we may restrict our attention to the c&8e
where! is connected. Thus, we shall not speak further of forest orders; results on thése
will be implied by our results on tree orders. 28

Note that for! a finite connected partially ordered set ahd subset connected under?®
the induced ordering, there is no implication between the conditidris & tree order”
and “J is a tree order.” That a connected partially ordered set which is not a tree order¥an
contain a subset which is a tree order is clear; the reverse situation is illustrated by the’tree

order 33
34

NS (10)

N .

38
and its subset 39

AW W W W W W W W wWwW NN DN DNDN NN NDNDN R PR R
O © O N o g B~ W N PP O © 0N O g b~ W N PP O O 0o N O

. . 40
X “w

42
’ ) 43

(Actually, McKenzie (unpublished) has shown that this is “essentially the only way¥
a connected subset of a tree order can fail to be one. Namely, he has shown that a fnite

I N N NN
g A W N P
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connected partially ordered skis a tree order if and only if every minimal cycle inis
of the form (11), and is contained in a subsef af the form (10).)
We can now prove

Theorem 9. Supposdl, (4;, S;)) is a finite template oveR such that! is a tree order.

1
2
3
4
5
Then 6
7

© 0 N o g b~ W N P

(i) The condition thaBpeg (1, (A;, S;)) be nonempty is equivalent to the condition that
there be no solution iR to a certain system & /| — 1 equations, each having one of9
the formsy +y+z=0, xy — z, or x = y, in 4|1| — 2 variables, namely/ | variables 10
a; (i € I), subject to the restrictions; € A;, |I| variabless; (i € I), subject to the 11
restrictions; € S;, and2|I| — 2 unrestricted variables. 12

(i) Foreach; e I there exist an ideal/) and a multiplicative monoid/) such thatthe 13
prime ideals which occur as thgh componentspP;, of realizations of the template 14
(I, (A;, S;)) are precisely the realizations of the paia/), S()). TheseA¥) andSV) 15
are expressible in terms of the given ideals and mondidsaind S; using the four 16
operations of adding ideald and B to get an ideald + B, multiplying monoidss 17
andT to get a monoids7T, adding a monoids and an idealA to get a monoids + A, 18
and enlarging an ideal with the help of a monoid to get an idealA = S. 19

20

The explicit construction of the equations(@f and the ideals and monoids ¢f) are 21
described in the proof below. 22
23

Proof. We shall use induction off|. 24
If 7] =1, let us writel = {0}. Then (i) holds using the single equati@n= so, and (i) 25
holds withA© = Ag, @ = y. For the inductive step, let me first outline the form of thes

argument, then fill in the details for the respective assertions (i) and (ii). 27

Given|I| > 1, we shall choose a leaf in the Hasse diagram, afenote this leaf 1, and 28
denote the unique element bt {1} to which 1 is connected in that diagram 0. Assuminge
inductively that the desired result holds for templates indexed by the partially orderedsset

I — {1}, we will then consider the two cases-10 and 1< 0. 31

If 1 > 0, we will apply the inductive assumption on templates indexefl by{1} to the 32
template gotten front/ — {1}, (4;, S;)) by the single change of replacing the mongid 33
with the monoidSo(S1 + A1). By the second paragraph of Lemma 6, a prifRggealizing 34
the pair(Ag, So(S1 + A1)) is equivalent to a primég realizing(Ao, So) and contained in 35

a primeP; realizing(A1, S1); hence a family of primes will realize this modified templatess

if and only if it realizes the templatd — {1}, (A;, S;)) and can be extended to a realizatiors?

W oW oW oW oW W WWNRNNDNRNDNDRNRNRNDRNERR B B B s
N o 0B W RN P O © ® N O 0 s ®N P O © ® N O 0~ W N B O

8 of (1, (A, Si)). 38
39 If 1 <0, we will use, in the same way, the template gotten fidm- {1}, (A;, S;)) by 39
40 replacing the idealip with the idealdg + A1 + S1. 40

I
iy

Now for the details of the proof of (i). Let,d € I be as above, and assume we havet
a system of equations of the desired sort for templates indexed-by{1}. If 1 > 0, 42
we introduce four new variableg; € A1, s1 € S1, x01, yo1 € R, and two equations, 43
xo1+s1+a1 = 0 andyp1 = soxo1, and then replace all occurrences®in theequationof 44
the original system witlygz, but leave unchanged the membership relatipa Sp of that 45

A OB A N
a A W N
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system. The newly added equations and relations and the old relgtiosy together say 1
thatyo1 € So(S1+ A1); thus the nonexistence of a solution to these equations is equivalent
to the realizability of the template obtained frath— {1}, (4;, S;)) by replacingSp with 3
So(S1+ A1), hence, as discussed above, to the realizability of our given template. 4

If 1 <0, we again introduce variableg € A1, s1 € S1, x01, yo1 € R, and this time 5
equationsrp1s1 = a1, yo1 + ao + xo1 = 0, and replace all occurrence af in our earlier ©
equations (but not in the conditia € Ag) with yo1. Thus,xo1 now represents an element?
of A1 +— S1, andyp1 an element ofAg + A1 = S1, and our modified system of conditions®
again has the desired property. °

