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ABSTRACT

In 1957, N.G. de Bruijn showed that the symmetric group Sym(�) on an infinite set � contains a free
subgroup on 2card(�) generators, and proved a more general statement, a sample consequence of which
is that for any group A of cardinality � card(�), the group Sym(�) contains a coproduct of 2card(�)

copies of A, not only in the variety of all groups, but in any variety of groups to which A belongs. His
key lemma is here generalized to an arbitrary variety of algebras V, and formulated as a statement about
functors Set → V. From this one easily obtains analogs of the results stated above with “group” and
Sym(�) replaced by “monoid” and the monoid Self(�) of endomaps of �, by “associative K-algebra”
and the K-algebra EndK(V ) of endomorphisms of a K-vector-space V with basis �, and by “lattice”
and the lattice Equiv(�) of equivalence relations on �. It is also shown, extending another result from
de Bruijn’s 1957 paper, that each of Sym(�), Self(�) and EndK(V ) contains a coproduct of 2card(�)

copies of itself.
That paper also gave an example of a group of cardinality 2card(�) that was not embeddable in Sym(�),
and R. McKenzie subsequently established a large class of such examples. Those results are shown here
to be instances of a general property of the lattice of solution sets in Sym(�) of sets of equations with
constants in Sym(�). Again, similar results – this time of varying strengths – are obtained for Self(�),
EndK(V ), and Equiv(�), and also for the monoid Rel(�) of binary relations on �.
Many open questions and areas for further investigation are noted.
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1. CONVENTIONS, AND OUTLINE

Throughout this note, � will be an infinite set. Each ordinal (in particular, each
natural number) is understood to be the set of all smaller ordinals; the set of all
natural numbers is denoted ω. Functions, including elements of permutation groups,
will be written to the left of their arguments and composed accordingly. The word
“algebra” will be used in the sense of general algebra (universal algebra), except in
the combination “K-algebra”, which will always mean an associative unital algebra
in the sense of ring theory, over a field K assumed fixed throughout this note. In
those contexts, V will denote a vector space with basis � over that field K .

In Sections 2–3 we develop results to the effect that algebras arising as values of
certain sorts of functors can be embedded in certain infinite direct product algebras,
and obtain, as immediate corollaries, results on embeddability of groups, monoids,
K-algebras, and lattices in the group Sym(�), the monoid Self(�), the K-algebra
EndK(V ), and the lattice Equiv(�) respectively (all defined as in the abstract). The
remaining sections obtain results specific to embeddings in one or another of those
four structures, and in the monoid Rel(�). In Section 4 (and two Appendices,
A and B) it is shown that one can embed into each of the first three of these
algebras a coproduct of 2card(�) copies of that same algebra, while Sections 5–8
obtain restrictions on algebras A embeddable in these five algebras, in terms of
order-properties of chains of solution sets of systems of equations in A. Section 9
suggests some ways in which the results of this note might be extended.

For some further unusual properties of Sym(�) and of some of the other
structures here considered, cf. [5; 6, Section 6; 7], and works referred to in those
papers.

2. FREE ALGEBRAS

Recall that by Cayley’s Theorem, every group of cardinality � card(�) can be
embedded in the symmetric group Sym(�) on �; in particular, Sym(�) contains
free groups of all ranks � card(�). An obvious question is whether it contains
larger free groups, for example, a free group of rank card(Sym(�)) = 2card(�).
In [8], de Bruijn answered this question affirmatively by a method which also
gave embeddings of many interesting nonfree groups in Sym(�). We will begin
by illustrating his key trick, concerning subalgebras of direct products, in the case
of free algebras, making the trivial generalization from the variety of groups to
arbitrary varieties of algebras. In the next section, his more general statement will
be motivated, reformulated in functorial terms, and generalized still further.

In these two sections, V will be any variety of finitary algebras. (“Finitary” means
that every operation has finite arity, but does not exclude varieties with infinitely
many operations; for example, modules over an infinite ring.)

Proposition 2.1 (Cf. [8]). Let H be the free algebra on ℵ0 generators in a
variety V. Then the direct product algebra H card(�) has a subalgebra free on 2card(�)

generators.
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Proof. Let P(�) denote the power set of �, and Pfin(�) ⊆ P(�) the set of finite
subsets of �. Then card(P(�)) = 2card(�) and card(Pfin(�)) = card(�), so it will
suffice to find a P(�)-tuple of elements of HPfin(�) that satisfies no relations other
than the identities of V.

For each s ∈ Pfin(�), let Hs denote the factor indexed by s in our product HPfin(�),
and let us pick 2card(s) of the ℵ0 free generators of Hs , denoting these xs,t , with t

ranging over the subsets of s. For every r ∈ P(�), let Xr be the element of HPfin(�)

which, for each s ∈ Pfin(�), has Hs -component xs,r∩s .
We claim that the P(�)-tuple of elements (Xr)r∈P(�) satisfies no relations other

than identities of V. Indeed, since V is finitary, any relation satisfied by these
elements involves only finitely many of them; let R(Xr1 , . . . ,Xrn) be such a relation,
where r1, . . . , rn are distinct elements of P(�). Choose a finite subset s ⊆ � such
that r1 ∩ s, . . . , rn ∩ s are distinct. Then the s-components of Xr1 , . . . ,Xrn , namely
xs,r1∩s , . . . , xs,rn∩s , are independent indeterminates in Hs , so projecting the relation
R(Xr1 , . . . ,Xrn) that we assumed to hold in HPfin(�) onto the component Hs of that
product, we see that it is an identity of V. �
Corollary 2.2.

(i) The symmetric group Sym(�) on � has subgroups free on 2card(�) generators
in every variety V of groups.

(ii) The monoid Self(�) of endomaps of � has submonoids free on 2card(�)

generators in every variety V of monoids.
(iii) The endomorphism ring EndK(V ) of the K-vector space V with basis � has

K-subalgebras free on 2card(�) generators in every variety V of associative
K-algebras.

(iv) The lattice Equiv(�) of equivalence relations on � has sublattices free on
2card(�) generators in every variety V of lattices.

Proof. Cayley’s Theorem shows that every group of cardinality � card(�) is em-
beddable in Sym(�), and similar arguments give embeddings of all monoids with
� card(�) elements in Self(�) and of all associative K-algebras of vector-space
dimension � card(�) in EndK(V ). The corresponding statement for embeddability
of lattices in Equiv(�) is Whitman’s Theorem [21]. (Whitman does not explicitly
say there that if the given lattice L is infinite, then the set on which he represents
it has cardinality � card(L), but this can be verified from his construction; or one
can deduce the possibility of an embedding with this cardinality condition from
the embeddability result without it.) In particular, each of these structures contains
a copy of the free algebra H on ℵ0 generators in any subvariety V of the given
variety, since that free algebra is countable, or in the K-algebra case, countable
dimensional.

Moreover, each of the four algebras named contains a card(�)-fold direct product
of copies of itself. To see this, let us write the given set � as a disjoint union of
card(�) subsets of cardinality card(�), � = ⋃

i∈card(�) �i . Then within Sym(�),
the subgroup of consisting those permutations that respect each �i is such a direct
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product, and the analogous statement holds in the monoid Self(�). In the K-algebra
case we similarly use the algebra of endomorphisms that carry the span of each
subset �i of our basis � of V into itself, and in the lattice case, the sublattice
of equivalence relations that relate members of each �i only with other members
of �i .

Since we saw in the first paragraph that each of our objects contains a free algebra
H on countably many generators in the (arbitrary) subvariety V, it follows that it
will contain a copy of the product algebra H card(�), and Proposition 2.1 now gives
the desired conclusions. �

Note that the embedding of Equiv(�)card(�) in Equiv(�) used in the second
paragraph of the above proof takes the least element of Equiv(�)card(�) to the least
element of Equiv(�), but does not take the greatest element to the greatest element.
(It takes that element to the relation whose equivalence classes are the sets �i.)

With a little more work, however, one can get the an embedding that respects both
greatest and least elements.

Namely, fix any p ∈ �, and let �′ ⊆ �card(�) be the set of elements (xi)i∈card(�)

such that xi = p for all but finitely many i. We see that card(�′) = card(�), so
it will suffice to embed Equiv(�)card(�) in Equiv(�′). We do this by taking each
card(�)-tuple (αi)i∈card(�) (αi ∈ Equiv(�)) to the relation α ∈ Equiv(�′) such that
((xi), (yi)) ∈ α if and only if (xi, yi) ∈ αi for all i. It is straightforward to show that
this is a lattice embedding which indeed respects least and greatest elements.

So Corollary 2.2(iv) also holds for lattices with greatest and/or least element,
and mappings respecting these elements. For brevity, I will not mention lattices
with this additional structure in subsequent sections, except when points come up
where I notice that what we can prove about lattices with such structure differs from
what we can prove for lattices without it. (Incidentally, both the above embedding
and the one in the proof of Corollary 2.2(iv) also respect infinitary meets and joins;
but this is not relevant to our embedding results, since those require that the algebra
operations used be finitary.)

3. COPRODUCTS AND FUNCTORS

The free algebra on a set � in a variety V is the coproduct in V of an �-tuple
of copies of the free algebra on one generator. To start the ball of generalization
rolling, let us note how to extend the proof of Proposition 2.1 to the case where free
algebras are replaced by coproducts of copies of an arbitrary algebra.

In our proof of Proposition 2.1, we chose in each copy Hs of H a P(s)-tuple
(xs,t )t⊆s of distinct members of our ℵ0-tuple of free generators. This time, let
H be the coproduct in V of ℵ0 copies of a fixed algebra A, and let us take for
each s ∈ Pfin(�) a P(s)-tuple (ps,t )t⊆s of distinct members of the ℵ0-tuple of
coprojection maps A → Hs defining the coproduct structure. We can then define,
for each r ∈ P(�), a map Pr : A → HPfin(�) by letting the composite of Pr with
each projection HPfin(�) → Hs be ps,r∩s . With these adjustments, the proof of
Proposition 2.1 goes over, and we likewise get the corollary that if A is any group,
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monoid, associative K-algebra, or lattice, of cardinality, respectively K-dimension,
� card(�), and V any variety of groups, monoids, K-algebras or lattices containing
A, then the group Sym(�), the monoid Self(�), the K-algebra EndK(V ) or the
lattice Equiv(�) contains a coproduct in V of 2card(�) copies of A.

To suggest the next level of generalization, let me give a more or less random
concrete example. Let A be the group presented by two generators, x and y, and
the relations saying that the generator x has exponent 2, and commutes with the
element obtained by conjugating it by the square of the generator y:

x2 = 1,(1)

x
(
y2xy−2) = (

y2xy−2)x.(2)

Now if I is any index-set, let F(I) be the group presented by generators xi, yi

(i ∈ I ) subject to the relations

x2
i = 1 (i ∈ I ),(3)

xi

(
(yj yk)xi(yj yk)

−1) = (
(yj yk)xi(yj yk)

−1)xi(4)

(i, j, k ∈ I, not necessarily distinct).

Looking at the i = j = k case of these relations, we see that for each i, there is a
homomorphism A → F(I) acting by x �→ xi, y �→ yi . This is in fact an embedding,
for we also see from (1)–(4) that there exists a homomorphism F(I) → A mapping
all xi to x and all yi to y, which gives a left inverse to each of the preceding
homomorphisms. (Note, incidentally, that the choices made in (3) and (4), to turn
x2 to x2

i , but y2 to yjyk , were somewhat arbitrary: other choices would have led to
these same conclusions, so the relations (1) and (2) did not uniquely determine (3)
and (4).)

Though the group F(I) is generated by an I -tuple of embedded homomorphic
images of A, our presentation does not make it a coproduct of those subgroups,
since the relations (4) relate elements from different copies of A; nor does it make
it their coproduct in some subvariety of groups, since (3) and (4) do not describe
identities satisfied by all elements of F(I). We see, however, as for coproducts,
that any map of index-sets I → J induces a group homomorphism F(I) → F(J ),
making F a functor from sets to groups.

We shall find below that the idea of Proposition 2.1 can be used to show that
F(ℵ0)

card(�) contains a copy of F(2card(�)), and that the corresponding statement
holds with the variety of groups replaced by any variety V of finitary algebras,
and (3) and (4) by any such system of “relations parametrized by families of
indices”.

We could give a careful formulation of this concept of a “parametrized system of
generators and relations”. Fortunately, we do not have to, for we shall see that the
concept is equivalent to one that can be defined in a simpler way. We noted above
that the construction F was a functor Set → V; and it clearly satisfies
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For every set I , the algebra F(I) is generated by the union of the images

of A = F(1) under the homomorphisms induced by all maps 1 → I .
(5)

I claim, conversely, that any functor Set → V satisfying (5) corresponds to a
system of algebras determined by “generators and relations with parameters” in
the sense suggested by the above discussion. Indeed, given F , let us take for
generator-symbols (corresponding to the x and y in our group-theoretic example)
any generating set X for F(1). For every set I , every i ∈ I , and every x ∈ X, let us
write xi for the image of x under the map F(1) → F(I) induced by the map 1 → I

taking 0 to i. Then (5) shows that F(I) is generated by

{xi | x ∈ X, i ∈ I }.(6)

To get relations, let us, for each natural number n, choose a set of relations
presenting F(n) in terms of the generators xi (x ∈ X, i ∈ n), and let us turn each
of these into a “system of relations with parameters” by replacing the subscripts
0, . . . , n − 1 ∈ n on the generators appearing in each relation with symbols
i0, . . . , in−1 ranging over a general index-set I .

We see from the functoriality of F that for any I , the generators (6) of F(I)

satisfy all instances of the system of relations so obtained. To see that no more
relations are needed, note that any relation satisfied in F(I) by the elements (6)
can involve only finitely many of these elements, say those coming from the image
of F(n) under some one-to-one map n → I , for some n ∈ ω. If I 	= ∅, we can
take n > 0, so that we may choose a left inverse I → n to this map, and applying
F to it, we see that the corresponding relation indeed holds in F(n), and so is
a consequence of the system of relations we have chosen. If I = ∅ = 0, then n

will also equal 0, and such a map likewise exists, yielding the same conclusion.
Thus, the indicated system of generators and relations indeed determines F(I) for
all I . (Equations satisfied by the empty set of generators correspond to relations
on the set of zeroary operations of V, which hold in all F(I) including F(0).
However, for the arguments below, we only need the values of F(I) for nonempty
index-sets I , so nothing is lost if the reader prefers to consider F a functor
from the category of nonempty sets to V, and so avoid dealing with the case
I = ∅.)

