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ON COMMON DIVISORS OF MULTINOMIAL COEFFICIENTS

GEORGE M. BERGMAN

Abstract. Erdős and Szekeres showed in 1978 that for any four positive integers satisfying m1 + m2 =

n1 +n2, the two binomial coefficients (m1 +m2)!/m1!m2! and (n1 +n2)!/n1!n2! have a common divisor

> 1. The analogous statement for families of k k-nomial coefficients (k > 1) was conjectured in 1997 by
David Wasserman.

Erdős and Szekeres remark that if m1, m2, n1, n2 as above are all > 1, there is probably a lower

bound on the common divisor in question which goes to infinity as a function of m1 + m2. Such a bound
is obtained in §2.

The remainder of this note is devoted to proving results that narrow the class of possible counterexamples
to Wasserman’s conjecture.

Above, I have worded Erdős and Szekeres’s result so as to make clear the intended generalization to k
k-nomial coefficients. In the next two sections, however, I formulate it essentially as they do in [2].

I have “trimmed the fat” from an earlier, lengthier version of this note. The material removed can be
found in [1].

I am indebted to Pace Nielsen for a number of valuable corrections and comments.

1. Background: the result of Erdős and Szekeres.

We begin with two quick proofs of Erdős and Szekeres’s result, one roughly as in [2], the other group-
theoretic.

Theorem 1 (Erdős and Szekeres [2]). Suppose i, j, N are integers with 0 < i ≤ j ≤ N/2.
Then

(
N
i

)
and

(
N
j

)
have a common divisor > 1.

Proof following [2]. Note that

(1)
(
N
i

) (
N−i
j−i
)

=
(
N
j

) (
j
i

)
.

Now if the first factors on the two sides of the above equation were relatively prime, the second factor on
each side would have to be divisible by, and hence at least as large as, the first factor on the other side. In
particular, we would have

(
j
i

)
≥
(
N
i

)
. Multiplying both sides by i !, this would say j (j−1) . . . (j−i+1) ≥

N(N−1) . . . (N−i+1), which is clearly false.

Group-theoretic proof. Let X denote the set of decompositions (A,B) of {1, . . . , N} into a set A of i
elements and a complementary set B of N−i elements, and Y the set of decompositions (C,D) of the
same set into complementary sets of j and N−j elements. The permutation group SN acts transitively
on each of these sets, which have cardinalities

(
N
i

)
and

(
N
j

)
respectively.

Consider the product action of SN on X×Y. Each orbit must have cardinality divisible by both card(X)
and card(Y ), hence if these were relatively prime, every orbit would have cardinality at least card(X × Y ),
so there could be only one orbit. But in fact, the orbits correspond to the possible choices of cardinalities
for A ∩C, B ∩C, A ∩D and B ∩D, and these can be chosen in different ways; e.g., so that A ⊆ C or so
that A ⊆ D, so there are at least two orbits. �
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2. Lower bounds.

The above two proofs are not as different as they look: the value (1) is the trinomial coefficient
N !/i! (j−i)! (N−j)!, which counts the orbit of X × Y consisting of decompositions with A ⊆ C. (The
right-hand side of (1) essentially says “break {1, . . . , N} into C and D, then choose A within C ”, while
the left-hand side says “break {1, . . . , N} into A and B, then choose C −A within B ”.)

Note that in the first proof above, the ratio of the numbers we compared, N(N−1) . . . (N−i+1) and
j(j−1) . . . (j−i+1), can be written (N/j)((N−1)/(j−1)) . . . ((N−i+1)/(j−i+1)) ≥ 2i. As noted in [2],

this implies that
(
N
i

)
and

(
N
j

)
have a common divisor ≥ 2i. This estimate goes to infinity with i, but

gives no information on how the greatest common divisor of these numbers behaves as a function of N for
i fixed; indeed, it is observed in [2] that when i = 1, that greatest common divisor is 2 in infinitely many
cases. Let us now show, however, as Erdős and Szekeres suspected, that when

(2) i > 1,

that greatest common divisor goes to infinity with N. To this end, we shall bring in the other orbits of our
action of SN .

Fixing N, i, and j, we find that for each orbit of pairs of decompositions {1, . . . , N} = AtB = C tD,
the integer h = card(A ∩ D) is an invariant of the orbit, uniquely determining the orbit, and that this
invariant can take on any value satisfying 0 ≤ h ≤ i. The cardinality of the orbit associated with h is given
by the 4-nomial coefficient

(3)
(
N
i

)(
i
h

)(
N−i
j−i+h

)
= Qh =

(
N
j

)(
j
i−h
)(
N−j
h

)
.

By (3), each of these values Qh must be divisible by the integer

(4) L = l.c.m. (
(
N
i

)
,
(
N
j

)
).

Our idea is that as h varies from 0 to i, Qh should vary in a “nice” fashion; but if the above value L
were too large, the big gaps between the available values would make this impossible. Let us try out this
idea on Q0, Q1 and Q2. Since multinomial coefficients are multiplicative in nature, let us subtract the
product of the first and last of these from the square of the middle one, after multiplying these products by
integer factors (2i and i− 1 respectively) that compensate for the different denominators of the binomial
coefficients in question. Expanding the Qh by the right-hand expression in (3), we can say that L2 divides

(5)

(i−1)Q2
1 − 2iQ0Q2

=
(
N
j

)2
((i−1)

(
j
i−1
)2(N−j

1

)2 − 2i
(
j
i

)(
j
i−2
)(
N−j
0

)(
N−j
2

)
)

=
(
N
j

)2( j
i−2
)2

((i−1)( j−i+2
i−1 )2 (N−j1 )2 − 2i (j−i+2)(j−i+1)

i(i−1)
(N−j)(N−j−1)

2 ·1 )

= (j−i+2)(N−j)
i−1

(
N
j

)2( j
i−2
)2

((j − i+ 2)(N − j)− (j − i+ 1)(N − j − 1))

= (j−i+2)(N−j)
i−1

(
N
j

)2( j
i−2
)2

(N − i+ 1).