Turning to assertion (ii), note that an elemgn¢ I is singled out in that statement; 1°
hence in proving the inductive step, let us use the fact that every finite tree order of ntbre
than one element has at leasb leaves, to choose a leat4 j. (This is for convenience; *?
we could alternatively choose an arbitrary leaf 1, and use different arguments whgn 12
and 1# j.) By induction we can get expression$’), §) in the ideals and monoids **
A;, S; (i € I — {1}) and the operations, -, and multiplication, such that the realizations'
of the pair(AY), SU) are precisely thejith coordinates of realizations of the template®
(I —{1}, (A;, S))). Now if 1 > 0 (where 0 again denotes the vertex to which 1 is attachel,
which may or may not bg), we modify the formulas foh) andS/) by replacing all *®
occurrences ofp with So(S1 + A1), while if 1 < 0 we instead replace occurrencesAgf 19
with Ag+ A1 = S1. In each case, the resulting pair will, by our earlier discussion, have tfe
desired property. O 2
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In Section 6 below we shall show that for templates based on finite partially ordezgzd
sets that are not tree orders, such neat results cannot hold. On the other hand, we shall see
in the next section (the results of which will not be used in subsequent sections) that fipm
the results obtained above, wanget similar results for infinite templates. 27

NN
o N o o b

28
29
4. Infinitearraysof primes 30
31
32
33

34
Proposition 10. Let (I, (4;, Si)icr) be atemplate oveR, and letF be a family of subsets .

of I which is directed under inclusiofie., such that gived’, I” € F, there existd” € F 4
containing!/’ U I”), and hasl as its union. Then 37

38
(i) Speg (1, (A;, S;)) can be identified with the inverse limit ovéf € F of the sets 4

w W w N
N B O ©

Infinite templates may be studied in terms of their finite subtemplates using

W W W W W w W
© 0O N o 0o b~ W

40 Speg (I, (A;, S))). 40
s (i) Spec (I, (A;, Si)) is nonempty if and only if for all’ € F, Speg (', (A;, Si)) IS 4
42 nonempty. 42

(iii) Foreachj € I, the set of prime®; occurring asjth coordinates in realizations of 43
SpeG (I, (A;, S;)) is the intersection, over all’ € F which containj, of the sets of 44
primes occurring agth coordinates in realizations @peg, (1’, (A;, Si)). 5
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Proof. Note that given arbitrary subset§ > I” of I, there is a natural map Spgd’, 1
(4;, 8;)) — Speg (1", (A;, Si)), sending eaclt’-tuple (P;);cy to its restriction(P;);epr. 2
Regarding our sets as connected by this family of mappings, assertion (i) is immediate
from the definition of Speg(—, —). 4
We claim next that once we have proved statement (ii), statement (iii) will follow.
Indeed, given any primg; realizing the pai(A ;, S;), let us form a new template, agreeings
with (I, (A;, S;)), except in thejth position, whergA ;, S;) is replaced by(P;, R — P;). 7
Then realizations of this new template correspond to realizations of our original tempfate
having P; as jth coordinate. Now (ii) applied to this modified template gives (iii). 9
The “only if” direction of (ii) is clear from (i). The “if” direction will be an application 10
of elementary model theory. 11
Note first that to specify a realizatiof;);c; of our given template is equivalent to 12
assigning a truth value to each member of the set of propositioas’;,” wherer ranges 13
over R andi overl, in a way consistent with a certain family of implications. (These arex
15

(a) the conditions saying that eaghis an ideal, namely @ P;, [((r e P)A(r' € P;) = 16

© 0 N o g b~ W N P

I e e e
o o A W N P O

17 (r+r' e P)l,and[(r € P;) = (rr’ € P;)], forallr, 7' € R; 17
18 (b) the condition saying that this ideal is prime, namgly’ € P,) = (re P) v (' € 18
19 Pi)], 19
20 (c) the conditions saying that ea¢h containsA; and is disjoint froms;, and 20
21 (d) the implications saying that for alli’ with i <i’, one hasP; C P;.) 21

N
N

22

By the Compactness Theorem of model theds] [there will exist a set of truth values 23
satisfying all of these conditions if and only if for every finite sub¥aif these conditions, 24
there is a set of truth values satisfying the member¥ .dllow any such finiteX involves 25
the relation of membership i®; for only finitely many: € I, and these finitely many 26
will all be contained in somd’ € F. By assumption, Spgcl’, (4;, S;)) is nonempty; 27
let (Pi)icr € SpeG(I’, (A;, S;i)). This I’-tuple determines an assignment of truth values
to all the propositions# € P;” with i € I’, which satisfies the finitely many conditions2e
in X. If we extend this assignment in an arbitrary way to the remaining propositions, it véil
continue to satisfy these conditions; hence by the Compactness Theorem, our full set of
conditions can be satisfied simultaneously 32

33

Remarks on the above proof: 34

What logicians call compactness results can, in fact, generally be obtainedsby
topological compactness arguments; let us note how this may be done in the above cas®. We
recall that the prime spectrum of a commutative riygn addition to the Zariski topology, 37
with its basis of open sets consisting of the déts={P | r ¢ P} (r € R), admits another 38
topology, which Hochsterq] names the “patch” topology, in which the séfs and their 39
complement®rm a subbasis of open sets; and that this topology is compact and Hausdexff.
It is straightforward to verify that each Spgd’, (A;, S;)) is closed in thel/’-fold direct 41
product of copies of Sp&under the product of these patch topologies, hence is compact
and Hausdorff in the subspace topology, and that the natural maps among these corpact
spaces are continuous. Statement (ii) is now a consequence of the fact that the inversedimit
of a system of nonempty compact Hausdorff spaces and continuous maps is nonemp#j.
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For the reader who likes ultraproducts, here is a sketch of yet another version ofithe
above argument. Sindé is directed, the subsets #fofthe formC,; ={I" e F | 1" 21} 2
(I’ € F) generate a proper filter oR. Choose an ultrafiltet/ on F containing this 3
filter. For eachl’ € F choose a realizationP; ;);cp of (I’, (A;, Si)), and extend each 4
of these realizations to aituple of subsets oR by letting P;-; be arbitrary fori ¢ I’. For 5
eachi, the F-tuple (P ;) er Of subsets ofR will induce a subse®; of the ultrapower s
RT = RF/U. Because of the way we chogg each of the conditions required for anz
I-tuple (P;) of subsets o to be a realization of7, (4;, S;)) is satisfied by Py’ ;)ic; for 8
“almost all” (relative toUU) I’ € F. One can deduce that thi; will be prime ideals ofR*, o
and that lettingP; = Q; N R, we get a realization ofl, (A4;, S;)). 10