De Bruijn [8] proves his embeddability results for what he calls “symmetrically
generated groups”. On examination, these turn out to be precisely the values F(I)

of group-valued functors F satisfying (5). However, rather than stopping here, we
may ask whether, in addition to allowing relations like (4) that depend on more than
one parameter, we could allow this in our generators as well. For example, suppose
we associate to each set I the group F(I) with generators

xij (i, j ∈ I ),(7)

subject to relations

xij xjk = xjkxij (i, j, k ∈ I ).(8)
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It is again clear that maps among index-sets induce homomorphisms among these
groups, giving a functor F : Set → Group, and that the corresponding statement is
true for systems of algebras of any variety V presented by generators and relations
similarly parametrized by multiple subscripts. The resulting functors will not in
general satisfy (5), but assuming the string of subscripts on each generator is finite,
they will satisfy

For every set I , the algebra F(I) is the union of the images of the

homomorphisms F(a) :F(n) → F(I), where n ranges over ω, and

a over all set-maps n → I .

(9)

Conversely, it is straightforward to show, as before, that the values of any functor
satisfying (9) arise from this sort of presentation-with-parameters.

We can now give our generalization of Proposition 2.1. As indicated in the second
paragraph of Section 2, V denotes an arbitrary fixed variety of finitary algebras.

Theorem 3.1 (Cf. [8, Theorem 3.1]). Let F be a functor Set → V satisfying (9).
Then F(ℵ0)

card(�) has a subalgebra isomorphic to F(2card(�)).

Proof. As in the proof of Proposition 2.1, it suffices to construct an embedding
h : F(P(�)) → F(ℵ0)

Pfin(�); and again, we may specify such an h by giving its
composites with the projections of F(ℵ0)

Pfin(�) onto the factors F(ℵ0) correspond-
ing to each s ∈ Pfin(�). For each such s, let cs : P(�) → P(s) be defined by
r �→ r ∩ s, and let us choose an embedding es : P(s) → ℵ0, and take the composite
of h with the sth projection to be F(escs) : F(P(�)) → F(ℵ0).

To show that h is an embedding, consider any two elements u 	= v ∈ F(P(�)). We
claim there exists a component of F(ℵ0)

Pfin(�) at which h(u) and h(v) have distinct
coordinates.

First note that by (9), the images in F(P(�)) of homomorphisms F(a) : F(n) →
F(P(�)) induced by maps a : n → P(�) (n ∈ ω) form a directed system of
subalgebras with union F(P(�)). Hence u and v will together lie in such an
image; so let u = F(a)(u0), v = F(a)(v0) for some a : n → P(�) and u0, v0 ∈ F(n),
necessarily distinct; here we may assume n > 0.

Now choose s ∈ Pfin(�) such that a(0)∩ s, . . . , a(n− 1)∩ s are distinct. Then the
composite map escsa : n → P(�) → P(s) → ℵ0 is one-to-one, hence it has a left
inverse. Hence so does F(escsa) : F(n) → F(ℵ0); hence that is also one-to-one. In
particular, the images of u0 and v0 under the latter map, which are the s-coordinates
of h(u) and h(v), are distinct, as required. �

As before, we immediately get the particular embeddability results:

Theorem 3.2 (Cf. [8, Theorem 3.1]). Suppose F is a functor from Set to (i) the
category of groups, respectively (ii) the category of monoids, (iii) the category of
associative algebras over a field K , or (iv) the category of lattices; and suppose
that F satisfies (9), and has the property that the cardinality of F(ℵ0) in case (i),
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(ii) or (iv), or its K-dimension in case (iii), is � card(�). (For instance, starting
with an algebra A of cardinality or K-dimension � card(�), one might define F to
be the functor associating to every set I the I -fold coproduct of copies of A in some
fixed variety or quasivariety containing A.)

Then F(2card(�)) is embeddable in (i) Sym(�), (ii) Self(�), (iii) EndK(V ), or
(iv) Equiv(�), respectively.

The reader may have noticed when we first proved Proposition 2.1 that we did
not really need the factors in our product to be free of rank ℵ0; free objects of finite
nonzero ranks would do, as long as there were at least card(�) such factors of rank
greater than or equal to each natural number N; and, similarly, that in the proof
of Theorem 3.1, we could have used a direct product (with enough repetitions) of
objects F(n) for n finite, instead of a power of F(ℵ0). However, it is not hard to
verify in each of these cases that the product of such a family would contain an
embedded copy of F(ℵ0)

card(�), reducing these situations to that of Theorem 3.1.
Let us record here the observation from which this follows.

Lemma 3.3 (Cf. [8]). Let F be a functor Set → V satisfying (9). Then
∏

0<n<ω F(n) has a subalgebra isomorphic to F(ℵ0).

Proof. For each n > 0, let fn : ℵ0 = ω → n be the map taking each natural number
r to min(r, n − 1), and define f : F(ℵ0) → ∏

0<n<ω F(n) to have F(fn) as its nth
component, for each n. An argument of the sort used in the proof of Theorem 3.1
shows that any two distinct elements of F(ℵ0) have distinct projections in some
F(n), so f is an embedding. �

It would be interesting to look for results similar to those of this section for
functors on categories other than Set. I leave these investigations to others, but
give below one such result I have noticed, and a couple of examples of how it can
be applied.

Theorem 3.4. Let T.ord be the category whose objects are totally ordered sets,
and whose morphisms are isotone maps (maps satisfying x � y ⇒ a(x) � a(y)),
and let every ordinal, and likewise the set R of real numbers, be regarded as
objects of T.ord via their standard orderings. Suppose F : T.ord → V is a functor
satisfying the analog of (9) with “totally ordered set” for “set”, and “isotone
maps” for “set-maps”. Then F(ω)ℵ0 has a subalgebra isomorphic to F(R).

Proof. The set Pfin(Q) of finite sets of rational numbers is countable, so it suffices
to embed F(R) in F(ω)Pfin(Q). Given s ∈ Pfin(Q) whose distinct elements are q1 <

· · · < qn, let as : R → ω be the isotone map which sends each r ∈ R to the greatest
i ∈ {1, . . . , n} such that qi � r if such an i exists, and sends all r < q1 to 0. Let
h : F(R) → F(ω)Pfin(Q) be the map whose composite with the projection indexed
by each s ∈ Pfin(Q) is F(as).
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It is not hard to see that we will be able to complete the proof as we did that of
Theorem 3.1 if for every finite set of real numbers r0 < · · · < rn, we can find an
s ∈ Pfin(Q) and an isotone map b : ω → R such that the map bas : R → ω → R fixes
r0, . . . , rn. To do this, choose q1, . . . , qn ∈ Q so that ri−1 < qi � ri (i = 1, . . . , n),
let s = {q1, . . . , qn}, and let b take i to ri for i = 0, . . . , n, and be extended in an
arbitrary isotone manner to larger i. Thus, as takes ri (i = 0, . . . , n) to i, which b

takes back to ri , as required. �
For a functor F as in the above theorem, the algebras F(I) will have presentations

by systems of generators and relations indexed by finite sequences of subscripts
from I , where the indices occurring in each generator or relation may be constrained
by inequalities of the form i � j . A simple example is the functor associating to
each totally ordered set I the group presented by generators xi and yi (i ∈ I ) subject
to the relations

xiyj = yjxi for i � j in I.(10)

Another is the functor taking each I to the (commutative) monoid presented by
generators xi (i ∈ I ) and relations

xixj = xi = xjxi for i � j in I.(11)

In each of these cases, the object F(ω) is countable, hence embeddable in Sym(ℵ0),
respectively Self(ℵ0); hence, combining Theorem 3.4 with the method of proof
of Theorem 3.2, we see that F(R) is also embeddable in Sym(ℵ0), respectively
Self(ℵ0). Likewise, the group algebra KF(R) for F determined by (10), and the
monoid algebra KF(R) for F determined by (11), are the values at R of K-algebra-
valued functors satisfying the analog of (9), and so are embeddable in EndK(V )

for V countable-dimensional. I do not see any way to obtain these results from
Theorems 3.1 and 3.2 themselves.

Let us note in connection with the group-theoretic construction (10) (and for
some later uses) that if X is any set, and R any symmetric reflexive binary relation
on X, and we form the group G presented by the generating set X and the relations

xx′ = x′x ((x, x′) ∈ R),(12)

then distinct subsets of X generate distinct subgroups of G (clear by looking at
the abelianization of G), and elements x, x′ ∈ X commute in G if and only if
(x, x′) ∈ R. To see the latter statement, consider any x ∈ X, and let G0 be the group
presented as above, but using the set X − {x} and the restriction of R to that set.
Then G can be described as an HNN extension [16] of G0, obtained by adjoining
an additional generator x, whose conjugation action is specified on the subgroup
generated by {y ∈ X − {x} | (x, y) ∈ R} as the identity map. By the structure of
HNN extensions, conjugation by x fixes precisely the elements of that subgroup,
giving the asserted characterization of the commuting pairs of elements of X.
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4. EACH OF Sym(�) , Self(�) AND EndK(V ) CONTAINS A COPRODUCT OF COPIES OF ITSELF

In the case of Theorem 3.2 where F(I) is the I -fold coproduct of copies of an
algebra A, the number of copies of A in the conclusion, 2card(�), is, in general, as
large as it can be, embeddability of larger coproducts being precluded by the size
(i.e., cardinality or K-dimension) of the object we are trying to embed in. But the
assumption that A itself has cardinality or K-dimension � card(�) is not forced in
that way; we assumed it so that we could be sure that the coproduct of countably
many copies of A would be embeddable in the object in question.

Can we prove results of the same sort for any larger algebras A?
We shall sketch in the next few paragraphs a proof that the symmetric group

Sym(�) contains a coproduct of two copies of itself. Hence, by iteration, it contains
coproducts of all finite numbers of copies of itself, hence, by Lemma 3.3, a
coproduct of countably many copies of itself, hence, by Theorem 3.1, a coproduct
of 2card(�) copies of itself. This result, like those that we generalized in preceding
sections, was proved by de Bruijn in [8]. We will then see how to adapt our argument
to the case of the monoid Self(�), and, with more work, the associative algebra
EndK(V ).

(In an earlier version of this note, I asked whether the corresponding result held
for the lattice Equiv(�). An affirmative answer has been given by F. Wehrung [20].)

As indicated above, the hard step, for each of these objects, is to show that it
contains the coproduct of two copies of itself. Note that to do this for the group
Sym(�) is equivalent to finding two faithful actions of Sym(�) on � (or on some
set of the same cardinality) such that there is no nontrivial “interaction” between
the permutations giving these actions. In its most naive form, the idea behind the
construction we shall describe is to take the natural representation of Sym(�) on
�, and the same representation conjugated by a “random” permutation t of �, and
hope that elements of the two representations will not interact.

As stated, this is much too naive: no matter how we choose t to eliminate
interaction among certain permutations in our two representations, it will inevitably
lead to interaction among others. However, suppose we replace the set � by the
disjoint union of card(�) copies of itself, on each of which we start with the natural
representation of Sym(�), and on each of which we perturb this representation by
a different “t”. Then we can hope that any given interaction among finitely many
elements of our original and perturbed images of Sym(�) will be avoided in at least
one of these copies. If this is so, then the representation of Sym(�) � Sym(�) on
our union of copies of � will be faithful.

In particular, we might index our set of copies of � by the group Symfin(�) of all
permutations of � that move only finitely many elements, and on the copy indexed
by each t in that group, let that t be our perturbing permutation.

There is still one difficulty: When we construct a t to prevent interaction in some
long expression w in elements from our two groups, the behavior of t that we need
at one step may be different from the behavior we want at a later step. To get around
this, each copy of � in the above sketch will be replaced by a disjoint union of
countably many copies of itself, �×ω, and t will range over Symfin(�×ω). Given
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a group relation w = v that we want to cause to fail, we will find that we can select
our t and an element (p1,0) ∈ � × {0} so that as we apply w or v to (p1,0), that
element is moved by successive occurrences of t into � × {1}, � × {2}, etc., and on
each of those copies, we shall be able to independently control what t does.

As mentioned, the above technique can also be adapted to the monoid Self(�),
and to the K-algebra EndK(V ). In the next lemma, the group, monoid, and K-
algebra cases are all stated, and the proof is given for the first two. I have relegated
the longer proof for EndK(V ) to Appendix A, so as not to interrupt the flow of the
paper. (Appendix B gives an alternative construction in the Sym(�) case, which
I found before encountering de Bruijn’s papers, but was not able to adapt to the
monoid or K-algebra cases. It may, however, be of independent group-theoretic
interest.)

Recall that we are writing functions to the left of their arguments (in contrast to
the usage in many papers in the theory of infinite symmetric groups).

Lemma 4.1 (Cf. [8]).

(i) Sym(�) contains a coproduct of two copies of itself as a group.
(ii) Self(�) contains a coproduct of two copies of itself as a monoid.

(iii) EndK(V ) contains a coproduct of two copies of itself as an associative
K-algebra.

Proof of (i) and (ii). We shall verify (ii), then deduce (i) from it.
Recall that the normal form for an element of the coproduct M � N of two

monoids is

. . . α(gi)β(gi−1)α(gi−2)β(gi−3) . . . ,(13)

where α : M → M � N , β : N → M � N are the coprojection maps, the elements
gk with k of one parity (in (13), the parity of i) are elements of M − {1}, and those
with k of the other parity are elements of N − {1}. In (13), I do not explicitly show
the first and last factors, because each may be either an α term or a β term. The
identity element is given by the empty product (13).

Thus, elements of Self(�) � Self(�) can be written uniquely as products (13) in
which all gi come from Self(�) − {1}.

To prove (ii), it suffices to construct a faithful action of Self(�) � Self(�) on
a set of the same cardinality as �. As suggested in the above discussion, that set
will be the disjoint union of a family of copies of � × ω indexed by the group
Symfin(� × ω). On every copy of � × ω, we let elements α(g) (g ∈ Self(�)) act
in the “natural” manner, g((p, k)) = (g(p), k) (p ∈ �,k ∈ ω), while on the copy of
� × ω indexed by t ∈ Symfin(� × ω), we let β(g) act by tgt−1, i.e., the conjugate
by t of that same natural action.

To prove that the resulting action of Self(�) � Self(�) on our union of copies of
�×ω is faithful, assume we are given two distinct elements of that monoid, say (13)
and
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. . . α(hj )β(hj−1)α(hj−2)β(hj−3) . . . .(14)

We shall show below how to obtain a t ∈ Symfin(� × ω) such that the induced
actions of (13) and (14) on � × ω, namely

. . . gi

(
tgi−1t

−1
)
gi−2

(
tgi−3t

−1
)

. . . and

. . . hj

(
thj−1t

−1
)
hj−2

(
thj−3t

−1
)

. . . ,
(15)

act differently on a certain element of � × ω.
The t we shall construct will be of order 2, so the above two expressions take the

forms

. . . gi t gi−1 t gi−2 t gi−3 t . . . and

. . . hj t hj−1 t hj−2 t hj−3 t . . . .
(16)

We may assume, by interchanging (13) and (14) if necessary, that the former
expression involves at least as many factors from Sym(�) as the latter, and,
moreover, that if they have the same number of such factors, and have αs and βs in
the same places, then for the least value k such that gk 	= hk , some element of � on
which gk and hk disagree is moved by the former.