Since the above expression is positive, it gives an upper bound on L2. Moreover, the cancellation, at
the last step, of the degree-2 terms in the final parenthesis gives the goal we were aiming for: The above
upper bound is of smaller magnitude than the values we started with. We now make some estimates to get
a simpler expression. Note that j−i+2 ≤ j ≤ N/2, N−j < N,

(
j
i−2
)
≤
(
N
i−2
)
/2i−2 (cf. second paragraph

of this section), and N−i+1 < N. Hence (5) gives

(6) L2 < N3

22i−3(i−1)
(
N
j

)2( N
i−2
)2
.

Now the greatest common divisor of
(
N
i

)
and

(
N
j

)
is their product divided by L. When we divide their

product by the square root of the right hand side of (6), the factors
(
N
j

)
cancel, while

(
N
i

)
in the product

and
(
N
i−2
)

in the bound on L almost cancel, with quotient (N−i+2)(N−i+1)/i(i− 1). So the g.c.d. is at
least

(7) (N−i+2)(N−i+1)
i(i−1) ( 22i−3(i−1)

N3 )1/2.

Bounding N−i+2 and N−i+1 below by N/2 we get the final bound in
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Theorem 2. Suppose i, j, N are integers with 2 ≤ i ≤ j ≤ N/2. Then the greatest common divisor of(
N
i

)
and

(
N
j

)
is bounded below by (7); hence by

(8) N1/2 2i−7/2 / i (i− 1)1/2. �

For each i, (8) goes to infinity as a function of N ; clearly it can also be weakened to a bound that goes
to infinity in N independent of i.

Can one get still better bounds if one assumes i > 2 ? Our calculation above was based on the idea that
Q0Q

−2
1 Q2 should be well-behaved; note that the exponents in that expression are the binomial coefficients

1, 2, 1 taken with alternating signs; so for i ≥ 3, the expression Q0Q
−3
1 Q3

2Q
−1
3 might be still better

behaved, suggesting that one look at the difference between appropriate integer multiples of Q0Q
3
2 and

Q3
1Q2. But in fact, the higher power of L that would be involved in the analog of (6) seems to negate

the advantage coming from the larger number of terms which cancel in that difference. On the other hand,
for i ≥ 4, an appropriate linear combination of Q0Q4, Q1Q3 and Q2

2 might yield an improved estimate
without suffering from this disadvantage. I leave these questions to others to investigate.

(We remark that the focus of [2] was not the question answered above, but the value of the largest prime

dividing both
(
N
i

)
and

(
N
j

)
.)

3. Wasserman’s conjecture on multinomial coefficients.

Before examining the conjectured generalization of Theorem 1, let us set up notation and language for
multinomial coefficients, and record some immediate properties thereof.

Definition 3. If a1, . . . , ak are nonnegative integers, we define

(9) ch(a1, . . . , ak) = (a1 + · · ·+ ak)! / a1! . . . ak!

(modeled on the reading “n -choose-m” for binomial coefficients). Thus, ch(a1, . . . , ak) counts the ways of
partitioning a set of cardinality a1 + · · ·+ ak into a list of subsets, of respective cardinalities a1, . . . , ak.

We shall call an integer (9) a k-nomial coefficient of weight a1 + · · · + ak. It will be called a proper
k-nomial coefficient if none of the ai is zero.

A k-nomial coefficient will also be called a multinomial coefficient of nomiality k.

The more usual notation for multinomial coefficients is
(
a1+ ...+ ak
a1, ... , ak

)
; but ch(a1, . . . , ak) is visually simpler.

We note three straightforward identities. First, “monomial” coefficients are trivial:

(10) ch(n) = 1.

Second, the operator ch is commutative, i.e., invariant under permutation of its arguments:

(11) ch(a1, . . . , ak) = ch(aπ(1), . . . , aπ(k)) for π ∈ Sk.

Finally, given any string of strings of nonnegative integers, a1, . . . , aj1 ; . . . ; ajk−1+1, . . . , ajk , we have
the associativity-like relation

(12)
ch(a1, . . . , ajk)

= ch(a1 + · · ·+ aj1 , . . . , ajk−1+1 + · · ·+ ajk) · ch(a1, . . . , aj1) · . . . · ch(ajk−1+1, . . . , ajk).

In particular, (12) tells us that a multinomial coefficient is a multiple of any multinomial coefficient
(generally of smaller nomiality) obtained from it by collecting and summing certain of its arguments.

In the language introduced above, Erdős and Szekeres’s result says that any two proper binomial coef-
ficients of equal weight N have a common divisor > 1. This implies the same conclusion for two proper
k-nomial coefficients of equal weight N, for any k ≥ 2, since (12) implies that these are multiples of two
proper binomial coefficients of weight N. But a stronger statement would be

Conjecture 4 (David Wasserman, personal communication, 1997; cf. [4, p.131]). For every k > 1, every
family of k proper k-nomial coefficients of equal weight N has a common divisor > 1.

Note the need for the condition k > 1 : by (10), the corresponding statement with k = 1 is false.
It is not clear whether one can somehow adapt the methods of the preceding sections to prove this

conjecture. Even looking at the case k = 3, one finds that the set of orbits into which the product of three
orbits of 3-fold partitions of {1, . . . , N} decomposes is an unwieldy structure, in which the single index “h”
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that parametrized the orbits in a product of two orbits of 2-fold partitions is replaced by 20 parameters
(computation sketched in [1, §1]). Moreover, to get divisors common to a threesome of trinomial coefficients
by studying the set of their common multiples, one would presumably have to apply the inclusion-exclusion
principle, for which one would need upper bounds on their pairwise common divisors.

In the remaining sections we will take a more pedestrian approach, and obtain results narrowing the class
of cases where one might look for counterexamples to the above conjecture.

4. A lemma of Kummer.

A basic tool in studying divisibility properties of multinomial coefficients is the next result, proved by
Kummer for binomial coefficients, i.e., for k = 2. That proof generalizes without difficulty to arbitrary k.
(The result appears in [6] as the third-from-last display on p.116. The symbol Π (n) there denotes what is
now written n! .)

Lemma 5 (after Kummer [6], cf. [5]). Let a1, . . . , ak be natural numbers, and p a prime. Then the power
to which p divides ch(a1, . . . , ak) is equal to the number of “carries” that must be performed when the sum
a1 + · · ·+ ak is computed in base p.