We now want to use the above lemma to extend Theorem 9 to appropriate cases where
I may be infinite. But what should the infinite analog of a tree order be? An infinite par-
tially ordered set does not, in general, have a “Hasse diagram,” since it may have few asno
minimal order relations; so we cannot use the definition we gave in the finite case. It wauld
also not be appropriate to define a general partially ordered set to be a tree order if andienly
if the induced partial orderings on all connected finite subsets are tree orders, because as
noted, even finite tree orders can have connected subsets that are not tree orders. Tharesult
of McKenzie noted parenthetically following (11) above suggests that one might define
a not-necessarily-finite tree order to mean a partially ordered set in which every minimal
cycle is of the form (11), and is contained in a subset of the form (10); but it is not clear that
a partially ordered sdtwith this property must be a directed union of finite subsets with the
same property, as would be needed to apply Proposition 10. So | will not try to define “igfi-
nite tree order;” rather, let us simply assume the condition needed to apply that proposition.

© 0 N o g b~ W N P
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24
Corollary 11. Let (1, (A;, Si)ier) be a template oveR, and suppose that for every finite ,

subset/ C I there exists a finite subsg&tC I which contains/ and which is a tree order
under the induced ordering. Then

N
o

5

N
(<2}

26
27
28

NN
© ~

(i) (I, (A;, Si)iep) is realizable if and only if for every finit€ C I which is a tree order,
the condition for realizability of the finite templaté’, (A;, S;);c;) referred to in
Theoren®(i) holds.

(i) Foreachj e I, there exists an idead’) € R and a monoidS”) C R such that the
prime ideals ofR occurring as;jth coordinates of realizations @f, (A;, S;)icy) are
the realizations of the paifA/), S0)). Here AW is the union of a directed system of
ideals each obtained from finitely many of theand S; as described in Theore®{ii), ‘
and S is the union of a similarly constructed directed system of muItipIicativzeZ
monoids.

w N
o ©

30

w
s

31
32

W W W w W W
N o g b~ WN

37
38
39
40

w w
© o

5. How to construct counter examples

PN
= O

Consider a templatél, (A;, S;)), wherel is the three-element chain€©1 < 2. The #
method of Theorem 9(ii) shows that the prime ideals occurring-a9 coordinates of #?

realizations of this template comprise the set 43
44

Speg (Ao, So(S1(S2 + A2) + A1)). “

A OB A N
a A W N
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One might wonder whether this description can be simplified to 1
2

Speg (Ao, So(S1+ A1)(S2 + A2)). 3

4
Now in fact, the latter set can be seen to be the sétoD coordinates of realizations of s

the template based on the same family of ideals and monoids, but with the order relations

on [ reduced to O< 1 and O< 2, with 1 and 2 incomparable. So our question is whether
the sets of = 0 coordinates of realizations of these two templates are always the same.
To see that they are not, take any riRgwith three prime idealsy, P1, P> such that o
PoC PrandPy C Po, but P1 € P». For each, let 10

11
Aj =P, Si=R—P. 12

© 0 N o g b~ W N P

e e
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13
Then regardless of what ordering we put dnthe only element that could possibly,,

belong to Speg(/, (A;, S;)) is (Pi)ie;. Under the ordering noted above with 1 and 2,
incomparable, this unique element indeed belongs to S@ecA;, S;)) but under the
original ordering it clearly does not. 17

Here is a similar question. Fdragain the set0, 1, 2} with 0 < 1 < 2, and(/, (A;, Si)) 4
a template indexed by this, is the condition for readability of this template just the g
conjunction of the realizability conditions for the three subtempla&{ésl}, (A;, S;)), ,,
({1, 2}, (A4, S)), and({0, 2}, (A;, S;)), where each 2-element subset is given the inducegd
ordering?

Again the answer is “no,” and we can prove it in a similar way. Rebe a ring in
which four prime idealsPo, Py, P;, P, satisfy Po € P1, P; C P2, and Py € P, but no
other inclusion relations:

B e
o o A

16

N NN R
N B O © 0 N

22
23
24
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25

N
(<2}

26
72 27
P P]/_. 2
‘ 29
PO 30
31
Define A; and S; as in the previous example for= 0, 2, and defineA; = P1N P;, 32
S1=R — (PLU Pj). Thenfori =0, 2, P; is again the only prime realizin@;, S;), while 33
it is easy to check that the set of primes realizing the pajt S;) is precisely{Py, P;}. 3
From these facts we can see that the three subtemplates referred to above are all reali#able,
but the original template is not. 36
In these examples, we have taken for granted that we could find rings with families"of
prime ideals satisfying specified inclusion and non-inclusion relations; and indeed, siich
rings are not hard to find in the cases considered above. But in later sections we will rféed
examples of more complicated situations; hence let us record 40
41
Lemma 12. Let I be a partially ordered set. Then there exists a riRdnaving a family of 42
prime ideals(P;);<; such that for, j € I, 43
44