If the rightmost term of our original expression (13) is an α term, rather than a β

term, let us multiply both lines of (16) on the right by t , and likewise if the left-hand
term of (13) is an α term, let us multiply both lines on the left by t . Since t is going
to be invertible, the non-equality of the new expressions, which we will prove, is
equivalent to the non-equality of the old ones. The first of the new expressions can
now be written more precisely; the two products have become

t gn t . . . t gi t gi−1 t gi−2 t gi−3 t . . . t g1 t and

. . . t hi t hi−1 t hi−2 t hi−3 t . . . .
(17)

Clearly, by the assumptions we have made, the first line of (17) has at least as many
occurrences of t as the second.

To construct our promised t , let us now choose, for each k ∈ {1, . . . , n}, an
element pk ∈ � that is moved by gk; moreover, we take it to be an element at which
gk and hk disagree whenever this is possible; i.e., we require this for every value of
k such that there exists an element moved by gk at which gk and hk differ. We then
define t to fix all elements of � × ω except the following 2(n + 1) elements, which
we let it transpose in pairs, as shown:

(p1,0) ↔ (p1,1),
(
gk(pk), k

) ↔ (pk+1, k + 1) (1 � k < n),
(
gn(pn), n

) ↔ (
gn(pn), n + 1

)
.

(18)

Note that (18) is consistent: For 1 � k � n, gk moves pk , hence the two elements
of � × {k} on which (18) prescribes (in different ways) the behavior of t , namely
(pk, k) and (gk(pk), k), are distinct.
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We now see that when the element shown on the first line of (17) is applied to
(p1,0), the successive factors of that element (reading from the right), namely t , g1,
t , g2, t, . . ., move it as follows

(p1,0) �→ (p1,1) �→ (
g1(p1),1

) �→ (p2,2) �→ (
g2(p2),2

)
(19)

�→ (p3,3) �→ · · · �→ (
gn−1(pn−1), n − 1

)

�→ (pn,n) �→ (
gn(pn), n

) �→ (
gn(pn), n + 1

)
.

In particular, (p1,0) is carried from � × {0} into � × {n + 1}.
When we instead apply the second line of (17) to (p1,0) there are several possible

cases. If there are fewer factors hj than gi , there will be fewer factors t in that
second line than in the first line, so there is no way the permutation represented by
the second line can move an element from � × {0} into � × {n + 1}. If there are
the same number, n, of hs as of gs, but if the αs and βs don’t appear on the same
factors, then since the first line of (17) was adjusted to have a t at each end, the
second line will not; so again there will be fewer factors t , and (p1,0) cannot be
moved all the way into � × {n + 1}.

Finally, if there are the same number of factors and the αs and βs appear in the
same positions, then by assumption, for the least k such that gk 	= hk , the element
gk moves some element of � at which these elements disagree (see sentence
after (16)), and by our choice of pk , the latter will be such an element (first sentence
of paragraph containing (18)). When we apply the second line of (17) to (p1,0), the
input to the factor hk will be (pk, k) (since the terms have agreed up to this point),
so the output will be (hk(pk), k) 	= (gk(pk), k). Thus, our element will fail to be in
the unique position (cf. (18)) from which it can “catch the boat” to be shifted by t

from �×{k} to �×{k +1}; and since t moves elements by only one level at a time,
our element will not be able to catch up later on. So the second line of (17) does
not move (p1,0) into � × {n + 1}, hence the two lines represent distinct elements
of Self(� × ω), completing the proof of (ii).

To deduce (i) from (ii), note that the normal forms of coproducts of groups
and of monoids are formally the same, hence the inclusion of Sym(�) in Self(�)

induces an embedding of Sym(�)� Sym(�) into Self(�)� Self(�). Since monoid
homomorphisms carry invertible elements to invertible elements, the image of
this copy of Sym(�) � Sym(�) under the embedding of statement (ii) lies in the
group Sym(�) of invertible elements of Self(�), so we have indeed embedded
Sym(�) � Sym(�) in Sym(�), as required.

As mentioned earlier, the proof of (iii) will be given in Appendix A. �
By the reasoning sketched at the beginning of this section, we deduce

Theorem 4.2.

(i) Sym(�) contains a coproduct of 2card(�) copies of itself as a group.
(ii) Self(�) contains a coproduct of 2card(�) copies of itself as a monoid.
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(iii) EndK(V ) contains a coproduct of 2card(�) copies of itself as an associative
K-algebra.

Hence, for instance, if A is any group, not necessarily of cardinality � card(�),
that is embeddable in Sym(�), then the coproduct of 2card(�) copies of A in the
category of groups is also embeddable in Sym(�).

I should mention that at the beginning of this section, when I said that the
cardinal 2card(�) appearing in our results was, in general, the best we could hope
for, the phrase “in general” was a hedge. There is an exception, concerning the
algebras EndK(V ) when K is a field of cardinality > 2card(�). We will see at
the end of Appendix A that in that case, we can get a stronger conclusion than
Theorem 4.2(iii).

Note that Theorem 4.2, unlike the results of previous sections, says nothing about
coproducts in subvarieties of our varieties. So we ask,

Question 4.3. Suppose A is a group, monoid or associative K-algebra which
belongs to a subvariety V of the variety of all such algebras, and which is
embeddable in Sym(�), Self(�) or EndK(V ) respectively.

Must the same be true of the coproduct in V of two copies of A? (If this is indeed
true for all such A, the corresponding statement will hold for coproducts in V of
2card(�) copies of such A, by Lemma 3.3 and Theorem 3.1.)

In the case where V is the variety of abelian groups, or any subvariety thereof, one
has an affirmative answer, for de Bruijn [9, Theorem 4.3] shows that every abelian
group of cardinality � 2card(�) is embeddable in Sym(�). However, the analog of
this stronger statement fails for all varieties of groups not contained in the variety
of abelian groups, by a result of McKenzie that will be recalled in the next section.

A question similar to the preceding, but concerning additional constants rather
than additional identities, is

Question 4.4. Suppose B is a subgroup of Sym(�), a submonoid of Self(�), or a
sub-K-algebra of EndK(V ).

Must Sym(�), Self(�) or EndK(V ) respectively have a subalgebra containing
B , and isomorphic over B to the coproduct of two copies of Sym(�), Self(�) or
EndK(V ) with amalgamation of B (i.e., isomorphic over B to the pushout, in the
variety of all groups, semigroups, or K-algebras, of the diagram formed by B and
two copies of the indicated algebra; equivalently, to the coproduct of two copies
of that algebra in the variety of groups, monoids or K-algebras with distinguished
constants corresponding to the elements of B)?

If this is not true in general, does it become true when B has some “good” form;
e.g., in the case of Self(�), when B is a group of invertible elements, or in the
case of EndK(V ) when B is a division algebra; and/or when B has cardinality
� card(�)?

Turning back to the argument we used to get Theorem 4.2 from Lemma 4.1,
we should note that a certain fact was implicitly called on which is true of the
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varieties of all groups, all monoids, and all associative K-algebras, and in many
other familiar varieties of algebras, but not in all – namely that, given inclusions
of algebras A′ ⊆ A and B ′ ⊆ B , the induced homomorphism of coproducts in our
variety,

A′ � B ′ → A � B,(20)

is also injective. It is this that allows us to say that if an algebra A contains a
coproduct of two copies of itself, it contains a coproduct of any finite number of
such copies.

An example of a variety V where the injectivity of maps (20) fails is the variety
of groups generated by the infinite dihedral group. To see this, note that V satisfies
the identity

(
x2, y2) = 1,(21)

but no identity xn = 1 (n > 0). Let A and B be infinite cyclic groups 〈x〉 and 〈y〉;
these are each free on one generator in V. Let A′,B ′ be the subgroups 〈x2〉 ⊆ A and
〈y2〉 ⊆ B , which are isomorphic to A and B . The coproduct A � B in V is the free
algebra on {x, y} in that variety, hence is noncommutative, and so the same is true
of A′ � B ′. But the image of A′ � B ′ in A � B is generated by x2 and y2, which
commute by (21), so the map A′ � B ′ → A � B is not an embedding.

Though this shows that the principle we used in the proof of Theorem 4.2 is not
valid in all varieties, it does not show that the consequence of that principle that we
used, concerning objects containing coproducts of copies of themselves, can fail.
So we ask

Question 4.5. Does there exist an algebra A in a variety V such that A contains the
coproduct in V of two copies of itself, but not the coproduct of three such copies?

The preceding results about fitting into Sym(�), Self(�) and EndK(V ) multiple
copies of themselves suggest questions about fitting these objects into each other,
in various ways. We record two easy results in this direction:

Lemma 4.6.

(i) EndK(V ) contains an embedded copy of KSelf(�), the monoid algebra over K

on the monoid Self(�).
(ii) Self(�) contains an embedded copy of Equiv(�)∧, i.e., Equiv(�) made a

monoid under the meet operation ∧.

Proof. (i) Let K〈�〉 denote the free associative K-algebra on �. Then the action of
Self(�) on � induces an action of Self(�) on K〈�〉 by K-algebra endomorphisms,
which extends to an action of the monoid algebra KSelf(�) by vector-space
endomorphisms of K〈�〉. Since K〈�〉 has the same vector-space dimension,
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card(�), as V , our assertion will follow if we can show that the endomorphisms
of K〈�〉 induced by any finite family g1, . . . , gn of distinct elements of Self(�) are
K-linearly independent.

Given such g1, . . . , gn, let us choose p1, . . . , pm ∈ � such that no two of
g1, . . . , gn behave the same on all of these elements. Regarding p1, . . . , pm as
members of the free generating set � of K〈�〉, we can form the product p1 . . . pm

therein, and observe that the actions of g1, . . . , gn take this monomial to distinct
monomials, hence are indeed K-linearly independent.

(ii) If we regard equivalence relations on � as subsets of � × �, then the meet
operation on Equiv(�) is the restriction of the intersection operation on P(� × �),
hence it will suffice to embed P(� × �)∩ in Self(�). Since card(� × �) =
card(�) = card(� × 2), we can do this, in turn, if we can embed P(�)∩ in
Self(� × 2). To do this, let us send each S ⊆ � to the endomap of � × 2 that
fixes all elements (p,0), and also all elements (p,1) with p ∈ S, but sends (p,1) to
(p,0) if p /∈ S. The verification that this is a monoid homomorphism, and indeed
an embedding, is straightforward. �

We will see in Section 6 that the analog of statement (ii) above with “meet”
replaced by “join” is false.

It is also interesting to note that the analog of (i) fails if � replaced by a finite set
with n � 2 elements. Indeed, for n � 3, even the group algebra KSym(�) cannot
be embedded in EndK(V ), for it has dimension n!, while EndK(V ) has dimension
only n2. In particular, the n! permutation matrices do not generate a copy of the
group algebra—they are not linearly independent. To get the nonembeddability
statement for KSelf(�) when n = 2, let R = KSelf(2), and note by comparing
dimensions that a K-algebra embedding of R in M2(K) would have to be an
isomorphism. Let z ∈ Self(2) be the map taking both elements of 2 to 0, and
note that it satisfies the left-zero identity (∀a)za = z. Hence zR ⊆ Kz, hence
zR(1−z) = 0; but M2(K) has no idempotent z with this property other than 0 and 1.

5. RESTRICTIONS ON GROUPS EMBEDDABLE IN Sym(�) AND MONOIDS EMBEDDABLE IN
Self(�)

With such vast classes of groups, monoids, associative K-algebras and lattices
embeddable in Sym(�), Self(�), EndK(V ), and Equiv(�), it is natural to ask
whether there are groups, etc., of cardinality, respectively K-dimension, � 2card(�),
that are not so embeddable.

For the case of groups, de Bruijn [8] showed, in effect, that for any set I of
cardinality > card(�), the group presented by generators xi (i ∈ I ) and relations

x2
i = 1 (i ∈ I ),(22)

(xixj )
3 = 1 (i, j ∈ I, distinct),(23)

(xixj xkxl)
5 = 1 (i, j, k, l ∈ I, distinct),(24)

cannot be embedded in Sym(�). Note that the fact that the indices in (23) and (24)
are required to be distinct keeps this system of groups from having the form to
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which the results of Section 3 apply. (If those indices were not required to be
distinct, then setting k = i, l = j in (24) would give (xixj )

10 = 1, which, combined
with (23), would give xixj = 1, making the group collapse to Z2.)

On the other hand, de Bruijn claimed in [8] that his result corresponding to
Theorem 3.1 showed that the restricted direct product (called in [8] the direct
product) of 2card(�) copies of any group A of cardinality � card(�) could be
embedded in Sym(�) – not noticing that because the commutativity relations which
the restricted direct product construction imposes on elements of different copies
of A fail to hold among elements of a single copy (unless A is commutative), that
result is not applicable. In [9] he corrected this error, noting that the argument is
only valid when A is abelian, and posed his earlier assertion as an open question.

That question was answered in the negative by McKenzie [17], who showed that
if G is a group such that for some index set I with card(I ) > card(�) there are
elements xi, yi ∈ G (i ∈ I ) satisfying

xiyj = yjxi whenever i 	= j, but xiyi 	= yixi,(25)

then G cannot be embedded in Sym(�).
We shall see that McKenzie’s criterion is an instance of more general facts. By a

centralizer subgroup in a group G, let us understand a subgroup of the form

CG(X) = {g ∈ G | (∀x ∈ X)gx = xg}(26)

for some subset X ⊆ G. A subgroup H < G is clearly a centralizer subgroup if and
only if H = CG(CG(H)). Recall also that a jump in a totally ordered set means a pair
of elements x < y such that {z | x < z < y} is empty. A totally ordered set without
jumps can have subsets with jumps; for instance, the set of reals or of rationals has
none, but their subset Z has countably many. We shall see below that the lattice
of centralizer subgroups of Sym(�), and hence of any group embeddable therein,
contains no chains with > card(�) jumps, while the lattice of centralizer subgroups
of a group with a family of elements satisfying (25) does have such chains.

In fact, we shall prove the former result not only for centralizer subgroups, but for
subsets of Sym(�) defined by arbitrary systems of equations (in several variables)
with constants in Sym(�), which will also yield a quick proof of de Bruijn’s
example. Our result will follow from the fact that such solution subsets are closed
in the function topology on Sym(�), together with the following lemma in general
topology.

Note that unless explicitly stated, we do not assume topologies to be Hausdorff.
The function topology, to which we will apply the lemma in this section, is
Hausdorff, but in the next section we will apply the same lemma to both Hausdorff
and non-Hausdorff topologies.

Lemma 5.1. Let T be a topological space having an infinite basis (or more
generally, subbasis) B of open sets. Then the lattice of open subsets of T contains
no chain with > card(B) jumps. Hence its opposite, the lattice of closed subsets

365



of T , also has no such chains. In particular, that lattice contains no well-ordered or
reverse-well-ordered chains of cardinality > card(B).

Proof. The case where B is a subbasis reduces to that in which it is a basis, since
in the former case, a basis is given by the set of intersections of finite subsets of B ,
and for B infinite there are only card(B) of these. So we assume B a basis.