In particular, ch(a1, . . . , ak) is relatively prime to p if and only if that sum can be computed “without
carrying”, i.e., if and only if for each i, the sum of the coefficients of pi in the base-p expressions for
a1, . . . , ak is less than p (and hence gives the coefficient of pi in the base-p expression for a1+ · · ·+ak). �

Remarks: In the classical case k = 2, the meaning of the “number of carries” is clear: it is the number of
values of i for which the coefficient of pi in the expression for a1 + a2 is not the sum of the corresponding
coefficients from a1 and a2, possibly augmented by a 1 carried from the next-lower column, but rather, the
result of subtracting p from that sum. In the case of k summands a1, . . . , ak, we could define the number
of carries recursively in terms of 2-term addition, as the sum of the number of “carries” that occur in adding
a2 to a1, the number that occur in adding a3 to that sum, etc.. Or we could consider the computation of
a1 + · · ·+ ak to be performed all at once, by a process of successively adding up, for each i, the coefficients
of pi in the k summands, together with any value carried from lower digits, writing the result as sip + ti
with 0 ≤ ti < p, taking ti to be the coefficient of pi in the sum, and “carrying” si into the next column.
We would then consider this step of the calculation to contribute si to our tally of the number of “carries”.
Since turning a coefficient p of pi into a coefficient 1 of pi+1 reduces the sum of the digits by p− 1, the
number of carries under either description can be evaluated by summing the digits in the base-p expressions
for a1, . . . , ak, subtracting from their total the sum of the digits of a1 + · · ·+ ak, and dividing by p− 1.

However, we will not need the exact value of the number of carries, but only to know when it is zero, and
for this, the easy criterion in the second paragraph of the above lemma suffices.

In discussing Conjecture 4, the following language will be useful.

Definition 6. Given a positive integer N and a prime p, we will call a decomposition of N as a sum of
positive integers N = a1 + · · · + ak p-acceptable if ch(a1, . . . , ak) is not divisible by p; equivalently, if for
each i, the i-th digit of the base-p expression for N is the sum of the i-th digits of the base-p expressions
for a1, . . . , ak.

This language reflects the point of view of someone trying to find a counterexample to the conjecture:
such a counterexample for given k and N would require a set of k decompositions of N into k positive
summands, such that for every prime p, at least one of these decompositions is p-acceptable. And, indeed,
in obtaining our results supporting the conjecture, we shall in general put ourselves in the position of trying
to find such a counterexample, and discover obstructions to getting p-acceptability for all p.

Note that by the last criterion in Definition 6, we have:

(13)
If an integer N has digit-sum < k when written to the prime base p, then every proper k-nomial
coefficient of weight N is divisible by p.

For k = 3, the condition of digit-sum < k to base p means that N can be written pe or pe + pe
′
.

Examining the first 100 positive integers, one finds that 75 of them can be so written for some prime p,
and so cannot be the weight of a counterexample to Wasserman’s conjecture for that k. The remaining 25
are

(14) 15, 21, 35, 39, 45, 51, 52, 55, 57, 63, 69, 70, 75, 76, 77, 78, 85, 87, 88, 91, 92, 93, 95, 99, 100.
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My early pursuit of this problem involved case-by-case elimination of these values. In [1, §3] I reproduce
the ad hoc arguments for one of the less easily eliminated cases, N = 78. Below, however, we shall give
general arguments that exclude all values in a much larger range.

Let us note one other immediate consequence of the final criterion of Definition 6.

(15)
If N = a1 + · · ·+ ak is a 2-acceptable decomposition of a positive integer, then the powers of 2
dividing a1, . . . , ak are distinct.

5. Preview of results on Wasserman’s Conjecture for k = 3.

Suppose we are given a positive integer N, and wish to know whether it is a counterexample to Conjec-
ture 4 for k = 3; i.e., whether there exist three decompositions of N as sums of three positive integers, such
that for every prime p, one of those decompositions is p-acceptable.

If so, then one of those decompositions must have a summand quite close to N. Namely, if pdmax is the
largest prime power ≤ N, then a decomposition that is pmax-acceptable must include a summand ≥ pdmax

(since on adding the summands in that decomposition in base pmax, the digit in the pdmax column of N
cannot arise by carrying). Let us write that decomposition as

(16) N = (N−i−j) + i+ j,

where N−i−j ≥ pdmax, so that i and j are small. Note that the corresponding trinomial coefficient

(17) ch(N−i−j, i, j) = N(N−1) . . . (N−i−j+1) / i! j!

is not divisible by any prime not dividing one of N, N−1, . . . , N−i−j+1; so primes not dividing any of
those integers can be ignored in studying the conditions that must be satisfied by the other two decomposi-
tions of N. On the other hand, ch(N−i−j, i, j) will tend to be divisible by the primes that do divide one
of N, N−1, . . . , N−i−j+1 : that can only fail if the relatively small denominator i! j! in (17) cancels all
occurrences of those primes in the numerator.

The further study of this situation bifurcates into two cases: If i and j are as small as possible, namely,
both equal to 1, then in deducing conditions that must be satisfied by the other two decompositions, we
have the advantage of knowing that no primes are cancelled by the denominator i! j! in (17); on the other
hand, the only primes we have to work with are those dividing N(N−1). We shall study this situation
in the next section, and show that there can be no such example with N < 1726, or, if N is even, with
N < 6910.

In §7 we study the reverse situation, where i+j > 2. Here the use of the primes dividing N(N−1)(N−2)
will prove significantly stronger than the use of primes dividing N(N−1), but the cancellation of factors
by the denominator i! j! will take its toll. That problem is not serious for low values of i+ j : we will find
that there can be no counterexamples with 2 < i+ j < 11. Thus, in any counterexample falling under this
case we must have N − pdmax ≥ 11. Looking individually at the first few N satisfying that inequality, and
applying ad hoc considerations to these, we shall show that there are no counterexamples with N < 785.

What about the primes dividing (N−3) . . . (N−i−j+1) ? For any particular N, these can be useful in
excluding possible counterexamples; but the general methods of §7 below cannot make use of them. Perhaps
some reader will succeed in doing so.