P CP&i<]. 45
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In fact, R can be taken to be a polynomial ring in drtuple of indeterminates over any 1

integral domairk, and theP; to be ideals generated by subsets of the set of indeterminates.
3

Proof. Recall that any partially ordered sets isomorphic to a family of subsets of some’
setJ under the inclusion ordering; in particular, we can tdke I, mapping each e [ to

={j e I|j <i}. We next note that if we form the polynomial algebra over any integrgl
domalnk in a J-tuple of indeterminateX ;, then the ideal generated by any subset of the
indeterminates is prime, and the order structure on this set of primes is that of the power
set of J. The desired conclusion follows immediatelyx

© 0 N o g b~ W N P

[
o

10

11
We also used in the second of our above examples the observation that for piimes,

B
NP

13 andP; which are incomparable under inclusion, the realizations of the(pain P;, (R — 13
14 (PLU P)))) are preciselyP; and P;. Let us record a few general observations of this sort
15 (whereR is once again an arbitrary commutative ring). 15

=
[}

16
Lemma 13. Let X be a set of prime ideals oR. Then the following conditions are 17

[
3

18 equivalent 18
19 19
20 (i) X =Speg(A, S) for some ideald and multiplicative monoid in R. 20
21 (ii) X contains all prime ideal®) suchthaf)p.x P € Q S Upcx P- 2

N
N

22

N
w

If we call a set of primes satisfying these equivalent conditions convex, then for anyset

Y of primes, the least convex set of primes contairtirig 24
25

NONN
o o b

26

Spqu(ﬂ P, R—(U P)). 27
PeY PeY 28
29

w NN
o © 0 N

If Y is finite, this can be described as the set of all pringesuch thatPo € Q < Py for ~ *°

somePy, P; € Y. Hence ifY is finite and no two distinct primes it are comparabley is
itself convex.

w
s

31
32
33

34
Proof. Assuming (i),(\pcx P Will contain A, and .y P will be contained in the

complement ofS, from which we can see (ii). Conversely, assuming (ii), the choicegs
A= \pex P andS = R — | Jpx P give (i). The first sentence of the final paragraph;,
is clear from these observations. 38

To see the characterization of the convex closure of a finit& s#tprimes, it suffices s
to know that for such a the only primes containing),., P are the primes that 4
contain somePy € Y, and the only primes contained [ .., P are those contained in 4
someP; € Y. The former fact is well-known, the latter less so; for both, see§[l.1.1, 4
Propositions 1 (In each statement, only the ideal(s) on the larger side of the inclusign
must be assumed prime.) 44

The final assertion clearly follows.O 45
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1 6. What if I isnot atreeorder? 1
2 2
3 We saw in Section 3 that if is a tree order, the conditions for a template(4;, S;)) 3
4 to be realizable, and the set of primes occurringtagoordinates in its realizations, have4
5 convenient descriptions. Whatifis not a tree order? The simplest non-tree orders are the
6 “diamond” and the “two-peaked crown,” 6
7 7
: N T :
9 9
10 1 3 and >< . 12y
11 \ 0/ O 2 11
12 12
13 We shall investigate the “diamond” below. 13
14 Let (1, (A;, S;)) be atemplate oveR such that/ is the above diamond, and suppose we4
15 want to characterize prime ideals that can occur as= 0 coordinates in realizations of 15
16 thistemplate. Using the methods of Section 3, we can write down the conditions for a prime
17 Pg realizing (Ao, So) to be contained in a prime realizing\1, S1) which is contained in 17
18 a prime realizing(A2, S2); or the stronger condition for a prime realiziigo, So) to be 18
19 contained in a prime realizingA1, S1) which is contained in a prime realizingl,, S2) 19
20 which contains a prime realizin@i s, S3) which contains a prime realizin@o, Sp); and 20
21 so forth. We may ask whether if we go sufficiently far along in this family of conditiongy
22 or perhaps take the infinite conjunction of this family, the resulting condition, cleads
23 necessaryor Py to occur as thé = 0 coordinate of a realization of our template, is als@3
24 sufficient. 24
25 The answer is no. To see this, we note that by Lemma 12 there existsR cimgtaining 25
26 8 primes whose inclusion relations are precisely those shown below: 26
27 27
28 P> P2/ 28
29 29
- Py Py 13) .
32 ( 32
33 Po p(/) 33
34 34
35 Let us now define the ideals and monoids of our templatedpy= P, N P/, S; = 3

w
(o2}

R — (P;UP) (i=0,...,3). Then by Lemma 13, the only primes realizing each pais
(A;, S;) are P; and Pl.’. We see thatPy satisfies all the conditions just referred to (being?
contained in a prime which is contained in a prime which contains a prime which contans
a prime, etc.), but is not the= 0 coordinate of a realization of our template; indeed, the
template has no realizations, since (13) clearly contains no isotone image of the “diamend”
with vertices in the required subsets. 41
So let us take a slightly different approach. Given as before a temglata;, S;)) with 42
I the “diamond” of (12), if we specify a prim&g realizing (Ao, So), can we determine 43
whether there exisPy, P2, P3 such that the 4-tupleP;) is a realization of our template? In 44
such a realization?; must be arealization @fA1, S1) which containgPg; in other words, it 45
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must be a realization @fA1 + Po, S1); similarly, P3 must be a realization ¢fAz + Po, S3).
In fact, we see that the necessary and sufficient condition for the de&iréd, Ps to exist
is that the template

(A2, 52)

/ N
(A1+ Po, S1) (A3 + Po, S3)