Suppose C is a chain of open subsets of T . For each jump U ⊂ V in C, let us
choose a point p(U,V ) ∈ V − U . Since V is a neighborhood of p(U,V ), our basis B

contains some subneighborhood N(U,V ) ⊆ V of p(U,V ); let N(U,V ) be so chosen for
each jump U ⊂ V . Then if U ⊂ V and U ′ ⊂ V ′ are distinct jumps, say with U ⊂
V ⊆ U ′ ⊂ V ′, we must have N(U,V ) 	= N(U ′,V ′), since N(U,V ) ⊆ V , while N(U ′,V ′)
contains p(U ′,V ′) /∈ U ′. Hence distinct jumps in C give distinct elements N(U,V ) ∈ B ,
so the number of jumps in C does not exceed card(B). �

Recall next that if � and �′ are sets, and we give �′ the discrete topology, then
the function topology on the set of all maps � → �′ has for a subbasis of open sets
the sets Uy,x = {f : � → �′ | f (x) = y} (x ∈ �,y ∈ �′), since a basis for the open
sets of �′ is given by the singletons {y}. In particular, if � is infinite, the function
topology on the set Self(�) has a subbasis of cardinality card(� × �) = card(�).
Hence for any set J , the direct product of a J -tuple of copies of this space has a
subbasis of cardinality card(�)card(J ). So we get

Corollary 5.2. If card(J ) � card(�), then the lattice of subsets of Self(�)J closed
in the product topology on that set induced by the function topologies on the factors
Self(�) has no chains with > card(�) jumps.

Let us now connect this topology with our algebraic structure. It is straightfor-
ward to verify that the operation of composition on Self(�) is continuous in the
function topology; moreover, on its subset Sym(�), the operation of functional
inverse is also continuous, since it simply interchanges Uy,x ∩ Sym(�) and Ux,y ∩
Sym(�) for all x and y. (We remark, however, that Sym(�) is not closed in
Self(�).) Hence given a pair of monoid words (respectively group words) v,w, in a
variable t and constants from Self(�) (respectively, from Sym(�)), the solution set
{a | v(a) = w(a)} will be closed in the function topology on Self(�) (respectively,
Sym(�)). More generally, we may look at the solution set of any family of such
pairs of words in any number of variables. Let us set up notation for such sets in an
arbitrary algebra.

Definition 5.3. For A an algebra in a variety V, and J a set, we shall understand a
principal solution set in AJ to mean a set of the form

Sv=w = {
a = (aj )j∈J ∈ AJ | v(a) = w(a)

} ⊆ AJ ,(27)

where v and w are words in a J -tuple of variables (tj )j∈J , constants from A, and
the operations of V.
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A solution set in AJ will mean the intersection of an arbitrary family of principal
solution sets. We shall denote by L=

A,J the complete lattice of all solution sets in AJ .

Here we understand the intersection of the empty family of principal solution
sets to be the whole set AJ . Thus, L=

A,J is, as asserted, a complete lattice, the join
of any X ⊆ L=

A,J being the intersection of those principal solution sets that contain
all members of X. (The superscript “=” in L=

A,J indicates that our solution sets
are defined by equations, as in (27). In the next section we shall also make use of
solution sets defined by inequalities.)

In the next result, though J is allowed to have cardinality up to card(�), the most
common cardinality in our applications will be 1.

Theorem 5.4. Let J be any set of cardinality � card(�). Then L=
Sym(�),J

contains
no chains with > card(�) jumps. Hence the same is true of L=

G,J for any group G

embeddable in Sym(�).
Likewise, L=

Self(�),J
contains no chains with > card(�) jumps; hence the same is

true of L=
M,J for any monoid M embeddable in Self(�).

In particular, for G a group embeddable in Sym(�) or M a monoid embeddable
in Self(�), the lattice L=

G,J , respectively L=
M,J contains no well-ordered or reverse-

well-ordered chain of cardinality > card(�).

Proof. The assertions about chains in L=
Sym(�),J

and L=
Self(�),J

are clear from
Corollary 5.2 and the continuity of our operations; it remains to deduce the
corresponding statements for objects embeddable in Sym(�) and Self(�).

If G is a group embeddable in Sym(�), let us assume for notational convenience
that it is a subgroup, and map L=

G,J to L=
Sym(�),J

by sending each solution set S

in GJ to the solution set in Sym(�)J of the set of all equations (in a J -tuple of
variables, with constants in G) that are satisfied on S. This map is easily seen to be
an embedding of partially ordered sets, hence the result on chains in L=

Sym(�),J

implies the same conclusion for chains in L=
G,J . The same argument works for

monoids. �
Some observations on the above proof: Given groups G < H , one cannot embed

L=
G,J in L=

H,J by simply sending the solution set of every system of equations in G to
the solution set of the same system in H . This does not give a well-defined function,
since equations over G having the same solution set in GJ may have different
solution sets in HJ . (Consider, for instance, centralizer subgroups of various sets in
an abelian group, and of the same sets in a nonabelian overgroup.) The construction
of the above proof does give an order-embedding of L=

G,J into L=
H,J , but in general

this respects neither meets nor joins; the former because the set HJ is larger than
GJ ; the latter because the set of equations with constants in H is larger than the
set of equations with constants in G. Another order-embedding of L=

G,J in L=
H,J

is gotten by sending every S ∈ L=
G,J to the set of elements of HJ satisfying all

equations with constants in H satisfied on S; it also respects neither meets nor
joins, in general.
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For our first application of Theorem 5.4, note that the centralizer subgroups (26)
in a group G form a complete lattice, which as a partially ordered set (and indeed,
as a complete lower semilattice) is embedded in L=

G,1. Hence we have

Corollary 5.5. No group having a chain of centralizer subgroups with > card(�)

jumps is embeddable in Sym(�). In particular (McKenzie, [17]), if a group G con-
tains, for some set I with card(I ) > card(�), elements xi, yi (i ∈ I ) satisfying (25),
then G is not embeddable in Sym(�).

Proof. The first statement is clear from the first paragraph of Theorem 5.4. In
the situation of the second statement, we may, by reindexing, assume I to be a
cardinal κ > card(�). For each α ∈ κ , let Xα = {xβ | β > α}. The Xα form a
descending chain of subsets, hence their centralizers CG(Xα) form an ascending
chain of centralizer subgroups. Note that each CG(Xα) contains those elements
yγ with γ � α and no other yγ , hence the CG(Xα) are distinct. Thus we have a
well-ordered chain of centralizer subgroups of cardinality κ > card(�); hence G is
not embeddable in Sym(�).

The cardinality conditions in the above result are sharp: If we take any set I of
cardinality � card(�), and any I -tuple Gi of nonabelian groups each of cardinality
� card(�), then their restricted direct product has cardinality � card(�), hence is
embeddable in Sym(�), though it contains elements xi, yi satisfying (25).

Turning to de Bruijn’s relations (22)–(24), note that for any index set I of
cardinality � card(�), if we take an element p0 ∈ � and an I -tuple of elements
pi ∈ � distinct from p0 and from each other, and for each i ∈ I let xi ∈ Sym(�)

be the transposition that interchanges p0 and pi and fixes all other elements, then
any product of n distinct elements xi is an (n + 1)-cycle in Sym(�), from which
we see that the I -tuple (xi)i∈I satisfies (22)–(24). This shows that the cardinality
conditions in the next result are sharp. That result, in fact, does without (22), at the
small price of adding two sentences at the start of the proof.

Corollary 5.6 (Cf. [8, Theorem 5.1]). No group G containing a family (xi)i∈I of
distinct elements satisfying (23) and (24), where card(I ) > card(�), is embeddable
in Sym(�).

Proof. If there are any pairs i 	= i′ ∈ I such that xi and xi′ are inverse to one another,
then dropping one member of each such pair does not decrease card(I ). Hence we
may assume there are no such pairs.

Let us also assume, by reindexing, that I has the form κ ×2, where κ is a cardinal
> card(�), so that our given elements have the form xβ,i (β ∈ κ, i = 0,1). For each
α ∈ κ , let us define the solution set Sα = {(y, z) ∈ G2 | (∀β > α)(xβ,0xβ,1yz)5 = 1}.
By (24), this set contains the pair (xγ,0, xγ,1) whenever γ � α.

However, it contains no pair (xβ,0, xβ,1) with β > α. Indeed, if it did, we would
have
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1 = (xβ,0xβ,1xβ,0xβ,1)
5 = (xβ,0xβ,1)

10.(28)

But by (23), (xβ,0xβ,1)
3 = 1. Combining these equations we get xβ,0xβ,1 = 1,

contradicting our assumption that for i and i′ distinct, xi and xi′ are not inverses.
Hence, the sets Sα are distinct, and so form a well-ordered chain of cardinality

κ in L=
G,2, from which nonembeddability of G in Sym(�) follows by Theo-

rem 5.4. �
What about applications of Theorem 5.4 to monoids? Well, the monoid homo-

morphisms from a group G to a monoid M are the group homomorphisms from G

to the group of invertible elements of M; hence the above two corollaries can also
be viewed as giving monoids that are not embeddable in Self(�).

Here is a more genuinely monoid-theoretic application. Consider again an
element p0 ∈ � and a family of distinct elements pi ∈ � − {p0} indexed by a set I

of the same cardinality as �. Let y ∈ Self(�) be the map sending all elements to
p0, while for each i ∈ I , let xi be the map sending everything except pi to p0, and
fixing pi . Then we see that

for i, j ∈ I, xixj = y if and only if i 	= j.(29)

This gives card(�) such elements xi; but an application of Theorem 5.4, following
the same pattern as the two preceding results, shows that we cannot get a family of
> card(�) such elements; hence

Corollary 5.7. No monoid containing an element y, and a family of elements xi ,
distinct from y, indexed by a set I of cardinality > card(�), and satisfying (29), is
embeddable in Self(�).

In our examples of nonembeddability using the group conditions (23)–(24)
and (25), and the monoid conditions (29), we could have asserted much more
than the existence of a chain with card(I ) jumps. For example, given an I -tuple of
elements satisfying (25), distinct subsets of {xi | i ∈ I } have centralizers containing
distinct subsets of the yi (indexed by the complementary subsets of I ), so we in fact
get a copy of the whole partially ordered set P(I ) in L=

G,1; and the corresponding
observations hold for the other two examples.

However, there are examples that give large chains of solution sets without (as
far as I can see) giving so much more as well. If we take the group or monoid
presented by (10), respectively (11), with I a cardinal κ , then it will have a chain
of centralizers, respectively fixed sets, order-isomorphic to κ (as well as one of the
opposite order type), but there is no apparent reason why it should have, say, any
large antichain of solution sets.

It is interesting that while the constructions of (10) and (11) with I = R give, as
we saw earlier, groups and monoids embeddable in Sym(ω), respectively Self(ω),
the above paragraph shows that the contrary is true for the same constructions with
I = card(R) as a well-ordered set. We likewise get nonembeddability when I =
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R × 2 under lexicographic order (since it also has uncountably many jumps), and
for R × R under lexicographic order (since this contains the preceding ordered set).

Here is another application of our observations on (10). For every real number c,
let Gc be the group presented by generators xr, yr (r ∈ R) and relations

xrys = ysxr for all r, s ∈ R such that s � r + c.(30)

Clearly, each Gc is isomorphic to G0, by an isomorphism that fixes the xr and
takes each ys to ys−c. But we have noted that (by Theorem 3.4) G0 is embeddable
in Sym(ℵ0); hence so is every Gc. Now let G0+ denote the group with the same
generators, but having for relations the union of the sets of relations defining Gc for
all c > 0; in other words,

xrys = ysxr for all r, s ∈ R with s > r,(31)

and let us define therein, for every c ∈ R, the centralizer subgroups

Sc = {g ∈ G0+ | (∀s � c)gys = ysg},
Sc+ = {g ∈ G0+ | (∀s > c)gys = ysg}.(32)

I claim that these form a chain, with jumps Sc ⊂ Sc+ , and with inclusions Sc+ ⊂ Sd

whenever c < d . Indeed, Sc 	= Sc+ because xc ∈ Sc+ − Sc, and similarly Sc+ 	= Sd

by considering xe for any e with c < e < d . This chain is isomorphic to R × 2,
so G0+ is not embeddable in Sym(ℵ0), though it is a direct limit, via surjective
homomorphisms, of the groups Gc (c > 0), which are so embeddable.

Though a positive answer seems implausible, let us ask

Question 5.8. Is the criterion of the first paragraph of Theorem 5.4 also sufficient
for a group of cardinality � 2card(�) to be embeddable in Sym(�)? If so, is it
sufficient that it hold for all finite J ? For J = 1?

In an earlier version of this note, I asked the same questions for Self(�); but the
possibility of an affirmative answer is now precluded by a result of Wehrung [1],
showing that Self(�)op cannot be embedded in Self(�); indeed, since the lattices
L=

Self(�),J
and L=

Self(�)op,J
are isomorphic, that result shows that no condition on

the lattices L=
M,J can be equivalent to embeddability of M in Self(�). Conceivably,

however, one could construct lattices of solution sets not using all the sets Sv=w , but
some subfamilies of these that are not invariant under reversing the orders of factors
in the words u and v, such that conditions on these solution sets would characterize
embeddability in Self(�).

It is easy to formally strengthen Theorem 5.4 in several ways. First, since the sets
Sv=w of (27) are closed in the function topology, so are finite unions of such sets,
which we might write

S(v1=w1)∨···∨(vn=wn) = Sv1=w1 ∪ · · · ∪ Svn=wn.(33)
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So if we let L
=,∨
Sym(�),J

, denote the lattice of arbitrary intersections of families
of finite unions (33), these will also satisfy the conditions on chains given by
Theorem 5.4.

Secondly, the conclusion of Theorem 5.4 only states one particular consequence
of embeddability of our lattice of solution sets in the lattice of closed sets of a
topology generated by � card(�) elements. We will examine the latter condition
further in Appendix C. Meanwhile, we ask

Question 5.9. If the criteria of Theorem 5.4 are not sufficient for a group X of
cardinality � 2card(�) to be embeddable in Sym(�), do they become so if we replace
the lattices L=

X,J of that theorem by the larger lattices L
=,∨
X,J , and/or strengthen the

condition on jumps in chains to the condition that our lattice of solution sets be
embeddable as a partially ordered set in the lattice of closed subsets of a topological
space with a basis of cardinality � card(�) (cf. Appendix C)?

Do there, at least, exist groups whose embeddability in Sym(�) is precluded by
one of these strengthened conditions, but not by the conditions of Theorem 5.4?
Here we may ask the same question for embeddability of monoids in Self(�).

We mentioned (following Question 4.3) de Bruijn’s result that every abelian
group of cardinality � 2card(�) is embeddable in Sym(�). However, not every com-
mutative monoid of cardinality � 2card(�) embeds in Self(�): the presentations (11)
give commutative monoids, but we saw that for I a cardinal > card(�), the resulting
monoid is not so embeddable. So we ask

Question 5.10. Which varieties V of monoids have the property that every monoid
in V of cardinality � 2card(�) is embeddable in Self(�)?