6. The case i = j = 1.

The proposition below gives the first of the two results previewed above, and a bit more. In the proof, and
the remainder of this note, by “the prime-powers factors of N ” we shall mean the factors occurring in the
decomposition of N into positive powers of distinct primes. (So in this usage, 4 is among the “prime-power
factors” of 12, but 2 is not.)

Proposition 7. Suppose N is a positive integer having decompositions with positive integer summands,

(18) N = (N − 2) + 1 + 1, N = a1 + a2 + a3, N = b1 + b2 + b3,

such that

(19) for every prime p, at least one of the decompositions of (18) is p-acceptable.

Then N ≥ 1726 = 26 · 33 − 2.
If N is even, then in fact N ≥ 6910 = 28 · 33 − 2.
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In either case, N−1 is divisible by at least 3 distinct primes.

Proof. From the discussion in the last section, we see that for every prime p dividing N or N−1, one
of the last two decompositions of (18) must be p-acceptable. Thus, if N is divisible by pd, then looking
at the last d digits of the base-p expression of N in the light of Definition 6, we see that pd must divide
all three summands in one of those two decompositions; i.e., either all three of a1, a2, a3 or all three of
b1, b2, b3. Hence, N3 | a1 a2 a3 b1 b2 b3. In the same way, we see that each prime power factor of N−1 must
either divide two of a1, a2, a3 or two of b1, b2, b3, hence (N−1)2 | a1 a2 a3 b1 b2 b3. Since N and N−1 are
relatively prime, this gives

(20) N3(N−1)2 | a1 a2 a3 b1 b2 b3.
On the other hand, it is easy to verify that for any positive real number, the decomposition into three

nonnegative summands having the largest product is the one in which each summand is one third of the
total; so a1 a2 a3 ≤ (N/3)(N/3)(N/3); and likewise for the bi :

(21) a1 a2 a3 ≤ N3/ 33, b1 b2 b3 ≤ N3/ 33.

At this point, we could combine (20) and (21) to get a lower bound on N. But let us first strengthen
each of (20) and (21) a bit, using some special considerations involving the prime 2. That prime necessarily
divides N(N−1); assume without loss of generality that a1 + a2 + a3 is 2-acceptable. Then by (15), the
powers of 2 dividing a1, a2 and a3 are distinct. If 2 |N, occurring, say, to the d-th power, this means that
a1 a2 a3 must be divisible not merely by the factor 2d 2d 2d = 23d implicit in our derivation of (20), but by
2d 2d+1 2d+2 = 23d+3. If, rather 2 |N−1, again, say, to the d-th power, we can merely say that a1, a2 and
a3 include, along with one odd term, terms divisible by 2d and 2d+1, giving a divisor 22d+1 in place of the
22d implicit in (20). Thus, we can improve (20) to

(22) 2N3(N−1)2 | a1 a2 a3 b1 b2 b3, and if N is even, 8N3(N−1)2 | a1 a2 a3 b1 b2 b3.
To improve (21), on the other hand, consider three real numbers

(23) r1 ≥ r2 ≥ r3

(which we shall assume given with specified base-2 expressions, so that, e.g., 1.000 . . . and 0.111 . . . are,
for the purposes of this discussion, distinct), subject to the condition that

(24) there is no need to carry when r1, r2, r3 are added in base 2;

and suppose we want to know how large the number

(25) r1 r2 r3 / (r1 + r2 + r3)3

(regarded as a real number, without distinguishing between alternative base-2 expansions if these exist) can
be. Note that if, in one of the ri, we change a base-2 digit 1, other than the highest such digit, to 0, i.e.,
subtract 2d for appropriate d, and simultaneously, for some j > i (cf. (23)) add 2d to rj (change the
corresponding digit, which was 0 by (24), to 1), then, proportionately, the decrease in ri will be less than
the increase in rj . From this it is easy to deduce that for fixed r1 + r2 + r3, we will get the largest possible
value for (25) by letting r1 contain only the largest digit 1 of that sum, r2 only the second largest, and r3
everything else. (To make this argument rigorous, we have to know that (25) assumes a largest value. We
can show this by regarding the set of 3-tuples of strings of 1’s and 0’s, with a specified number of these to
the left of the decimal point and the rest to the right, and with r1 ≥ 1 and no two members of our 3-tuple
having 1’s in the same position, as a compact topological space under the product topology. We can then
interpret (25) as a continuous real-valued function on that space, and conclude that it attains a maximum.)

More subtly, I claim that if some digit of r1 + r2 + r3 after the leading 1 is 0, then the value (25)
will be increased on replacing that digit by 1 in r3, and hence in r1 + r2 + r3. This can be deduced
using the fact that the partial derivative of (25) with respect to r3 is positive, together with some ad
hoc considerations in the case where the digit in question has value > r2. Since (25) is invariant under
multiplication of all ri by a common power of 2 (“shifting the decimal point”), it is not hard to deduce
that it is maximized when r1, r2 and r3 have base-2 expansions 12, 0.12 and 0.0111 . . . 2 . In that case,
its value is (1 · 1/2 · 1/2)/(1 + 1/2 + 1/2)3 = 2−5. Thus we can improve the first inequality of (21) to

(26) a1 a2 a3 ≤ N3/ 25.



ON COMMON DIVISORS OF MULTINOMIAL COEFFICIENTS 7

(We cannot similarly improve the second inequality, since the decomposition b1 + b2 + b3 need not be
2-acceptable, i.e., need not satisfy the analog of (24).)

If we now combine (21), so improved, with the first assertion of (22), we get

(27) 2N3(N−1)2 ≤ (N3/25)(N3/33).