© 0 N o g b~ W N P

be realizable. The proof of Theorem 9 shows that this condition is equivalent to 10

bR e
N P O
P
[

(A2 + (A1 + Po) = S1 4 (A3 + Po) = S3) N Sp = 0. (14) ij

B
BN

Note thatPy is the only prime or monoid occurring more than once in (14); thus a failure %):f
(14) means the existencetfo elements:, x’ € Py that together satisfy a certain family of N
equations involving elementsnpeeach, ofd1, A2, Az, S1, S2, S3, and a certain number of =
unrestricted elements @t. Let us now drop the assumption ths has been pre-chosen, s
and letX denote the collection of all pairs, x”) of elements ofR for which there exist
elements ofdy, ..., S3 and R which satisfy, withx andx’, the family of equations just 0
referred to. Then we see that a prifigoccurs as thé = 0 component of a realization of _
our template if and only ifP is a realization ofAg, Sp) such that for everyx, x’) € X, 0
Pp containsat most oneof x, x’. This characterization of such primes is, in its way, as,
“concrete” as the conditions of Theorem 9, but it is certainly not as simple. I do not kngw
whether this set of primes will in general be convex in the sense of Lemma 13. -
If we look for conditions for a prime; to occur as thé = 2 component of a realization
of our template, the analysis begins in much the same way. The condition we get is that

N N NN NN NN NN R R R R
0 N o 0~ W N P O © 0 N O O

28
AoN So(S1(R — P2) + A1)(S3(R — P2) + A3) =, 29

w W N
F O ©
w
o

which says that for each member of a certain set of gairg’), at most one of, y’ should =1
belong toR — P». But note that this says that least onef y, y’ should belong ta®;, and 32
since P, is to be a prime ideal, this is equivalent to the condition that the progplct 33
belong toP,. Hence if we WriteAzr for the ideal ofR generated by, and the set of such 34
productsyy’, the primes occurring as tlie= 2 components of realizations of our templatess
are precisely the realizations of the pe/irj, S2). 36
So in this case, the set of such primesconvex. This is more like the criterion of 37
Theorem 9; except that the ide@{ does not have as simple a description as the ideé@ls 38
of that theorem. The nature of the constructiagns S, S + A, etc., has the consequences?
that in the situation of that theorem, the predicate of membership in each of th&8ets 40
ands) is expressible by a first-order sentence in the ring operations and the predicates of
membership in the ideals and monoids of the given template; but here the cobditimgi 42
is equivalent to the existence of an equatoa a + ), r; y; y; with an unspecified number 43
of terms in the summation. It would be interesting to know whether this difference has any
significant consequences for the behavior of these sets. 45

AR BN A DD OW®OW W W oW W W oW
OB W N R O © ® N & 0 b ©®N



© 0 N o g b~ W N P

A B B DD DWW WWWW W W WWN N NDNDNDNDNDDNDNDNDNDN R R R R R R R R R
a A W N P O © 0 N O O b W N P O ©W 0 N O O B W N P O © 0 N O O W N P O

ARTICLE IN PRESS

50021-8693(02)00666-X/FLA AID:9425 Vol.eee(eee) i P.16 (1-22)
ELSGMLTM(JABR) :m1 2002/12/16 Prn:19/12/2002; 8:50 YJabr9425 by:Rima p. 16

16 G.M. Bergman / Journal of Algebrése (eeee) eee—see

Finally, if we turn to the set of primes occurring as the 1 coordinates of realizations 1
of our template, this isot in general convex. To show this, I& be a ring containing 2
a family of 9 primes with precisely the order relations shown below: 3

© 00 N o g b

P ]/_/ } , 10
Py P3 1
12
13
14
15
PO 16
17
18
19

and let us construct a templaté, (A;, S;)) by defining, fori =0,2,3, A; = P, N Plf,
andS; = R — (P; U P/) as before, while fofA1, S1) we take any pair whose realizations
include bothPy and P;. (For instance, the paitP1, R — P;), or the pair({0}, {1}).) For

i =0,2,3, the fact thatP and P/ are incomparable means that and P/ are the only
primes that can occur in thigh coordlnate of a realization of our template From this fact
and the order relations among our primes, we see that every such realization must flave
in these coordinates either precisély, P, and P3, or preciselyPy, P, and P;. Turning

to thei = 1 coordinate, we see from the two obvious realizati()P@ P1, Pz, P3) and

(Py. Py, P5, P3) of our template thaiy and P; can each occur in this position; howeverzz

P’ cannot, since it neither contairfy nor is contained inP,. Thus the set of primes
occurring as = 1 coordinates of realizations of this template incluéesnd P;, but not

the primeP;’ lying between them; so it is not convex.

Let us end this section by returning to the “double covering of the diamond,” (13), and
recording for later use a simpler example of a family of prime ideals having that order
structure than the one produced by the construction of Lemma 12 beta field of o
characteristicZ 2 andR = k[x, y, z]. It is immediate that the desired order relations are,

satisfied by the prime ideals a

35
Py, Py=(xy £2), P, Pi=(x—2z,y%1), Py, Py=(x,z,y £1), 36
37
P3, P3=(x+z,y+1), (15) s
39
where in each case, the minus sign goes with the unprimed symbol and the plus signawith
the primed symbol. We illustrate this below by showing the corresponding subvarieties
of affine 3-space, each expressed as the set of points of a given form.{(E.g.1,s)} 42
denotes the set of points whose first and third coordinates are equal, and whose migldle
coordinate is—1. The two varieties at the top and the two at the bottom are labeled
explicitly, while the pairs at the middle level are combined usingthsign, for reasons 4s
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of spacing. Which sign corresponds to which vertex at that level can easily be seen by