By de Bruijn’s result on abelian groups, this is true of every variety of com-
mutative monoids satisfying an identity xn = 1, since such monoids are essentially
abelian groups of exponent n, hence embeddable in Sym(�) as groups. I don’t know
any other examples.

Returning to groups, suppose we write Sym<(�) ⊂ Sym(�) for the normal
subgroup of permutations that move fewer than card(�) elements. De Bruijn [8,
Theorem 4.4] showed that Sym(�) could be embedded in Sym(�)/Sym<(�),
while McKenzie [17, Corollary 3] showed that Sym(�)/Sym<(�) contains a
restricted direct product of > card(�) copies of itself, and hence, by Corollary 5.5,
cannot be embedded in Sym(�).

Question 5.11. What restrictions does embeddability in Sym(�)/Sym<(�) imply
for a group of cardinality � 2card(�)?

Under the assumption of the General Continuum Hypothesis, Jónsson [15]
shows, inter alia, that for every uncountable cardinal κ there exists a group of
cardinality κ which contains isomorphic copies of all groups of cardinality κ . We
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have seen that Sym(�) is not such a group for κ = 2card(�). Felgner and Haug [13]
show that under certain set-theoretic hypothesis, neither is Sym(�)/Sym<(�).

6. RESTRICTIONS ON LATTICES EMBEDDABLE IN Equiv(�)

If we want to adapt the technique of the preceding section to get restrictions on
lattices embeddable in the lattice Equiv(�) of equivalence relations on �, we must
decide what topology on that lattice to use in place of the function topology. One
approach is to regard binary relations on � as elements of P(� × �) = 2�×�, i.e.,
as functions � × � → 2 = {0,1}, and use the function topology on that set induced
by the discrete topology on 2. A subbasis of open subsets of P(� × �) under this
topology is given by the sets

Up,q = {R ∈ P(� × �) | (p, q) ∈ R} and
cUp,q = {R ∈ P(� × �) | (p, q) /∈ R}.(34)

We see that each of these sets is clopen (closed and open) in the topology so defined,
and that this subbasis has cardinality card(�).

By abuse of notation, in speaking of subsets of Equiv(�) let us write Up,q for
Up,q ∩Equiv(�) and cUp,q for cUp,q ∩Equiv(�) (just as, in introducing the function
topology on Self(�), we earlier wrote Up,q for what we would now describe as
Up,q ∩ Self(�)).

In this topology, one finds that the meet operation, i.e., intersection as subsets of
� × �, is continuous, but that the join operation is not. To see the first fact, note
that under the map

∧ : Equiv(�) × Equiv(�) → Equiv(�),(35)

the inverse image of every Up,q is the open rectangle Up,q ×Up,q , while the inverse
image of cUp,q is the union (cUp,q × Equiv(�)) ∪ (Equiv(�) ×c Up,q), and both
these sets are open. Under the operation

∨ : Equiv(�) × Equiv(�) → Equiv(�),(36)

the inverse image of Up,q is still open: it is an infinite union of finite intersections
of sets of the forms Ur,s × Equiv(�) and Equiv(�)×Ur,s , one such intersection for
each finite chain of relations which, if they hold in a pair of equivalence relations
on �, witness the conclusion that (p, q) belongs to the join of those equivalence
relations. But the inverse image of cUp,q becomes, by the same reasoning, an
infinite intersection of clopen sets, which will not be open. (Essentially because
no finite set of relations and negations of relations can witness the absence of (p, q)

from the join of two equivalence relations.)
There are two ways to respond to this difficulty. One is to formulate a criterion in

terms of words in the meet operation alone. This corresponds to regarding Equiv(�)

as a meet-semilattice, Equiv(�)∧. In the notation of Definition 5.3, we then look at
the lattices L=

Equiv(�)∧,J
, and get
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Theorem 6.1. Let J be any set of cardinality � card(�). Then L=
Equiv(�)∧,J

contains no chains with > card(�) jumps. Hence for any lower semilattice A

embeddable in Equiv(�)∧, the lattice L=
A,J contains no chains with > card(�)

jumps. In particular, for any lattice A embeddable in Equiv(�), the lattice L=
A∧,J

has no such chains.

Proof. This can be gotten by the same method as Theorem 5.4, or deduced
therefrom using Lemma 4.6(ii). �

The following application of this result shows that the meet-join asymmetry we
have come up against is real; and the second statement gives the promised example
showing that the analog of Lemma 4.6(ii) with Equiv(�)∨ in place of Equiv(�)∧ is
false.

Proposition 6.2. The largest cardinality of a set I such that Equiv(�) contains an
element z and elements xi 	= z (i ∈ I ) satisfying

xi ∧ xj = z for all distinct i, j ∈ I(37)

is card(�).
However, Equiv(�) contains an element w and 2card(�) elements yi 	= w such that

yi ∨ yj = w for all distinct i, j ∈ I.(38)

Proof. The upper bound in the first assertion follows from the preceding theorem,
by the same reasoning used to get our corollaries to Theorem 5.4. To see without
calling on Whitman’s Theorem that there does, however, exist such a family of
cardinality card(�), let z be the discrete equivalence relation on �, choose an
element p0 ∈ � and a family of card(�) distinct elements pi ∈ � − {p0}, and for
each i, let xi be the equivalence relation that relates p0 with pi , but relates no other
distinct elements of �.

To get the second assertion, let w be the indiscrete equivalence relation, and
let the yi be all the equivalence relations on � having exactly two equivalence
classes. �

The other way to deal with the fact that the join operation on Equiv(�) is not
continuous in the topology with subbasis (34) is to weaken the topology. By the
discussion following (34), both operations are continuous in the topology having the
sets Up,q as a subbasis of open sets. This topology is not T1: for every x ∈ Equiv(�),
we see that the closure of {x} is the set of all equivalence relations � x.

As a consequence, the diagonal subset of Equiv(�) × Equiv(�) is not closed;
hence, though arbitrary lattice words v and w with constants in Equiv(�) still
induce continuous operations on Equiv(�), it does not follow that the sets Sv=w =
{x ∈ Equiv(�) | v(x) = w(x)} are closed.

However, let us make
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Definition 6.3. For any lattice A, any set J , any lattice word v in a J -tuple of
variables with constants in A, and any element c ∈ A, let

Sv�c = {
a = (aj )j∈J ∈ AJ | v(a) � c

} ⊆ AJ ,(39)

and let us call such sets principal lower solution sets in AJ . A lower solution set
will mean the intersection of an arbitrary family of principal lower solution sets.
We shall denote by L

�const
A,J the lattice of all lower solution sets in AJ .

As in Definition 5.3, we allow the empty intersection, so that L
�const
A,J is indeed a

complete lattice.
Any principal lower solution set Sv�c in Equiv(�)J is the inverse image under

the continuous map v : Equiv(�)J → Equiv(�) of the closed set {d | d � c} ⊆
Equiv(�), hence is closed, making Lemma 5.1 applicable. Thus we get

Theorem 6.4. Let J be any set of cardinality � card(�). Then L
�const
Equiv(�),J

contains
no chains with > card(�) jumps. Hence for any lattice A embeddable in Equiv(�),
L

�const
A,J contains no such chains.

To get applications of this result that are not consequences of Theorem 6.1, one
has to use sets Sv�c determined by words v that involve both meets and joins;
in fact, that involve meets of joins. For if v does not involve meets of joins, we
can write v = ∨m

r=1
∧nr

s=1 ar,s , where the ar,s are variables and/or constants, and
m,n1, . . . , nm are positive integers (some of which may be 1). Then we see that
the relation v � c is equivalent to the conjunction of the relations

∧nr
s=1 ar,s � c

(r = 1, . . . ,m), and each of these can be rewritten c ∧ ∧nm
s=1 ar,s = ∧nm

s=1 ar,s . Hence
Sv�c ∈ L=

Equiv(�)∧,J
, and we are reduced to Theorem 6.1. Perhaps workers in lattice

theory will be able to see interesting applications of Theorem 6.4 that do not reduce
to Theorem 6.1.

We remark that while Theorems 6.1 and 6.4 show that L=
Equiv(�)∧,J

and

L
�const
Equiv(�),J

, contain no well-ordered chains of cardinality > card(�), the second
paragraph of Proposition 6.2 shows that L=

Equiv(�),J
and L=

Equiv(�)∨,J
do contain

such chains.

7. MONOIDS EMBEDDABLE IN Rel(�)

In this section we return to monoids, but focus, not on Self(�), but on its
“wild sibling” Rel(�), the monoid of all binary relations on �, under relational
composition:

xy = {(q,p) ∈ � × � | (∃r ∈ �)(q, r) ∈ x, (r,p) ∈ y}.(40)

Note that when specialized to functions, the above definition of composition,
together with our convention that functions act on the left and are composed
accordingly, requires that we identify each function f with the set of ordered pairs
(f (p),p), rather than the more usual (p,f (p)).
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Clearly, Rel(�) ∼= Rel(�)op, and this monoid contains Self(�); hence it also
contains an isomorphic copy of Self(�)op. In fact, it is generated by Self(�) and
the natural copy of Self(�)op; for if R ∈ Rel(�) is nonempty, then since, as a subset
of � × �, it has cardinality � card(�), we can find maps f,g ∈ Self(�) such that
R = {(f (p), g(p)) | p ∈ �}. Letting ḡ = {(p,g(p)) | p ∈ �} ∈ Self(�)op, we easily
verify that f ḡ = R. The empty relation, on the other hand, equals f̄ g for any f and
g having disjoint ranges.

The next result shows that monoids embeddable in Rel(�) are considerably less
restricted than those embeddable Self(�) or Self(�)op.

Proposition 7.1. Let w denote the indiscrete equivalence relation on �, and (as
in the proof of Proposition 6.2) let yi (i ∈ I ) be the 2card(�) distinct equivalence
relations on � having exactly two equivalence classes. Then as members of Rel(�),
these satisfy

yiyi = yi (i ∈ I ),(41)

yiyj yi = w (i 	= j in I ).(42)

Hence L=
Rel(�),1 contains a well-ordered chain of cardinality 2card(�).

Proof. (41) is immediate. The verification of (42) is routine, but the reader may find
the following way of visualizing it helpful. Given yi and yj , picture a Venn diagram
for �, divided by a vertical line representing the partition into the two equivalence
classes of yi and a horizontal line representing the partition into the equivalence
classes of yj . Given (p, q) ∈ w = �×�, which we wish to show belongs to yiyjyi ,
we may assume by adjusting our diagram that p lies in the upper left-hand box.
Since yi and yj each have two equivalence classes, at least one of the lower boxes
and at least one of the right-hand boxes are nonempty, and since yi 	= yj , the lower
right-hand box is not the only nonempty box other than the upper left-hand one. It is
now easy to see that wherever q may lie in our diagram, we can get from p to it by
crossing the vertical line at most once and the horizontal line at most once, hence
that (p, q) lies in either yiyj or yjyi . In either case, it lies in yiyjyi , as claimed.

However, (41) shows that yiyiyi 	= w, and the contrast between this inequality
and (42) allows us to get, as in the proofs of Corollaries 5.5 and 5.6, a well-ordered
chain of cardinality 2card(�) in L=

Rel(�),1. �
The composition operation (40) of Rel(�) resembles the join operation of

Equiv(�) in being continuous in the topology on Rel(�) with subbasis of open
sets consisting of the sets Up,q (defined in (34)), but not in the Hausdorff topology
with subbasis of open sets Up,q and cUp,q . Indeed, though composition of relations
is simpler to describe than the join of equivalence relations, it is still true that no
specification of whether some finite number of pairs belong to each of two relations
can tell us that (p, q) does not belong to their composite. For Rel(�), there is no
analog of our ploy of restricting attention to the meet operation of Equiv(�); so let
us go directly to the weaker topology. As in the case of Equiv(�), we can conclude
that
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Lemma 7.2. For J any set of cardinality � card(�), L
�const
Rel(�),J

contains no chains
with > card(�) jumps.

Unfortunately, I don’t see how to use this result in studying the structures of
monoids embeddable in the monoid Rel(�), for the definition of L

�const
Rel(�),J

makes
use of the ordering of Rel(�) by inclusion, and, unlike the order relation on a lattice,
this has no description in terms of its algebra operations. Of course, if we throw in
order as additional structure, then Lemma 7.2 yields restrictions on embeddability.
Let us record this and another consequence of Lemma 7.2, without looking for
examples, then return to the question of embeddability as pure monoids.

By a partially ordered monoid (M,�), let us understand a monoid M given with
a partial ordering �, such that for all x, y, z ∈ M ,

x � y �⇒ xz � yz,

x � y �⇒ zx � zy.
(43)

An embedding of partially ordered monoids f : (M,�M) → (N,�N) will mean a
monoid embedding f :M → N such that the partial ordering on M induced by �N

under f is precisely �M . Clearly, Lemma 7.2 gives

Corollary 7.3. If a partially ordered monoid (M,�) is embeddable in (Rel(�),⊆),
then for any set J of cardinality � card(�), the complete lattice L

�const
(M,�),J contains

no chains with > card(�) jumps.

To formulate another consequence of Lemma 7.2, let us define, for M a monoid
with a distinguished element z, J a set, and v any monoid word in a J -tuple
of variables and arbitrary constants from M , the set Sv=z = {a = (aj )j∈J ∈ MJ |
v(a) = z} ⊆ MJ , and let L=z

(M,z),J ⊆ P(MJ ) denote the lattice of all intersections of
families of sets of this sort. If (M,z) and (M ′, z′) are such pairs, a homomorphism
(M,z) → (M ′, z′) will mean a monoid homomorphism M → M ′ carrying z to z′.

Corollary 7.4. Let M be a monoid with a zero element z (an element satisfying
zx = z = xz for all x ∈ M), such that (M,z) is embeddable in (Rel(�),∅), and let
J be a set of cardinality � card(�). Then the complete lattice L=z

(M,z),J contains no
chains with > card(�) jumps.

Proof. In Rel(�)J , any set of the form Sv=∅ can clearly also be described as Sv�∅,
whence the assertion follows immediately from Lemma 7.2. �

A way of getting restrictions on embeddability in Rel(�) without bringing in
additional structure is to note, as we did in Section 5 for Self(�), that any monoid
homomorphism from a group into Rel(�) will land in the group of invertible
relations, which is again Sym(�). Hence our restrictions on groups embeddable
in Sym(�) are also restrictions on the groups of invertible elements of monoids
embeddable in Rel(�).
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But in fact, we can use the group Sym(�) of invertible elements of Rel(�) in a
way that brings in noninvertible elements as well. Note that the function topology
on Self(�), and hence on Sym(�), is the restriction thereto both of the topology
of (34), and of the weaker topology having only the sets Up,q as subbasis of open
sets. (In Self(�), the set cUp,q can be written as

⋃
p′ 	=p Up′,q , so the topology

generated by the sets Up,q also contains the complementary sets.) This immediately
gives case (i) of the next lemma. Case (ii), the one we shall make use of, is more
surprising. (We shall not use the final parenthetical strengthening of (ii).)