So
(N−1)2 ≤ N3/ (26 · 33), so

N3/(N−1)2 ≥ 26 · 33.
Expanding the left-hand side in powers of N−1, we get (N−1) + 3, plus terms whose sum becomes

< 1 as soon as N ≥ 5. Since the above inequality certainly cannot be satisfied by any integer N with
1 < N < 5, we can discard those terms, getting

N + 2 ≥ 26 · 33.
This gives the first assertion of the proposition. When N is even, we use the second inequality of (22) in

place of the first, getting the second assertion.
To prove the final assertion, suppose N−1 were the product of two prime powers. (For brevity, we

consider this to include the case where N−1 is itself a prime power, putting in a dummy second prime
power 1.) Then each of these would either divide two summands in the decomposition N = a1 + a2 + a3,
or two summands in the decomposition N = b1 + b2 + b3. If they each divided two summands in the same
decomposition, then they would both divide at least one of those summands, making that summand ≥ N−1,
which is impossible if the three terms of the decomposition are to sum to N. So instead, one prime-power
divisor of N−1, which we shall write r, must divide two terms of a1+a2+a3, and the other, which we shall
write s, must divide two terms of b1 +b2 +b3. Moreover, since every prime power dividing N divides either
all of a1, a2, a3 or all of b1, b2, b3, we can write N = tu where t divides all of the former and u divides
all of the latter. Now since a1+a2+a3 has all terms divisible by t and at least two divisible by r, and sums
to N, we have N > 2rt; and similarly we have N > 2su. Multiplying, we get N2 > 4 r s t u = 4N(N−1),
which is impossible. �

Remark: If one tries to extend the argument of the above paragraph to the case where N−1 is a product
of three prime powers, one discovers one case which there is no obvious way to exclude: One of our given
decompositions, say N = a1 + a2 + a3, might be p-acceptable for all three of those primes, with one prime
power factor dividing a1 and a2, another dividing a1 and a3, and the third dividing a2 and a3. The
product t of the prime power factors of N that divide all of a1, a2, a3 could then be nontrivial, though it
would have to be smaller than each of the three prime power factors of N−1.

7. The case i+ j > 2.

Let us now consider a possible counterexample to Conjecture 4 for k = 3 of the contrary sort, where the
member of our triad of decompositions involving a summand ≥ pdmax,

(28) N = (N−i−j) + i+ j

has at least one of the remaining summands, i and j, greater than 1. We will find it most convenient to
begin by assuming we are given only the other two decompositions in our triad,

(29) N = a1 + a2 + a3, N = b1 + b2 + b3,

and develop results on such a pair of decompositions, from which we will subsequently obtain constraints on
the decomposition (28).

The primes dividing N(N−1)(N−2) that will eventually have to be taken care of by the decomposi-
tion (28) are given a name in

Definition 8. Given two decompositions (29) of an integer N into positive integer summands, we shall call
a prime p relevant (with respect to (29)) if it divides N(N−1)(N−2), but neither of the decompositions (29)
is p-acceptable.

If p is a relevant prime, and pd (d > 0) a prime power factor (in the sense defined at the beginning of
the preceding section) of any of N, N−1 or N−2, we will call pd a relevant prime power.
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To measure the impact of the relevant primes in the estimates to be made, we define

(30)
C = the product of all relevant prime power factors of N−2, the squares of all relevant prime
power factors of N−1, and the cubes of all relevant prime power factors of N.

(Note that if 2 is a relevant prime and N is even, then the computation of C will involve both the power
of 2 dividing N−2, and the cube of the power of 2 dividing N.)

The next result, using ideas similar to those of the preceding section, shows that C must be fairly large.

Lemma 9. In the situation of (29) and (30), one always has

(31) C > 36 (1− 4N−1).

(In particular if N ≥ 12, then C > 486, and if N ≥ 81, then C > 693.)
If, moreover, 2 is not a relevant prime (with respect to (29)), then

(32) C > 33 · 26 (1− 4N−1).

Proof. Let us write Ci for the product of the relevant prime powers dividing N−i (i = 0, 1, 2). Then
we see (from the definition of p-acceptability) that each prime power dividing N/C0 will either divide all
of a1, a2, a3 or all of b1, b2, b3, each prime power dividing (N−1)/C1 will either divide two of a1, a2, a3
or two of b1, b2, b3, and each prime power dividing (N−2)/C2 will either divide at least one of a1, a2, a3
or at least one of b1, b2, b3. Hence a1 a2 a3 b1 b2 b3 will be divisible by (N−2)/C2, by (N−1)2/C2

1 , and
by N3/C3

0 . Moreover, the only prime that can divide more than one of three successive integers is 2, so
a1 a2 a3 b1 b2 b3 will be divisible by the product of these integers, N3(N−1)2(N−2)/C, possibly adjusted
by an appropriate power of 2.

That adjustment will not be needed if 2 is a relevant prime, since in that case, by definition of the Ci,
those remove all divisors 2 from our expression. It also will not come in if N is odd, since then only one of
N−2, N−1, N, namely N−1, is divisible by 2. So in both of those cases we have

(33) N3(N−1)2(N−2) /C | a1 a2 a3 b1 b2 b3.

Combining this with (21), we get, in these cases

(34) N3(N−1)2(N−2) /C ≤ N6/ 36,

that is,

(35) C ≥ 36 (1−N−1)2(1− 2N−1).

(We cannot improve (21) using (26) in this calculation: the argument that previously allowed us to do so
only applies if 2 is not a relevant prime.) When we expand the product of the last two factors in (35), we
see that the N−2 term has coefficient +5 and the N−3 term coefficient −2, so their sum is positive for
all N ≥ 1, and we may drop those terms, getting (31) under these conditions; in particular, whenever 2 is
a relevant prime.

We now consider the case where 2 is not a relevant prime. Say the decomposition a1 + a2 + a3 is 2-
acceptable. Then we can, as in the proof of Proposition 7, replace the first inequality of (21) by (26), and
so improve our upper bound on a1 a2 a3 b1 b2 b3 from N6/36 to N6/33 · 25.

Now if N is odd, we have noted that we still have (34); moreover, as in the proof of Proposition 7, we
can use (15) to put a factor of 2 on the left side of that inequality (since if N−1 is divisible by 2d, then
a1 a2 a3 will be divisible by 2d 2d+1). Combining this with the modification of the right-hand side indicated
in the preceding paragraph, we get (32) for such N.