comparing with the precisely labeled vertex above or below.) 2
3

{(O’ 17 O)} {(07_17 O)} 4

5

(5. £1,5)) (s, £1, —5)). (16) °

8

{(svts St)} {(S,t,—st)} 9

10
We note a further property of this example, that the varieties determined by corresponging
“primed” and “unprimed” ideals are interchanged by the map, u) < (—s, —t, —u); 12
equivalently, the ideals are interchanged by Akslgebra automorphism at which acts 13
byx— —x,y+—> -y, z> —z. 14
15
16
7. Primeidealsin tensor products 17
18
| will confess at this point that the origin of this note was the desire to prove for
myself the known fact that the Krull dimension of a tensor product algé&tffag; RY 20
over a fieldk is at least the sum of the Krull dimensions Bf® and RV (Recall that 21
the Krull dimensionof a commutative ring is the supremum of the lengthsf chains 22
Pp C Pp C--- C P, of prime ideals ofR.) Using the standard result Lemma 1, it is23
easy to show that given prime ideal®® c R©, pM c RD there exists a prime 24
P € RO @, R® which intersects the given rings iR©@ and PV, respectively. But it 25
was not clear whethenclusionsof ideals could similarly be lifted to the tensor product;e
as would be needed to estimate its Krull dimension. This led me to look for an analogrof
Lemma 1 for inclusions of primes, which led to the results of the preceding sections, which
| then tried to apply to the original question about tensor product rings. 29
| have realized subsequently that a better approach to the lifting of general array® of
prime ideals to tensor product rings is probably via the fact that whisralgebraically 31
closed a tensor product oveérof integral domains is an integral domaig (Lemma 1.54, 32
p. 97; cf. [4, Exercises 1.3.15, p. 22, 11.3.15, p.]B3hence that in this situation, if 33
PO PD are prime ideals oR@ and RV, the idealP©@ @; RD + RO @ PO of a4
RO @; RD i.e., the kernel of the map 35
36
RO Rk ROD _, (R(O)/p(o)) R (R(l)/P(l)), 37
38
will be prime, giving us a choice-free order-preserving way of lifting primes. For noes
algebraically-closed, the corresponding problem should probably be approached by fisst
studying the lifting of arrays of primes in the given algebras under algebraic extensioniof
the base field, which is where the complications come in, and then using the above result
on tensor products over algebraically closed fields. 43
However, it was fairly easy to obtain from the preceding results of this paper a regult
which includes the abovementioned estimate of the Krull dimension of a tensor prodeict
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1 algebra, and | will give this below. In the final section, | will give an example showing that
2 complications indeed arise in lifting arrays of primes under base field extension. 2
3 3
4 Ddfinition 14. For the remainder of this sectidwill be an arbitrary field, an&k©@, RD 4
5 nonzero commutativie-algebras. We shall writR@ @ R® for R© ®; RD, and identify 5
6 RO and R with their natural images in this ring. Thus, for subs&t®) c R©@, &
7 XD cRD, we may write XOXx® for the set of products©@x® ¢ RO @ RD 7
8 (x©ex® x@ e x®) On the other hand, i@, AL are ideals of these respectives
9 rings, we shall writeA©@ @ R® andR©@ @ AD for the ideals ofR©® @ R generated o

[
o

by the images ofA@ and A therein (these ideals being clearly isomorphic to theo
corresponding external tensor products). 11

12
Lemma 15. Let P@ c RO pD c RD be prime ideals, letA denote the ideal 13
PO @RV + RO g pD c RO g RD and letS denote the multiplicative monoid 14

I =
2w N P

15 (RO — pOyRD — pM)y of that ring. Then 15
16 16
17 (i) ANS=4¢. 17
18 (i) A+-S=A. 18
19 (ii) A primeP in R© ® RD is a realization of the paif4, S) ifand only if PN RO = 19
20 PO andPNRD = pD, 20

N
[

(iv) Every prime idealQ of R© @ R™ containingA contains a prime ideaP which 21
realizes the pail(A4, S); that is, every prime whose intersections wikf? and R® 22
containP© and PV, respectively, contains a prim2whose intersections with these 23
subrings are precisely those primes. 24

25

Proof. As noted,A is the kernel of a homomorphism fro®©® ® R to a nontrivial 26

ring; hence it is a proper ideal, so (i) will follow from (ii). To prove (ii), note that

(i) is equivalent to saying that no nonzero element of #1& ® R®-module(R® @ 28

RWM)/A is annihilated by any element 6f Now (R ® R™M)/A can be identified with 29

(RO/pO)y @, (RD/pPD); hence it is free both as a module ov?/P© and as a 30

module overR™Y /P Since each of these rings is a domain, no element of that modale

is annihilated by a nonzero element®f?/P© or of RV /PD: j.e., looking at it as an 32

RO @ RM-module, none of its nonzero elements is annihilated by a memi&Pof PO 33

or R® — pD: hence no nonzero element is annihilated by a member of the prchfct 34

these monoids, as required. 35

Statement (iii) holds because by Lemma 5 a prime realizess) = (P© @ R + 36

RO @ PD (RO _ pOyRMD — pMy)ifand only if it realizes boti PO @ RV, RO — 37

POy and (RO @ PO, RD — pD) je. meetsR@ in PO andRD in PO, Finally, 38

(iv) follows from (i) in view of Lemma 4(i). O 39

40

From part (iv) of the above lemma, we see 41

42

Corollary 16. Let Q be a prime ideal oR©@ @ RV, and letQ® = Q0 N R@ (¢ =0,1). 43
Then given any prime idealB® < Q@ in R (a =0, 1), there exists a prime ideal 44
P C Qof RO @ R® suchthatP N R@W = P@ (4 =0, 1). a5