Lemma 7.5. The restrictions of the monoid multiplication of Rel(�) to maps

Sym(�) × Rel(�) → Rel(�) and Rel(�) × Sym(�) → Rel(�)(44)

are continuous if we put the function topology on Sym(�), and put on Rel(�) the
topology with subbasis of open sets consisting either of

(i) the sets Up,q , or
(ii) the sets Up,q and cUp,q . (This remains true if we replace Sym(�) by Self(�)

in the second map of (44), though not in the first.)

Proof. As noted, continuity in the topology determined by (i) follows from the
continuity of the multiplication of Rel(�) in that topology. This also gives half of
continuity in the topology specified in (ii), namely openness of the inverse images
of the sets Up,q . We shall prove the corresponding statement for cUp,q for the
second map in (44) with Sym(�) replaced by Self(�). The case where Sym(�)

is left unchanged follows immediately, and the first statement of (44) then follows
by reversing coordinates in ordered pairs.

Note that a necessary and sufficient condition for a composite xa (x ∈ Rel(�),

a ∈ Self(�)) to lie in cUp,q , i.e., not to contain (p, q), is that for the unique r ∈ �

such that (r, q) ∈ a, we have (p, r) /∈ x. Hence the inverse image of cUp,q under the
above composition map is the union

⋃
r∈�(cUp,r × (Ur,q ∩ Self(�))). This set is

open in Rel(�) × Self(�), as claimed.
To get the negative part of the final parenthetical assertion, assume without loss of

generality that ω ⊆ �. For each n ∈ ω, let xn ∈ Rel(�) be the partial function which
sends 0 to n and does nothing else, and let a ∈ Self(�) be the function sending all
elements to 0. Then for all n, axn = x0, hence limn→∞ axn = x0. On the other hand,
limn→∞ xn = ∅, the empty relation, which when left multiplied by a gives ∅ 	= x0.
So composition is not continuous in the Hausdorff topology of (ii). �

From the operations (44) and the group operations of Sym(�), we can form
words in a mixture of Sym(�)- and Rel(�)-valued elements; but any such word
can involve, at most, either one occurrence of a Rel(�)-valued variable or one
occurrence of a non-Sym(�)-valued constant, since the operations (44) do not allow
the multiplication of two non-Sym(�)-valued elements. (Here by a “Rel(�)-valued
variable” I mean a variable that is allowed to range over all of Rel(�), tak-
ing on both invertible and noninvertible values. Constants, on the other hand,
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have specific values rather than ranges, so for these the relevant concept is
that of a non-Sym(�)-valued constant, i.e., a noninvertible element of Rel(�).)

By Lemma 7.5, if we take a family of such words, possibly involving many
Rel(�)-valued variables and non-Sym(�)-valued constants altogether (though with
at most one of these per word), and a set of equations in these words, then its
solution set is closed in the Hausdorff topology defined by the subbasis (ii). Hence
we can apply Lemma 5.1 and get restrictions on the lattice of such solution sets,
which imply the same restrictions on the corresponding lattice obtained from any
monoid embeddable in Rel(�).

It is not clear to me whether so allowing more than one Rel(�)-valued variable
or constant in our system of equations actually contributes to the generality of this
result. Note that if we have a system of equations in several such variables and
constants, then any equation involving different Rel(�)-valued variables on the two
sides, say x on the left and y on the right, will allow us to solve for y in terms
of x and the Sym(�)-valued variables and constants (since the latter can all be
inverted and brought to the left side of the equation); and we can then substitute
the resulting expression for all occurrences of y in the remaining equations, and so
eliminate y from the system. On the other hand, our interest is not in the solution
set of a single system of equations but in the relation between solution sets of many
such systems, and a variable that can be eliminated from one of these will not in
general be eliminable from all of them. So if the consequences of our conditions
on lattices of solution sets can indeed be reduced to the case where there is only
one Rel(�)-valued variable, the argument by which this reduction is done may be
nontrivial.

Leaving it to others to determine whether such a reduction is possible, I will, for
simplicity, record here only the statements for systems with at most one Rel(�)-
valued-variable.

Theorem 7.6. Let J be any set of cardinality � card(�).
Let L denote the lattice of solution sets in Sym(�)J × Rel(�) of systems of

equations in a J -tuple of Sym(�)-valued variables, and a single Rel(�)-valued
variable which appears at most once on each side of any equation, together with
arbitrary Sym(�)-valued constants.

Let L′ similarly denote the lattice of solution sets in Sym(�)J of systems of
equations having on each side a word in a J -tuple of Sym(�)-valued variables,
arbitrary Sym(�)-valued constants, and at most one occurrence of a noninvertible
Rel(�)-valued constant.

Then neither of these lattices contains a chain with > card(�) jumps. Hence for
any monoid M embeddable in Rel(�), the corresponding restrictions hold, with the
group U(M) of invertible elements of M taking the place of Sym(�).

Simple examples of equations of the sort arising above are stabilizer relations
gx = x and xg = x (x ∈ M,g ∈ U(M)), and more generally, gxg′ = x (x ∈ M,g,
g′ ∈ U(M)). Here is an example based on relations gx = x.
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Recall that a left zero element in a monoid M means an element z satisfying
zx = z for all x ∈ M .

Corollary 7.7. Let I be a set, let G be the restricted direct product of an I -tuple
of copies of the group Z2, with generators gi (i ∈ I ) (i.e., the additive group of the
vector space with basis {gi | i ∈ I } over the field of two elements), and let M be
the monoid whose group of invertible elements is this group G, and whose other
elements, denoted zi, z

′
i (i ∈ I ), are left zero elements whose behavior under the left

action of G is described by

Left multiplication by gi interchanges zi and z′
i , and fixes all zj and

z′
j with j 	= i.

(45)

Then M is embeddable in Rel(�) if and only if card(I ) � card(�).

Proof. It is straightforward to verify that the above operations define a monoid,
which has cardinality � max(card(I ),ℵ0), and so is embeddable in Self(�) ⊆
Rel(�) if card(I ) � card(�). To prove the “only if” part of the conclusion, assume
I is a cardinal κ > card(�). For each α ∈ κ , let Sα = {x ∈ M | (∀β > α)gβx = x}.
Note that zβ ∈ Sα if and only if β � α, so the Sα form a well-ordered chain
of cardinality κ > card(�). By the “L” case of Theorem 7.6 (with J = 0), this
precludes embeddability in Rel(�). �

In proving the above corollary we could, alternatively, have used the zα as
monoid-valued constants, and let the g in the relations gzα = zα be an invertible-
element-valued variable, getting a system to which the “L′” case of Theorem 7.6
with J = 1 applied.

Question 7.8. Can one give stronger necessary conditions for embeddability of a
monoid M of cardinality � 2card(�) in Rel(�) than those of Theorem 7.6?

In particular, suppose we define the left, right, and 2-sided stabilizers of an
element x of a monoid M as {y ∈ M | yx = x}, {y ∈ M | xy = x}, and {(y, y′) ∈
M2 | yxy′ = x}. Does Rel(�) have any chains of intersections of such stabilizers
with > card(�) jumps? What if we restrict y and y′ here to left invertible or to right
invertible elements?

Are there any monoids of cardinality � 2card(�) having no invertible elements
other than 1 (or having � card(�) invertible elements) which are not embeddable
in Rel(�)?

For card(I ) > card(�), is the monoid of Corollary 7.7 ever embeddable as a
semigroup in Rel(�)?

One kind of noninvertible elements one might look at in approaching these
questions are the idempotents, since for e idempotent, the solution sets of xe = x

and ex = x are particularly natural objects. Idempotents in Rel(�) come in more
forms than one might expect. Obvious examples are equivalence relations, subsets
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of the identity relation, graphs of retractions of � onto subsets, and the opposites
of such graphs; these four constructions can also be mixed in fairly natural ways.
For less obvious examples, note that (i) for any partial ordering, �, on � with no
jumps (e.g., the ordinary ordering on the set of rational numbers), the graph of
the relation “<” is idempotent, though it has trivial intersection with the identity
relation; and (ii) for any nondisjoint subsets X and Y of �, the set X × Y ⊆ � × �

is an idempotent relation.
We have not written down the positive embeddability result analogous to Theo-

rem 3.1, i.e., the embeddability in Rel(�) of monoids F(2card(�)) for appropriate
functors F , since this follows from Theorem 3.1 and the inclusion Self(�) ⊆
Rel(�). It would, of course, be of interest if one could get stronger results of this
sort for Rel(�) than for Self(�). I also don’t know the answer to

Question 7.9. Is Rel(�) � Rel(�) embeddable as a monoid in Rel(�)?
(If so, then by the usual argument, Rel(�) in fact contains a coproduct of 2card(�)

copies of itself.)

Here are some partial positive results on that question.
Let 1� ∈ Rel(�) denote the identity element, that is, the diagonal subset of �×�.

Let us say that elements g,h ∈ Rel(�) “differ off the diagonal” if g − 1� 	= h − 1�

(where “−” denotes set-theoretic difference); and for a subset X ⊆ Rel(�), let us
say “the members of X are distinguishable off the diagonal” if every pair of distinct
elements of X differs off the diagonal.

Lemma 7.10. There exists a monoid homomorphism f : Rel(�) � Rel(�) →
Rel(�) with the property that whenever M and N are submonoids of Rel(�), each
of which has the property that its members are distinguishable off the diagonal, then
the restriction of f to a homomorphism M � N → Rel(�) is an embedding.

Proof. Let us understand a “relational action” of a monoid M on a set X to mean
a homomorphism M → Rel(X). Paralleling the proof of Lemma 4.1(ii), we shall
construct a relational action of Rel(�) � Rel(�) on the disjoint union of a family
of copies of � × ω, where the family is again indexed by the group Symfin(� × ω),
such that the restriction of this action to any submonoid M � N as in the statement
of the lemma is faithful.

Let the “natural relational action” of Rel(�) on � × ω be defined to take each
g ∈ Rel(�) to the relation on � × ω consisting of all pairs ((q, k), (p, k)) with
(q,p) ∈ g and k ∈ ω. Let α,β be the two coprojections Rel(�) → Rel(�)�Rel(�).
For each g ∈ Rel(�), let us send α(g) to the natural relational action of g on each
copy of � × ω, while letting β(g) act on the copy of � × ω indexed by each t ∈
Symfin(� × ω) via the conjugated relation tgt−1. To complete our proof, we need
to show that for M and N as in the statement of the lemma, if (13) and (14) are
distinct elements of M �N ⊆ Rel(�)�Rel(�), then there exists t ∈ Symfin(�×ω)

such that the two relations (15) on � × ω are distinct.
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As in our previous argument, we assume that the length of (13), which we will call
n, is at least the length of (14). Moreover, we assume that if these lengths are equal,
and if αs and βs occur in the same positions in both expressions, then at the first
position k from the right where (13) and (14) differ, gk contains some nondiagonal
ordered pair which does not lie in hk . Since gk and hk differ off the diagonal, we
can achieve this by interchanging (13) and (14) if necessary. We now choose, for
each k ∈ {1, . . . , n}, a nondiagonal pair (qk,pk) ∈ gk (which must exist, because gk

is not the identity, hence is distinguishable from the identity off the diagonal), using,
when possible, a pair not also contained in hk; and we define t as in (18), except that
wherever (18) shows an element gk(pk), we now use qk . The same considerations
as in the proof of Lemma 4.1 show that the first product in (17), but not the second,
contains the pair ((qn, n + 1), (p0,0)); so these two products are distinct relations
on � × ω, completing the proof. �

Here are some consequences.

Corollary 7.11.

(i) Self(�) � Self(�)op is embeddable in Rel(�).
(ii) Let Rel(�)�1 ⊆ Rel(�) denote the submonoid of relations that contain the

diagonal (the reflexive relations). Then Rel(�)�1 �Rel(�)�1 is embeddable in
Rel(�)�1. Hence the coproduct of 2card(�) copies of Rel(�)�1 is embeddable
in Rel(�)�1.

(iii) Let Relsemi(�) denote the underlying semigroup of Rel(�). Then the semi-
group coproduct Relsemi(�)� Relsemi(�) is embeddable in Relsemi(�). Hence
the semigroup coproduct of 2card(�) copies of Relsemi(�) is embeddable in
Relsemi(�).

Proof. (i) is immediate from the lemma, since both Self(�) and the natural copy
of Self(�)op in Rel(�) (gotten by taking the opposite relations to all members of
Self(�)) have the property that their members are distinguishable off the diagonal.

In (ii), Lemma 7.10 immediately gives embeddability of Rel(�)�1 � Rel(�)�1

in Rel(�). Moreover, we see that the construction of that lemma takes reflexive
relations to reflexive relations, so the embedding lands in Rel(�)�1. The method
of proof of Theorem 4.2 now allows one to work one’s way up to the coproduct of
2card(�) copies.

To prove (iii) let us begin by constructing an embedding of Relsemi(�) in the
semigroup of relations on a set of the same cardinality as �, by relations that are
distinguishable from each other and from the identity relation off the diagonal.

We first have to declaw the empty relation; so let z be an element not in �, and
let us embed Rel(�) in Rel(� ∪ {z}) by sending each relation g to g ∪ {(z, z)}; this
is an embedding of monoids whose image consists of nonempty relations.

We now map Relsemi(� ∪ {z}) into Relsemi((� ∪ {z}) × 2) by

g �→ {(
(q, i), (p, j)

) | (q,p) ∈ g; i, j ∈ 2
}
.(46)
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This construction is easily seen to respect composition, and to take distinct
nonempty relations to relations that differ off the diagonal both from each other and
from 1�∪{z}. The image of the composite map Relsemi(�) → Relsemi(� ∪ {z}) →
Relsemi((� ∪ {z}) × 2) is in particular a subsemigroup S ⊆ Relsemi((� ∪ {z}) × 2)

isomorphic to Relsemi(�). Applying Lemma 7.10 with S ∪ {1} in the role of both M

and N , we get an embedding of monoids (S ∪ {1}) � (S ∪ {1}) → Rel(�), which,
restricted to the subsemigroup generated by the two copies of S, gives the desired
embedding of semigroups. As before, the method of Section 4 allows us to push
this up to an embedding of a 2card(�)-fold coproduct of copies of Relsemi(�) in
Relsemi(�). �

It would be nice if we could carry the idea of part (iii) of the above corol-
lary further. If we could find a monoid embedding ϕ : Rel(�) → Rel(�′) with
card(�′) = card(�), such that images of distinct elements were distinguishable
off the diagonal, then an application of Lemma 7.10 would give us our desired
embedding Rel(�) � Rel(�) → Rel(�). But when we attempt to construct such a
ϕ, we run into difficulty trying to simultaneously

(a) make it carry the identity relation 1� to 1�′ ,
(b) handle relations which are properly contained in 1�, and
(c) handle relations which are both infinitely-many-to-one and one-to-infinitely-

many.