When N is even, we must analyze more closely the relation between the powers of 2 dividing
N3(N−1)2(N−2) and a1 a2 a3. Exactly one of N and N−2 will be divisible by 2d for some d > 1. Assume
first that 2d |N. Then the power of 2 dividing N3(N−1)2(N−2) is 23d · 20 · 21 = 23d+1, while the power
dividing a1 a2 a3 will be at least 2d ·2d+1 ·2d+2 = 23d+3, giving two extra powers of 2, and hence an inequal-
ity that is in fact stronger than (32). If, rather, 2d |N−2, then the power of 2 dividing N3(N−1)2(N−2)
will be 23 · 20 · 2d = 2d+3, while the power dividing a1 a2 a3 will be at least 21 · 2d · 2d+1 = 22d+2 ≥ 2d+4,
which provides a single extra factor of 2, and so again gives (32). �

We now apply the above to a possible counterexample to Conjecture 4.
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Proposition 10. Suppose a positive integer N admits three decompositions, which we will write (28)
and (29), such that for every prime p dividing N(N−1)(N−2), at least one of these decompositions is
p-acceptable. Then we cannot have 2 < i+ j < 11.

Proof. Below, “relevant” will mean relevant with respect to (29). We claim first that

(36)
If pd is a relevant prime power, then there is no carrying when N−i−j, i and j are added in
base p, and the remainders on dividing i and j by pd sum to at most 2.

Indeed, the first assertion follows from our hypothesis, which implies that the decomposition (28) is p-
acceptable for every relevant prime p. Combining this with the fact that a relevant prime power pd is by
definition a divisor of N, N−1 or N−2, hence that N ≡ 0, 1 or 2 (mod pd), we get the second assertion.

Let us now, by way of contradiction,

(37) assume that 2 < i+ j < 11.

Then i and j, though positive, are not both 1; so for p as in (36), we see from the second assertion thereof
that one of i or j must be ≥ pd. Thus,

(38) if pd is a relevant prime power, i+ j ≥ pd + 1.

This and the upper bound of (37) limit the possible relevant prime powers to

(39) 2, 3, 4, 5, 7, 8, 9.

Now the hypotheses of the proposition cannot be satisfied for any N ≤ 14. Indeed, for each such value,
N or N−1 is a prime power pd, hence N has digit-sum ≤ 2 to base p, so for such p there can be no
p-acceptable decomposition of N (cf. (13), (14)). Hence we may assume N > 14, and so use the bound

(40) C > 486

of Lemma 9.
Let us now consider a relevant prime power pd0 dividing N itself. In that case, (36) implies that pd0 must

divide both i and j, so (37) limits us to pd0 = 2, 3, 4, 5. Of these values, 4 is excluded, since the condition
that there be no carrying when i and j are added in base p = 2 shows that if i, j are divisible by 4, one
of them is divisible by 8, making their sum at least 12; we are left with pd0 = 2, 3, 5. If pd0 = 3 or 5, then
the first statement of (36), together with the divisibility of i and j by pd0, and (37), force i = j = p0. But
this has the consequence that there can be no relevant prime (whether dividing N, N−1 or N−2) other
than p0 : indeed, for these choices of i and j, each of the other prime powers in the list (39) is eliminated
by at least one of the conditions of (36). This gives C = p30 ≤ 125, contradicting (40). Likewise, if pd0 = 2,
then the combination of the first condition of (36) and our bound on i + j excludes all possibilities but
{i, j} = {2, 4} and {2, 8}. Neither of these choices is consistent with (36) holding for any of our odd prime
powers. So in this case C ≤ 8 ·23 = 64, again contradicting (40). These contradictions show that no relevant
primes divide N.

Knowing this, let us again look through the possible relevant primes. If 7 is relevant, then by (36)
and (37), the unordered pair {i, j} must be one of {7, 1}, {7, 2} or {8, 1}. Applying (36) to the other
prime powers in (39), we see that for {i, j} = {7, 1}, the only other relevant prime power could be a 3, in
which case the final digit of N to base 3 would be 2, so that 3 would divide N−2, making C ≤ 3·72 = 147.
For {i, j} = {7, 2}, there are no other possible relevant prime powers; and for {i, j} = {8, 1}, we could at
most have an 8 dividing N−1, which, since 7 would divide N−2, gives C ≤ 7 · 82 = 448; in each case
contradicting (40). If 5 is relevant, the possibilities for {i, j} are {5, 1}, {5, 2}, {6, 1} and {5, 5}. Looking
at the cases where i and/or j is 5, we see that the only other possible relevant prime power consistent
with (36) is 2, which could divide N−1 in the one case {5, 2}, giving C ≤ 22 · 52 = 100; while in the case
{6, 1}, we get 2 and 3 as possible relevant prime power factors of N−1, which, together with 5 dividing
N−2, would give C ≤ 5 ·22 ·32 = 180; again each case contradicts (40). So at most 2 and 3 can be relevant
primes. If 9 were a relevant prime power, then by (37) we could only have {i, j} = {9, 1}, so 2 would not
be relevant, and C would be at most 92 = 81. Likewise, if 8 were a relevant prime power, then we could
only have {i, j} = {8, 1}, or {8, 2}, so 3 would not be relevant, and C would be at most 82 = 64. So the
relevant prime powers are at most 3 and 4, each occurring in the expression for C to at most the second
power, giving C ≤ 144, and yielding the same contradiction. �
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We remark that the argument just given cannot be extended to exclude i+ j = 11. Indeed, for N of the
form 180M + 11, consider the decomposition

(41) N = 180M + 10 + 1.

I claim that for infinitely many values of M, the above decomposition of N is 2-, 3- and 5-acceptable, with
2 · 5 |N−1 and 32 |N−2. Indeed, we see that the conditions for 2-, 3- and 5-acceptability of (41) are that
the base-2 expansion of 180M have 23-digit zero, that its base-3 expansion have 32 digit 0 or 1, and that
its base-5 expansion have 51 digit 0, 1 or 2; so these are satisfied (1/2) (2/3) (3/5) = 1/5 of the time.
(The first few values satisfying these conditions are M = 5, 12, 17.) Thus, if we combine (41) with two other
decompositions of N, the latter need not be 2-, 3- or 5-acceptable, so we can get C = 22 ·32 ·52 = 900, which
no longer contradicts (31). (Here 2 is a relevant prime, so we cannot use the stronger conclusion (32).) I
suspect that as we take still larger values of i+ j, we can get arbitrarily large C.

However, the bound of Proposition 10 is enough to eliminate a large range of values of N, as we shall
now show.