A B B DD DWW W W W W W W W WNN NN DN DN NN
a A W N P O © © N O O & W N P O © © N O G & W N
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1 To formulate our application of this result, let us make 1
2 2
3 Déefinition 17. A finite descending treill mean a member of the class of finite partially3
4 ordered sets defined recursively by the conditions that 4
5 5
6 (i) all one-element partially ordered sets are contained in the class, and 6
7 (i) an (n 4+ 1)-element partially ordered sétis contained in the class if and only if it can 7
8 be obtained by adjoining to anelement partially ordered séj in the class a single s
9 element;j and a single order relation makindess tharsome elemente Iy. 9
10 10
11 (Ascending treemay be defined analogously, replacing “less than” with “greater than.”y1
12 12
13 By starting at the top of such a tree and working downwards inductively, usitgy
14 Lemma 15(i) and (iii) at the first step, and Corollary 16 at each subsequent step, wei¢an
15 clearly get 15
16 16
17 Corollary 18. Let I be a finite descending tr¢as defined aboyeand Iet(Pi(O)),, (Pl.(l))l 17
18 pe families of prime ideals 8@ and R, respectively, such that wheneveg j in 1, 1®
¥ onehasP@ c P,@‘) in R® (¢ =0,1). 19
20 E 20

Then there exists a family of prime idedisc R© @ R® such thath, N\ R® = P*
(iel,a=0,1)andi<j= P CPj(jel. 22

NN
w NP

23
In particular, ifR©@ andR™ have Krull dimensions at least andn, respectively, then .,

we can take for/ a chain of lengthn + n, and map it into the partially ordered sets of,g
prime ideals ofR@ and RV so that each link of the chain goes to a nontrivial interval in,
one or the other of those partially ordered sets. Then the above corollary gives a map,into
the prime ideals oR©® ® RM under which no link collapses, hence the Krull dimension,
of RO @ RD is at leastn + n. ”0

Wadsworth [L4] shows that the question of whether the Krull dimensioR& @ RV
is strictly larger than that of: 4+ n, and if so, by how much, is quite subtle.

Finite descending trees can also be characterized as the finite connected parylally
ordered setg such that no two incomparable elementd dfave a common lower bound. 4,
Using this characterization, one can define not-necessarily-finite descending trees, ang use
Proposition 10 to extend Corollary 18 to that case. 35

Returning to Corollary 16, we remark that result does not remain true if we reverse ghe
direction of our inequalities. For example, &ifix, y] = k[x] ® k[y], “most” nonmaximal
prime idealsP intersectk[x] andk[y] in the zero ideal, but such A cannot in general
be enlarged to a prime ide@ which restricts to a specified pair of nonzero prime idealg,
of k[x] and ofk[y]. For example, the prime ide&t — y) cannot be extended to a prime,,
ideal whose intersections witt[x] andk[y] are specified primeér — a) and(y — b),
unlessa = b. This phenomenon is related to the fact that- y) is not minimal among ,,
prime ideals meeting[x] andk[y] in the zero ideal; it appears that to lift general arrays of;
primes(Pi(O)), (Pl.(l)) to R@ ®; RD, one should look at minimal primes containing they,

ideaIsPl.(O) ®r RD + RO @, P These can be studied by forming the algebraic clokuress

A B B DD DWW WW W W W W W W NN NDNDNN
a b W N P O © © N O O b W N P O © © N O O »
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of k, looking at primes oR(O) ®x k that interseckR© in the P¥ and primes ok ®; RV 1
that intersecR™® in theP b and using the facts noted earller about tensor products over
an algebraically closed f|eld | suspect this method can be used to extend Corollary 18 to
the case wheré is a general finite tree order; and in fact, to show that given a family ef
primes inR© indexed by a tree orddr?, and a family inR™) indexed by another tree 5
order/™®, one can lift these to a family of primes R© ®; R® indexed byl @ x 1D 6

although the latter is not in general a tree order. But | will not pursue these ideas. 7
8

© 0 N o g b~ W N P

9

[
o

8. Examples concerning algebraic extension of the basefield 10
11

B
NP

In this last section we shall give a counterexample, and a general techniquel%
constructing examples, on the behavior of arrays of prime ideals under algebraic exter%smn
of the base field.

Letk be a field of characteristig 2 containing an elememtwhich is not a square. We
shall give below &-algebra containing a “diamond” of prime ideals (four primes with the’
order relations of the left-hand diagram in (12)), such that on extending scalarg'to, v
each of these primes splits into exactly two primes, and the resulting array has the order
structure (13). Hence the original “diamond” of primes cannot be lifte® &y k(,/c).

The idea will be to work backwards: Start with a family of prime ideals of the form (1§§
in ak(+/c)-algebrar’ having an automorphisi of order 2 which interchangegc and 2
—/c, and also interchanges each pair of ideglsind P/ in that diagram. The fixed ring
of 6 will then be ak-algebraR which, on extension of scalars td./c), givesR’, and
each of those pairs of primes will be represented by a single prirRegiving the desired
“diamond” configuration.