Part (iii) of the above corollary showed that we could get an embedding if we
dropped the requirement (a). The following result (strengthening part (ii) of that
corollary) shows the same if we instead drop (b), and the result after that will do the
same for (c).

Lemma 7.12. There exists a monoid homomorphism f ′ : Rel(�) � Rel(�) →
Rel(�) with the property that whenever M and N are submonoids of Rel(�),
neither of which contains a proper subrelation of 1�, then the restriction of f ′
to a homomorphism M � N → Rel(�) is an embedding.

Proof. Let ϕ : Rel(�) → Rel(�2) take each g ∈ Rel(�) to {((p,p′), (q, q ′)) |
(p, q), (p′, q ′) ∈ g}. It is straightforward to verify that this is a monoid homomor-
phism. We shall show that if g,h ∈ Rel(�) are distinct elements which are not both
subrelations of 1�, then ϕ(g) and ϕ(h) are distinguishable off the diagonal. This,
together with Lemma 7.10, yields the desired result.

First, suppose g and h are themselves distinguishable off the diagonal. Then
without loss of generality we may assume that (p, q) is contained in g but not h

for some p 	= q , and we see that ((p,p), (q, q)) belongs to ϕ(g) but not ϕ(h). On
the other hand, if g and h are not distinguishable off the diagonal, then since they are
not both subrelations of 1�, there must be some (p, q) with p 	= q that is contained
in both of them. Also, since g 	= h, some (r, r) (r ∈ �) will belong to one of them

382



but not the other; say to g but not h. Then we see that ((p, r), (q, r)) is a nondiagonal
element belonging to ϕ(g) but not ϕ(h). �

Finally, let us see what we can get if we sacrifice (c).
Given g ∈ Rel(�) and X ⊆ �, let us define the “image” set

gX = {q ∈ � | (∃p ∈ X)(q,p) ∈ g},(47)

and let

Relfin←1(�) = {g ∈ Rel(�) | (∀p ∈ �)g{p} is finite}.(48)

The arrow points to the left to show that we are defining this set in terms of the
left action (47). We can clearly also describe (48) as the set of g such that for every
finite X ⊆ �, the set gX is again finite. This shows Relfin←1(�) to be a submonoid
of Rel(�), and it clearly acts faithfully – by functions, not relations – on Pfin(�).
This gives us an embedding Relfin←1(�) → Self(Pfin(�)) ∼= Self(�). Of course, we
also have Self(�) ⊆ Relfin←1(�); so embeddability of a monoid in Relfin←1(�) and
in Self(�) are equivalent. This is the first assertion of the next lemma, and by the
results of Section 4 it implies the second.

Lemma 7.13. Relfin←1(�) and Self(�) are each embeddable in the other.
Hence Relfin←1(�) contains a coproduct of 2card(�) copies of itself as a monoid.

Let me record here a curious construction which I thought, at one point, would
give a more elegant proof of our semigroup-embedding result, Corollary 7.11(iii).
This did not quite work; but perhaps it is nonetheless of interest.

Consider the map θ : Relsemi(�) → Relsemi(Pfin(�)) defined by

θ(g) = {
(t, s) ∈ (

Pfin(�)
)2 | t ⊆ gs

}
.(49)

It is easy to verify that θ is a semigroup homomorphism. Moreover, every θ(g)

contains all pairs (∅, t) with t ∈ Pfin(�), and hence differs from 1Pfin(�) off the
diagonal. For most pairs of distinct g,h ∈ Rel(�), one finds that θ(g) and θ(h) differ
in the nondiagonal pairs of one of the forms ({p}, {q}), ({p}, {p,q}), or ({p,q}, {p})
that they contain. There are exceptions, however; for instance, if p ∈ � and we take
g = {p} × �, h = {p} × (� − {p}); then θ(g) and θ(h) differ only with regard
to the diagonal pair ({p}, {p}). Hence this construction is not itself a substitute
for the one used in proving Corollary 7.11(iii). We can cure the problem using
the “Rel(�) → Rel(� ∪ {z})” trick that was used (to cure a different problem) in
the existing proof of that statement (and after this is done, the images of any two
relations in fact differ in the pairs ({p}, {q, z}) that they contain); but I wouldn’t call
the resulting proof more elegant than the one we used.

We end this section with a different sort of self-embeddability question for
Rel(�).
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Question 7.14. If e ∈ Rel(�) is an idempotent, and we regard eRe = {x ∈ Rel(�) |
exe = x} as a monoid with identity element e, is this monoid always embeddable in
Rel(�)? (Cf. remarks on idempotents following Question 7.8.)

8. RESTRICTIONS ON K -ALGEBRAS EMBEDDABLE IN EndK(V )

Recall that V denotes a vector space with basis � over a field K . Since the
endomorphism algebra EndK(V ) is a K-linear analog of the monoid Self(�), we
would hope to get restrictions on associative unital K-algebras embeddable in
EndK(V ) parallel to our restrictions on monoids embeddable in Self(�). We can
do this—except that, where we would like to bound the number of jumps in a
chain of solution sets by card(�) = dimK(V ), I only know how to bound it by
card(V ) = max(card(�), card(K)). The following theorem is proved exactly like
Theorem 5.4, using the fact that addition and composition of members of EndK(V ),
and multiplication of these maps by members of K , are continuous in the function
topology on EndK(V ), regarded as a subset of Self(V ).

Theorem 8.1. Let J be any set of cardinality � card(V ). Then L=
EndK(V ),J

contains
no chains with > card(V ) jumps. Hence for any K-algebra A embeddable in
EndK(V ), the lattice L=

A,J contains no such chains; in particular, it contains no
well-ordered or reverse-well-ordered chains of cardinality > card(V ).

In the hope of reducing the bound card(V ) to card(�), we might try replacing
the function topology on EndK(V ) by some topology with a smaller basis of open
sets; say one that defines its subbasic open sets not by considering the values of
elements of EndK(V ) at arbitrary elements of V , but only at the elements of our
basis �. Unfortunately, each of these images still has card(V ) possible values.
However, a linear restriction on these images corresponds to a proper subspace of
the space V of possible values, suggesting that the vector space dimension should
still bound lengths of chains. On the other hand, the conditions on the coordinates of
our elements induced by ring-theoretic relations are not necessarily linear. Perhaps
one should seek bounds on the lengths of chains of solution sets by methods of
algebraic geometry. Or perhaps one can get stronger results for relations that are
multilinear, such as centralizer and annihilator relations, than for general relations.

In another direction, if K is a topological field such as the real or complex num-
bers, perhaps we could use the topology of that field instead of the discrete topology
on our coordinates, and replace card(V ) in the above theorem by max(card(�), κ)

where κ is the least cardinality of a basis for the topology of K . We record these
problems as

Question 8.2. In Theorem 8.1, can the bound card(V ) be lowered to card(�)? If
not in general, what if we restrict attention to the lattice determined by K-linear
or K-affine relations? Can one at least improve the bound card(V ) if K admits a
structure of topological field with a basis of < 2card(�) open sets?

For one sort of system of relations, we can indeed get the expected bound.
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Lemma 8.3. Any set of nonzero pairwise orthogonal idempotent elements of
EndK(V ) has cardinality � card(�). Hence the same is true in any K-algebra
embeddable in EndK(V ).

In particular, EndK(V ) does not contain a direct product of > card(�) nontrivial
K-algebras.

Proof. Given an infinite family S of nonzero pairwise orthogonal idempotents, the
images of these as endomaps of V form a set of subspaces of V whose sum is direct.
Hence the dimension of that sum is at least card(S); so card(S) � dim(V ) = �.

To see the final sentence, note that in a direct product of K-algebras
∏

i∈I Ai , if
ei denotes the element with i-component 1 and all other components 0, then these
are pairwise orthogonal idempotents. �

On the other hand, some ways in which the behavior of EndK(V ) for K large is
indeed different from that of Self(�) will be noted at the end of Appendix A.

Wehrung, paralleling his result mentioned earlier that Self(�) cannot be em-
bedded in Self(�)op, also shows in [1] that EndK(V ) cannot be embedded in
EndK(V )op. In fact, he shows that Self(�) cannot be embedded in the underlying
multiplicative semigroup of EndK(V )op, yielding both results!

9. OTHER DIRECTIONS FOR GENERALIZATION

In this note, we have concentrated on questions of embeddability in a small number
of objects: Sym(�), Self(�), EndK(V ), Equiv(�) and Rel(�), with brief obser-
vations on a few more: Sym(�)/Sym<(�), (Rel(�),⊆), (Rel(�),∅), Relsemi(�),
and objects which we could write Equiv0(�), Equiv1(�) and Equiv0,1(�), i.e.,
Equiv(�) regarded as a member of the variety of lattices with least and/or greatest
element. Similar questions for other objects of the same flavor, for example the
groups of automorphisms of various structures considered in [10], [11] and [12],
the lattices of congruences of these objects, etc., would also be of interest.

Above, I quoted results from McKenzie [17] only in the forms in which they were
relevant to the questions considered here; but that paper in fact considers the group
Sym(�,β) of all permutations of � moving < β elements, for a fixed cardinal β ,
and many of the restrictions proved there are in terms of β , rather than card(�).
This, too, represents a direction in which the present results might be generalized.

The variant of the technique of Section 3 illustrated in Theorem 3.4, based on
considering functors on the category T.ord of totally ordered sets, rather than on
Set, also admits wide generalization. Note that any algebra-valued functor F on
T.ord can be extended to the category Poset of partially ordered sets, though
usually not uniquely. (For instance, by taking each partially ordered set P to the
colimit of the algebras F(C) as C ranges over all chains in P ; or to the limit
of the algebras F(C) as C ranges over all quotient-sets of P given with total
orderings that make the quotient-map isotone.) Hence in stating Theorem 3.4 and
seeking generalizations, we could just as well let F be a functor on Poset. Still
more generally, why not let it be defined on arbitrary preordered sets? Or on
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sets with an arbitrary binary relation? Or several binary relations? And for such
generalizations, what would be the “best” analog of (9)? Not knowing what the
useful generalizations would be, I have merely given a sample result.

The referee notes that de Bruijn’s groups with presentation (22)–(24) are the
values of a functor on the category whose objects are sets I , and whose morphisms
are one-to-one set-maps; this also applies to several other examples for which we
proved nonembeddability results. Hence that domain category is not good from
the above point of view. A repeated use that we made of non-one-to-one maps in
the arguments of Section 3 was in getting left inverses to one-to-one maps with
nonempty domains. The fact that such inverses exist has the consequence (also
pointed out by the referee) that our key condition (9) is equivalent to the condition
that F respect direct limits.

A question I have not thought much about, but to which some of the techniques
we have introduced above should be applicable, is

Question 9.1. What can be said about groups A embeddable in (
∏

n∈ω Sym(n))�,
monoids A embeddable in (

∏
n∈ω Self(n))�, K-algebras A embeddable in

(
∏

n∈ω EndK(Kn))�, and lattices A embeddable in (
∏

n∈ω Equiv(n))�?
Clearly, such an A must be residually finite(-dimensional), and embeddable in

Sym(�), Self(�), EndK(V ), respectively Equiv(�). Are these conditions on an
algebra A sufficient for it to be embeddable in the indicated object?

I record next a question which it would have been natural to give in [5,6], or [7],
but which occurred to me too late to include in those papers. (It is an instance of the
direction for investigation suggested in the second sentence of [7, Section 10].)
There are obvious variants and strengthenings, but for concreteness, I pose the
question here for the object that has been most studied.

Question 9.2. Suppose G and H are subgroups of Sym(ω), which together gen-
erate that group. Must Sym(ω) be finitely generated over one of these subgroups?
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APPENDIX A. EndK(V ) � EndK(V ) CAN BE EMBEDDED IN EndK(V )

We shall now give the postponed proof of the above embeddability statement,
Lemma 4.1(iii).

Suppose S and T are two nonzero K-algebras (as always, associative and unital),
and we form their coproduct S � T in the variety of such algebras, calling the
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coprojection maps α : S → S � T and β : T → S � T . Recall [3, Corollary 8.2] that
if BS , BT are K-vector-space bases for S and T , containing 1S and 1T respectively,
then a K-vector-space basis for S � T is given by the set of finite products

. . . α(bi)β(bi−1)α(bi−2)β(bi−3) . . .(50)

where, as in (13), those bj that are arguments of α (i.e., in (50), those with subscript
j having the same parity as i) are taken from BS − {1S}, those that are arguments
of β are taken from BT − {1T }, and the empty product is understood to give the
identity element 1 = α(1S) = β(1T ). As in (13), I have not shown the first and last
terms, since each may be either an α-term or a β-term.

Letting S = T = EndK(V ), and letting B be a K-basis for this algebra contain-
ing 1, a basis for EndK(V ) � EndK(V ) is thus given by the words (50) with all bj

taken from B −{1}. To show EndK(V )� EndK(V ) embeddable in EndK(V ), it will
suffice to find a representation of EndK(V )�EndK(V ) by K-linear endomorphisms
on a vector space of the same dimension as V , such that the images of the
elements (50) are linearly independent. For this, in turn, it will suffice to find a
family of � card(�) representations of EndK(V ) � EndK(V ) on such spaces, such
that every nontrivial linear relation among elements (50) fails to hold in at least one
of these representations, since then all such relations will fail in the direct sum of
the representations.

The representations we use will each be on
⊕

ω V , a direct sum of countably
many copies of V , with basis � × ω. For each k ∈ � we shall call the kth copy of
V , i.e., the span of � × {k}, the “kth level” of

⊕
ω V , and, extending the notation

we are using on its basis, we shall denote the element at the kth level corresponding
to any v ∈ V by (v, k). We define the natural action of each f ∈ EndK(V ) on the
kth level of

⊕
ω V to be given by f (v, k) = (f (v), k), i.e., to mimic its action on V .

The natural action on
⊕

ω V will mean the direct sum of these actions.
We now define our card(�) actions of EndK(V )� EndK(V ) on

⊕
ω V . They will

be indexed by the set of those vector space automorphisms t of
⊕

ω V which have
order 2, fix all but finitely many members of the basis �×ω, and take the remaining
members of that basis to linear combinations of members of that basis with integer
coefficients. The last two conditions insure there are only card(�) such t . For each
such choice of t , we map EndK(V ) � EndK(V ) to EndK(

⊕
ω V ) by sending each

element α(f ) (f ∈ EndK(V )) to the natural action of f on
⊕

ω V , which we denote
by the same symbol f , while we send β(f ) to tf t−1.