8. There are no counterexamples with k = 3, N < 785.

Propositions 7 and 10 together show us that in looking for counterexamples to Conjecture 4 with k = 3
and N < 1726, it suffices to check values of N which exceed by at least 11 the largest prime power ≤ N.
In particular, N must lie in a gap of length at least 12 between successive prime powers. A search through
a list of primes shows 17 gaps of length ≥ 12 with the lower prime less than 1000, their lengths ranging
from 12 to 20. Several of these are thrown out of the picture when we bring higher prime powers into
consideration. (The length-14 gap between 113 and 127 is interrupted by 121 and 125, the one between
953 and 967 by 312 = 961, and the length-12 gaps between 509 and 521, and between 619 and 631, by
29 = 512 and 54 = 625 respectively.) A couple of other gaps are shortened from greater lengths down to
length 12 in this way. (The one between 523 and 541 by 232 = 529, and the one between 839 and 853
by 292 = 841.) The surviving gaps, with those of length > 12 shown in boldface, are

(42)
(199, 211), (211, 223), (293,307), (317,331), (467, 479), (529, 541), (661, 673),
(773,787), (797, 809), (841, 853), (863,877), (887,907), (997, 1009).

Since most of these gaps have length 12, a large fraction of the values of N that this list informs us are
not covered by Proposition 10 are of the form N = pdmax + 11. Many such cases, including all in the above
list, can be eliminated using the following result.

Lemma 11. Suppose (28) and (29) are decompositions of N such that for every prime p dividing
N(N−1)(N−2), at least one of these decompositions is p-acceptable. Suppose moreover that in (28), i and
j are relatively prime to one another, and N−i−j is relatively prime to i+ j−1.

Then no divisor of N or N−1 is a relevant prime; hence C | N−2.

Proof. Any relevant prime p dividing N would have to divide all of N−i−j, i and j, which is excluded
by the relative primality of the last two of these, while a relevant prime p dividing N−1 must divide two
of N−i−j, i and j, with the remaining one being ≡ 1 (mod p). Each choice of which two terms are ≡ 0
modulo p and which is ≡ 1 is excluded by one or the other of our relative primality hypotheses. �

Now if N = pdmax + 11 < 1009 is a counterexample to Conjecture 4, with pmax-admissible decomposi-
tion (28), then Propositions 7 and 10 exclude all possible values for i + j other than 11. Since i + j = 11
is prime, i and j must be relatively prime; if, moreover, pdmax is not a power of 2 or 5 (as indeed none
of the first members of the pairs in (42) are), it must be relatively prime to i + j − 1 = 10. So Lemma 11
tells us that in these cases, C | N−2, so C ≤ 1009 − 2. Lemma 11 also shows that 2 | N(N−1) is not a
relevant prime, so (32) says that C > 1728 · (1− 4 · 200−1) > 1693 (since the values of N arising from (42)
are all > 200), contradicting the preceding inequality, and eliminating these cases.

The values of N < 1009 not eliminated by this argument are those that exceed the greatest prime power
≤ them by at least 12. From (42), these are

(43) 305, 306; 329, 330; 785, 786; 875, 876; and 899, · · · , 906 (8 terms).

Feeling that case-by-case elimination of possible N is not a way I want to continue to pursue this problem,
I have only checked the first four of these. By looking at the primes dividing N, N−1 and N−2 in these
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cases, it is not hard to find properties that exclude each of these values of N. This is done in the proposition
below. Let us start with a definition and two lemmas that formalize a kind of observation that we will
use. (Note that the “digit-sum ≥ k ” condition in the next definition is simply the necessary and sufficient
condition for there to be any p-acceptable decompositions of N.)

Definition 12. If k and N are positive integers, and p a prime such that the base-p expression for N
has digit-sum ≥ k, then by the p-threshold for N (with respect to k) we shall mean the greatest integer m
occurring in any p-acceptable expression for N as a sum of k positive integers.

From the characterization of p-acceptable decompositions at the end of Definition 6, we see

Lemma 13. For k = 3, and N and p as in Definition 12, the p-threshold for N is N − pe1 − pe2 , where
pe1 is the largest power of p dividing N, and pe2 is the largest power of p dividing N − pe1 .

(For general k, one has the corresponding description with k − 1 successive subtractions.) �

Lemma 14. Let N be a positive integer, and pdmax the largest prime power ≤ N. Suppose that for some
prime p0 6= pmax and not dividing N, the base-p0 expression for N has digit-sum ≤ 5, and that for all
primes p dividing N, and also for p = p0, the p-threshold for N with respect to k = 3 is < pdmax.

Then N is not a counterexample to Conjecture 4 for k = 3.

Proof. Suppose N were a counterexample, with decompositions (28), (29), where the first is pmax -acceptable.
By our hypothesis on p-thresholds, neither p0 nor any of the primes dividing N can be relevant primes;
so for each of these, one of the decompositions of (29) must be p-acceptable. Let a0 + a1 + a2 be the
p0-acceptable decomposition.

Since in base p0, N has digit-sum < 6, at least one of a0, a1, a2 must have digit-sum < 2, i.e., must be
a power of p0. This term will be relatively prime to all the primes dividing N, so for each of those primes
p, the p-acceptable decomposition must be b0 + b1 + b2. This makes each of b1, b2, b3 a multiple of N,
contradicting the assumption that they sum to N. �

We can now verify

Proposition 15. There are no counterexamples to Conjecture 4 for k = 3 with N < 785.

Proof. Examining (43), we see that we must check N = 305, 306, 329 and 330. From (42) we see that for
the first two of these, pdmax = 293, while for the last two it is 317.

The case 306 is excluded by (13), since its base-17 expansion is 11017, while 305 is excluded by Lemma 14
with p0 = 2.

The case 329, which has base-2 expression 1010010012, would likewise be excluded by that lemma with
p0 = 2, except that its 2-threshold is 320, which is not < 317. However, in the proof of that lemma, the
condition that the p0-threshold of N be < pdmax is used only to rule out the possibility that p0 is a relevant
prime. Now if 2 were a relevant prime, then since i + j ≤ N − pmax = 329 − 317 = 14, we see from the
above base-2 expression that i + j would have to be 8 + 1 = 9, which is > 2 and < 11, contradicting
Proposition 10.