Let us apply this idea using the instance of (13) given in (15). In our discussion of tﬁat
example we referred to our pairs of primes as interchanged by the automorphism ovezrgthe
base-field that sent the three indeterminates to their negatives. Now if we take that base—
field to bek(4/c), then since the descriptions of those primes do not involve the element
/¢, thek-algebra automorphism that not only changes the signs pfandz but also that .
of \/c will permute these primes in the same way. The fixed ring of this automorphlsm IS

the polynomial ringk[+/c x, \/c y, /c z]. Renaming,/c x, /cy and./cz asx, y, z, and .
letting R = k[x, y, z], we get from (15) the array of prime idealsi

L
o o~ W

15

N NN R R R R
N P O © ©® ~N O

22

W oW oW W oW NN NNNNN
A W N P O © ©® N o 0 &~ W
IS

34
35

w W
(SN

(x,z,y=0¢) 3

— - 37

(x—2z,y%—0) (x+2z,y2—0). (17) 38

~ — 39

40 (xzyz - CZZ) 40

a1 a1

42 In R ®; k(+/c), the bottom prime lifts to the two primésy + /cz) and(xy — i /cz), %

43 the prime on the left tox — z, y + 4/c) and(x — z, y — \/c), etc., and these have the orders
44 structure (13). (The reader can verify these assertions now, or wait and see that theyare

45 instances of general results that will be recalled in the proof of the next lemma.) 45

w w w
© o«
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Again, to visualize these properties, | find it helpful to look at the corresponding
subvarieties of affine 3-space, shown below. When the base fidlddach set shown 2
below represents the setoivalued points of an irreducible variety; but over/c), each 3
represents two such varieties, one for each choice of sign. The reader can start with one
choice of signs in the bottom variety, note the choices of sign that allow one to traverse
the figure upward and downward, and verify that one must go around twice to return tosthe
original variety. 7

8

{0, £4/c,0)} o

— ~ 10
{(s, £/c, )} {(s, £4/c, =5)}. (18) n
~ — 12

{(svttiSI/\/E)} 13

14

© 0 N o g b~ W N P

N =
> w N P O

The above technique can be applied to a quite general class of situations:

[
o

15

=
[}

Lemma 19. Let K/k be a finite Galois field extension with Galois grodj let I be
a finite partially ordered set, given with an action@fon it by order automorphisms, and
let /G be the orbit set of this action, with its natural induced partial ordering, undelr9
which[i] < [j] if and only ifi is < some member ¢fi], equivalently, if and only if some 0
member ofi] is < j.

Then there exists a finitely generateélgebraR, and a family of prime ideals aR, ’
(PiDiiter/ 6, Which has precisely the order structurefgfG, and such that in the extension
ring R ® K, the set of primes which lie over primes in the above family can be mdexed
(Py)ier, In such a way that this family, ordered by inclusion, has precisely the order
structure off, the map— N R takes each ideaP; to Py;}, i.e., corresponds to the canonical >> 26
map I — I/G, and the action oiG = Gal(K /k) on {P;} induced by its action on the »
second tensor factor &t ®; K corresponds to the given action 6fon I.

Moreover,R can be taken to be a polynomial ring ovetrin || indeterminates, and
each P; to be generated by a subspace of #ievector space iR ®; K spanned by the
indeterminates.

NN R B R
P O © ® =~

21

NN NN NN
0 N o g B~ W N

28
29

w N
o ©

30

w
s

31
32
33
34

w
N

Proof. As in the preceding example, we will start with tkealgebra that is to b& ®; K
and the/-tuple of primes that are to be the, and obtainR as the fixed ring of an
appropriate action of G&K / k).

Let us construct ouk -algebra using Lemma 12, as a polynomial algebra

w W W
a b~ W

35

w
(o2}

36

S = Klxilier. ¥

38

and for each € I, take P; to be the ideal ofS generated by the set of indeterminates?
{x; | j <i}. Letting G act on the indeterminates via the given action on the index st 40
and onkK as its Galois group ovér, we get an action off on the above ring by k-algebra 41
automorphisms, which clearly acts as desired onfthd_et R be the fixedk-algebra of 42
this action. 43
Now when we regard as ak -vector space, the action ¢f is “semilinear;” i.e., for 44
g€G,ceK,seSone hasg(cs) = g(c)g(s). By A. Speiser's Theorem 1j)], cf. [9, 45

O N N Y N N~ R
g A W N P O © 0 N
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Proposition 1.8 [3, Proposition 5.7.1, p. 2Q2S has aK -vector-space basiB consisting 1
of G-invariant elements, i.e., elements Bf If we write elements ofS in terms of this 2
basis, then the action @ on S is induced by its action on the coefficients; hence our
fixed ring R is precisely thek-linear span ofB, andS = R ®; K. Since the subspace 4
K {x;} of S spanned by the indeterminatess G-invariant, it likewise has & -basis{y,} 5
of G-invariant elements, which necessarily has the same cardinalitgs the original
basis of indeterminates. Thiss also the polynomial algebra ov&rin theseG-invariant 7
elementsy,, so thek-subalgebra generated by these elements will be the fixedrijisp 8
R is a polynomial algebra ovérin || indeterminates, as claimed. 9
The prime ideals?; of S belonging to each orbit of the action 6f on such ideals will 10
contract to a common prime ide&};; of the fixed ringR, and the members of the giveni:
orbit will be the only primes contracting t6;;; [1, 8V.2.2, Theorem]2 1t is not hard to 12
deduce (e.g., usind.[ 8V.2.1, Corollary 2 to Theoren)ithat the partial ordering of these 13
contracted primes is that @f G, as desired. 14
Since theK-subspace& {y,} of S spanned by the, is the same as th&-subspace 15
K{x;} spanned by the original indeterminates each primeP;, being generated by 16
a subset ofx;}, is generated by a subset, equivalently, by-subspace, oK {y,}. O 17
18
We could have shortened the above proof slightly by skipping the choice of thethasig®
simply choosind y,} as above and noting th&t= K[y,], SOR = k[y,]; but the present 20
proof makes it clear that a large part of the argument goes over to the case of a family
of prime ideals of any commutativE-algebra that is permuted by an action of the grouge

Gal(K / k) extending its action oK . 23
24
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