To handle 330, note that again pmax = 317, and that now 330 = 1010010102. Here we will use an
argument similar to that of Lemma 14, but with the roles of N and N−1 reversed. Essentially the
same reasoning as in the preceding case shows that 2 cannot be a relevant prime. Moreover, since the
base-2 expression for N has digit-sum 4, any 2-acceptable decomposition of N must have two terms
that are powers of 2; hence such a decomposition cannot be p-acceptable for any p | N−1. Looking at
the prime factorization of N−1 = 329 = 47 · 7, we see that 47 has threshold < 317, while if 7 were
relevant we would have i + j = 7 + 1, which is again > 2 and < 11. So any three decompositions of
330 comprising a counterexample to Conjecture 4 must consist of a pmax-acceptable decomposition, a 2-
acceptable decomposition, and a decomposition acceptable for both factors of N−1. This forces at least one
summand in the last of these decompositions to be divisible by the product of those factors, N−1, making
it too large. �

9. Quick counterexamples to some plausible strengthenings of Conjecture 4.

It is natural to ask whether Conjecture 4 is the “right” statement, or whether some stronger statement
might hold. For instance, for k > 2, might the number of proper k-nomial coefficients that are guaranteed
to have a common divisor grow faster than k ?
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An example showing that four proper trinomial coefficients of the same weight need not have a common
divisor is given by the following four decompositions of 159.

(44) 157 + 1 + 1, 144 + 12 + 3, 53 + 53 + 53, 79 + 79 + 1.

(The only primes not handled by the first decomposition are the divisors of 159 = 53 · 3 and 158 = 79 · 2.
Of these, 2 and 3 are handled by the second decomposition, and the remaining two primes by the last two.)

Might the importance of the condition that our multinomial coefficients be proper and of nomiality k
simply be to insure that all their arguments are ≤ N−k+1 ? If so, we would expect binomial coefficients
with all arguments strictly greater than 1 to behave as well as is conjectured for trinomial coefficients. A
counterexample is given by the following three decompositions of 46.

(45) 44 + 2, 36 + 10, 23 + 23.

Finally, might it be possible to replace the assumption of k multinomial coefficients, of equal weight and
common nomiality k, with that of a finite family of multinomial coefficients of equal weight but possibly
varying nomialities, such that the sum of the reciprocals of those nomialities is ≤ 1 ? Here a counterexample
is given by the following three decompositions of 65,

(46) 64 + 1, 25 + 25 + 5 + 5 + 5, 13 + 13 + 13 + 13 + 13,

where the reciprocals of the nomialities sum to 1/2 + 1/5 + 1/5 = 9/10 < 1. (If one wants the sum to
be exactly 1, one can replace any two terms of the second decomposition by their sum, and similarly in the
third decomposition.)

In [1, §4], it is shown that, assuming the truth of Schinzel’s Conjecture on prime values assumed by
polynomials with integer coefficients [7], all these counterexamples belong to infinite families.

10. Where do we go from here?

A proof of Conjecture 4, even for k = 3, may well require an approach entirely different from that of §§5-8
above. On the other hand, if it is false, and we want to find a counterexample, or if, on the contrary, the
approach of this note can somehow be extended to a proof, our results indicate a bifurcation of the problem
into two cases, the one where the decomposition with largest summand has the other two summands i and
j both 1, and the case where i and j sum to at least 11. (Thought: might one get additional mileage by
subdividing the latter case according to whether one of i and j equals 1 ?)

In the case i+j > 2, we have made use of primes dividing N(N−1)(N−2); but I suspect that these are not
enough – that we must in some way also use the facts that for every prime p dividing (N−3) . . . (N−i−j+1),
one of our decompositions is p-acceptable. A suggestion as to how this might be attempted is sketched in
[1, §5].

I have not tried a computer search for counterexamples. Someone skilled at such searches might use the
results proved in this note to limit the cases (both the values of N and the triads of decompositions thereof)
to be checked. (The reference in [4, p.131] to “fairly extensive computer evidence” was a misunderstanding;
all the computations Wasserman and I did were by hand. See [1, §3] for an example.)

Some additional restrictions limiting the decompositions of N that would have to be checked in such
searches are noted in [1, §6]. The idea is that in the proof of Proposition 7 above, if instead of the estimate
a1 a2 a3 ≤ N3/ 33, we use a1 a2 a3 ≤ a1N

2/ 22, we get, instead of a lower bound on N, a lower bound
on a1 independent of N, while if we do the same in the proof of Lemma 9 we get, instead of a bound on
C independent of N, a bound on a1 C that grows linearly in N. The bounds in question say that when
i = j = 1, all ai and bi are ≥ 216, while when i + j > 1, all ai C and bi C are ≥ 108(N−4); in each
case with strengthenings under additional assumptions.

Turning to general k, we remark that the equality of the degrees of the two sides of (34) is special to
k = 3. For large k, the degree of the left-hand side of the analogous inequality grows as k2/2, while that
of the right-hand side grows as k2; so the methods we have been using for k = 3 are not likely to extend
to larger k. Conjecture 4 might in fact be too strong; perhaps the largest k′ such that every family of k′

proper k-nomial coefficients has a common divisor satisfies k′ ≈ k/
√

2 when k is large, rather than k′ = k.
The hope for a proof of Conjecture 4 (or some variant) in the spirit of the group-theoretic proof of

Theorem 1 is appealing. Sticking with k = 3 for simplicity, let us ask



ON COMMON DIVISORS OF MULTINOMIAL COEFFICIENTS 13

Question 16. Suppose G is a group, and X, Y, Z are finite transitive G-sets, such that

g.c.d.(card(X), card(Y ), card(Z)) = 1,

but such that none of the G-sets X × Y, Y ×Z, Z ×X is transitive (so that no two of card(X), card(Y ),
card(Z) are relatively prime).

What, if anything, can one conclude about the orbit-structure of the G-set X × Y × Z ?

On the other hand, other interpretations of multinomial coefficients might be useful in attacking Con-
jecture 4. One result of that sort, conjectured by F. Dyson, and proved by several others ([3] and papers
cited there) describes ch(a1, . . . , ak) as the constant term of the Laurent polynomial

∏
i 6=j(1− xj/xi)ai in

indeterminates x1, . . . , xn.
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[7] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958) 185–208;

erratum at 5 (1958) 259. MR 21#4936.