For the remainder of the proof, let us fix a nonzero x ∈ EndK(V ) � EndK(V ). If
x ∈ K , then clearly x has nonzero action under all of our representations; so let us
assume x /∈ K , and show how to construct a t such that the action of x on

⊕
ω V

under the representation indexed by t is nonzero.
To do this, let us fix an arbitrary element r ∈ �, and note that EndK(V ) will be

the direct sum of the 1-dimensional subspace spanned by the identity map, and the
subspace EndK(V )0 of consisting of those maps that take r to a linear combination
of elements of � − {r}. Choosing, temporarily, an arbitrary basis B ′ of EndK(V )

consisting of 1 and elements of EndK(V )0, let us express x as a linear combination
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of words of the form (50) with the bj taken from B ′ − {1}. Let n be the maximum of
the lengths of the words occurring with nonzero coefficient in this expression. Let
S ⊆ B ′ be the set consisting of 1 and all those elements of B ′ − {1} that occur (as
arguments of α or β) in the expression for x. From the fact that the span of S is a
finite dimensional subspace of EndK(V ), it is not hard to see that there will exist a
finite subset 
 ⊆ � containing the element r , such that, if we write P
 ∈ EndK(V )

for the element that fixes all members of 
 and annihilates all members of � − 
,
then the linear operator on EndK(V ) given by

f �→ P
f P
(51)

is one-to-one on the span of S. Let us fix such a set 
 ⊆ �.
We can now describe the basis B of EndK(V ) in terms of which we will work for

the rest of the proof. For all p,q ∈ �, let E(q,p) ∈ EndK(V ) be the linear map that
takes p to q , and all other members of � to 0. Since the typical member of EndK(V )

has infinite-dimensional range, the elements E(q,p) do not span EndK(V ); but
their linear combinations do give all possible behaviors on our finite set 
, which
is what we will need. Let us choose B to consist of the identity operator 1, all
the operators E(q,p) with p ∈ 
 (and q unrestricted) except for E(r, r), and the
members of any basis of the space of those endomorphisms that annihilate 
.

To see that an arbitrary f ∈ EndK(V ) may be represented by a linear expression
in members of B , first set the coefficient of 1 in this expression to be the
coefficient of r in f (r). Subtracting from f that multiple of 1 gives a member
of EndK(V )0, whose behavior on the elements of 
 can be represented by a
finite linear combination of the operators E(q,p) with p ∈ 
 and (p, q) 	= (r, r).
Subtracting this off, we are left with an operator annihilating 
, which can be
uniquely represented using the elements introduced in the last part of our definition
of B . Clearly, this expression for f is unique.

We now take our earlier expression for x as a linear combination of words (50)
with all bj ∈ B ′ − {1}, and substitute for the bj their expressions as linear
combinations of elements of B − {1}, getting an expression for x, again as a
combination of words (50), with the bj now in B − {1}. Clearly, these words
still have length � n. I claim, moreover, that by our choice of 
, the expression
contains, with nonzero coefficient, at least one product (50) of length n in which
all bj have the form E(q,p) with p and q both in 
 (and by definition of B , with
(p, q) 	= (r, r)).

To see this, note that a consequence of our normal form for coproducts of
associative K-algebras is that EndK(V )� EndK(V ) can be identified as a K-vector
space with a direct sum of iterated tensor products EndK(V )0 ⊗K · · ·⊗K EndK(V )0,
where the 0-fold tensor product, i.e., K , occurs once, and each higher tensor
product occurs twice, corresponding to the two ways of labeling the tensor factors
alternately with α and β . This identification maps any element of one of these direct
summands (e.g., an element v1 ⊗ v2 ⊗ v3 in the summand labeled with α,β,α) to
the corresponding sum of products of elements of α(EndK(V )0) and β(EndK(V )0)

(e.g., α(v1)β(v2)α(v3) in that example), and is therefore independent of choice of
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basis. (It does depend on our choice of linear complement EndK(V )0 for K in
EndK(V ), which depends on our choice of r , but we made that choice at the start and
have not changed it.) I claim that the condition by which we chose the finite set 


implies that if the K-linear map (51) is applied simultaneously to every tensor factor
EndK(V )0 in every summand in the above expression for EndK(V )�EndK(V ), the
element x continues to have nonzero components in all the degrees where x had
them; in particular, in degree n. Indeed, the linear relations holding among a set of
expressions in a tensor product of vector spaces depend only on the linear relations
holding among the elements of the given spaces that occur in these expressions;
and 
 was chosen so that (51) creates no new linear relations among the elements
occurring in our original expression for x. Now in terms of our new basis B − {1}
of EndK(V )0, the map (51) acts by throwing out all basis elements other than the
E(q,p) with p,q ∈ 
. So since x continues to have nonzero component in degree
n after the application of (51), the expression for x using the basis B − {1} does
indeed involve at least one length-n word in such elements E(q,p) alone.

We now choose, subject to a restriction to be given in a moment, a particular
length-n word of this sort occurring with nonzero coefficient in x,

. . . α
(
E(qi,pi)

)
β
(
E(qi−1,pi−1)

)
α
(
E(qi−2,pi−2)

)
β
(
E(qi−3,pi−3)

)
. . . ,(52)

where (qj ,pj ) ∈ 
 × 
 − {(r, r)} (j = 1, . . . , n).

To do this, let us work from the right, first choosing an α(E(q1,p1)) or β(E(q1,p1))

that occurs as a rightmost factor in some length-n word of the form (52) in our
expression for x; then choosing for β(E(q2,p2)) or α(E(q2,p2)), as the case
may be, an element of this form that occurs in second position from the right,
immediately to the left of our first chosen factor, in at least one length-n word of
that form; and so on. The one restriction we impose is that for each j = 1, . . . , n,
(qj ,pj ) should satisfy qj 	= pj if this is possible, i.e., if there is a factor satisfying
qj 	= pj which occurs, followed by the terms chosen so far, in the j th position of a
length-n word occurring in x. Henceforth, (52) will denote the particular word so
chosen.

The reason we avoid choices with qk = pk whenever possible is that it will not
be as easy to make use of the fact that elements of the form E(p,p) are nonscalar
as it will for other elements; but we will be able to do so if there are no elements
E(q,p) with q 	= p “in the vicinity”. The distinction between these cases is used in
the next definition.

For k = 1, . . . , n, let us define elements p′
k ∈ V , by

p′
k =

{
pk ∈ � if qk 	= pk ,
pk + r ∈ V if qk = pk .

(53)

Note that in the second line above, the summands pk and r are distinct members
of �, for if qk = pk , we cannot have pk = r , since E(r, r) /∈ B . For those values of k

such that qk = pk , let us temporarily form a new basis of the kth level (the kth direct
summand) of

⊕
ω V , by deleting from �×{k} the basis element (r, k) and inserting
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(p′
k, k) in its place, while for those k such that qk 	= pk , let us keep the basis �×{k}.

Thus, the union over k of these bases is a new basis of
⊕

ω V . Note that for every k,
(p′

k, k) and (qk, k) are distinct elements of our new basis.
We now define our automorphism t of

⊕
ω V to fix all elements of our new basis,

except for the following 2(n + 1) elements, which we let it transpose in pairs as
shown:

(p1,0) ↔ (p′
1,1),

(qk−1, k − 1) ↔ (p′
k, k) (1 < k � n),

(qn, n) ↔ (qn, n + 1).

(54)

This is where we need the second line of (53). It insures that even if qk = pk ,
the basis elements (p′

k, k) and (qk, k) are distinct, so that the rules (qk−1, k − 1) ↔
(p′

k, k) and (qk, k) ↔ (p′
k+1, k + 1) do not give contradictory specifications of the

action of t on the same basis element at the kth level.
As promised, t has order 2 and sends members of our original basis � × ω to

linear combinations of members of that basis with integer coefficients. Having noted
this, we shall now go back to using � × ω as the basis in terms of which we will
compute with elements of

⊕
ω V , and shall think of the terms of (54) as expressions

in those basis elements.
As sketched earlier, we now let h : EndK(V ) � EndK(V ) → EndK(

⊕
ω V ) be the

homomorphism which takes elements α(f ) to f (acting by the natural action) and
elements β(f ) to tf t−1 = tf t .

The remainder of the proof follows closely the concluding steps of the proof
of Lemma 4.1(ii). We want to show that h(x) 	= 0. Clearly, this is equivalent
to proving nonzero the element h(x)′ that we get on multiplying h(x) on the
right by t if the rightmost term of (52) is α(E(p1, q1)), while leaving that side
unchanged if that term is β(E(p1, q1)), and multiplying on the left by t if the
leftmost term of (52) is α(E(pn, qn)), while leaving that side unchanged if that
term is β(E(pn, qn)). To avoid cumbersome language, we shall call products of
E(p,q)’s and ts occurring with nonzero K-coefficient in our expression for h(x)′
the “summands” in that expression (not counting the K-coefficients as parts of these
“summands”). A consequence of our definition of h(x)′ is that the summand therein
arising from the term (52) of h(x) has a t at each end, so we can now write it so as
show those ends. Let us also give it a name:

u = tE(qn,pn)tE(qn−1,pn−1)t · · · tE(q2,p2)tE(q1,p1)t.(55)

The general summand in the expression for h(x)′ will likewise be an alternating
product of t and elements of B − {1} (which we will call the “B-factors” of the
summand), with at most n of the latter. We claim now that when we apply h(x)′ to
(p1,0), the summand u shown in (55), and only that summand, leads to a nonzero
component at the (n + 1)st level of

⊕
ω V .

Since in each summand, the only factors that carry elements of
⊕

ω V from one
level to the next are the factors t , and each of these moves elements by only one
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level, the only summands in h(x)′ that can possibly lead to components at the
(n + 1)st level in h(x)′(p1,0) are those which, like (55), have exactly n (rather than
fewer) B-factors, and have a t at each end. Consider any such summand

w = tbntbn−1t · · · tb2tb1t,(56)

where bk ∈ B − {1} (k = 1, . . . , n). We shall show inductively for k = 1, . . . , n+1
that if we apply to (p1,0) the substring tbk−1tbk−2t · · · tb2tb1t of w, then the
components of the result in levels higher than the kth are zero, the component in
the kth level is a scalar multiple of (p′

k, k), and the scalar factor is nonzero if and
only if our substring agrees exactly with the corresponding substring of u, i.e., if
and only if bi = E(qi,pi) for i = 1, . . . , k − 1.

The base case k = 1 is immediate: we are merely applying t to (p1,0), and by (54)
the result is (p′

1,1). (This rightmost factor t was important in distinguishing the
action of u from actions of summands of h(x)′ not ending in t; but we have already
used it to exclude such strings from consideration.)

Now let our inductive assumption hold for some k with 1 � k � n. If we
do not have bi = E(qi,pi) for all i < k, then by that inductive assumption,
tbk−1t · · · tb1t (p1,0) has zero component at the kth and higher levels, so multi-
plication by bk and then by t will not bring anything to the (k + 1)st level or higher.

If the factors of w so far have agreed with those of u, then by inductive
hypothesis, tbk−1t · · · tb1t (p1,0) has at the kth level a nonzero scalar multiple of
(p′

k, k). When we apply bk to this, if bk = E(qk,pk) i.e., if this too agrees with the
corresponding factor of u, then we see that, whether (p′

k, k) is equal to (pk, k) or
to (pk, k) + (r, k), the factor E(qk,pk) will send it to (qk, k); and the subsequent
application of t will give us a term (p′

k+1, k + 1) at the (k + 1)st level, as desired.
If bk 	= E(qk,pk), there are several cases to consider. First, bk might be one of the

members of B belonging to the subspace of EndK(V )0 annihilating 
. In that case,
it annihilates (p′

k, k), leaving nothing at the kth level, and the subsequent application
of t brings nothing to the (k + 1)st level. Otherwise, we have bk = E(q,p) for some
(q,p) 	= (qk,pk). Clearly, the only cases in which E(q,p) can fail to annihilate
(p′

k, k) are

(a) if p = pk , or
(b) if p′

k has the form pk + r , and p = r .

In case (a), since we have assumed that E(q,p) 	= E(qk,pk), we must have
q 	= qk , so E(q,p)(p′

k, k) = (q, k) 	= (qk, k), and by (54), the subsequent application
of t will not bring this up to the (k + 1)st level.

In case (b), the assumption p′
k = pk + r means, by (53), that E(qk,pk) =

E(pk,pk). But recall that in choosing the term (52), we avoided this possibility
whenever possible. A consequence is that since w was not chosen in preference
to u, we must likewise have bk = E(p,p). However, case (b) assumed p = r , so
bk = E(r, r), which is excluded by the definition of B . Hence case (b) does not
occur.
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We thus conclude that u is the unique summand in h(x)′ which, when applied
to (p1,0), gives an element having nonzero component at the n + 1st level. Hence
h(x)′(p1,0) 	= 0, so h(x)′ 	= 0, so h(x) 	= 0, completing the proof that our action of
EndK(V ) � EndK(V ) is faithful.

Now for an unexpected bonus. We saw in Section 8 that when K had large
cardinality, our tools for proving nonembeddability of algebras in EndK(V ) gave
weaker results than we expected from our results on groups, monoids and lattices.
We shall now see that we also get stronger positive embeddability results in that
situation. We need the following fact.

Lemma A.1 (Cf. [14, Exercise 1, p. 248]). Let k be any commutative integral
domain, and M the multiplicative monoid of k. Then the product k-algebra kω

contains a subalgebra isomorphic to the monoid algebra kM . In particular, letting
G denote the group of units of k, it contains a copy of the group algebra kG.

Proof. For each a ∈ k, let xa ∈ kω denote the sequence of powers, (1, a, a2, . . .).
Clearly, a �→ xa is a monoid homomorphism from M into the multiplicative monoid
of kω. Moreover, the elements xa are k-linearly independent by the properties of the
Vandermonde determinant. Hence they span a subalgebra of kω isomorphic to kM .
The final assertion clearly follows. �
Proposition A.2. EndK(V ) contains a coproduct of card(K) copies of itself as
an associative K-algebra. (Hence, in view of Theorem 4.2(iii), it contains such a
coproduct of max(2card(�), card(K)) copies of itself.)

Proof. For K finite, our main statement is weaker than Theorem 4.2(iii), so assume
K infinite.

Since EndK(V ) contains a subalgebra isomorphic to Kω, the preceding lemma
shows that it contains a copy of the group algebra KG on a group G of cardinality
card(K − {0}) = card(K).

We have also just seen that it contains a copy of EndK(V )�EndK(V ); combining
these observations, we conclude that it contains a copy of EndK(V ) � KG.
For notational convenience, let us identify EndK(V ) with the first factor in this
coproduct, and G (which we regard as an abstract group, forgetting about its relation
with K) with its image in the second factor. Then for each g ∈ G, we can form the
conjugate algebra g EndK(V ) g−1, getting card(K) isomorphic copies of EndK(V ).
Moreover, from the linear independence of the elements of G in KG and the normal
form for the coproduct EndK(V )�KG, one sees that the subalgebra these generate
will be their coproduct, so EndK(V ) indeed contains a coproduct of card(K) copies
of itself. (This is the ring-theoretic analog of the appearance of big free products
inside smaller free products in the Kurosh Subgroup Theorem.) The final assertion
clearly follows. �
Corollary A.3. EndK(V ) contains a coproduct, as K-algebras, of max(2card(�),

card(K)) copies of every K-algebra of dimension � card(�).
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Of course, these results lead to the questions:

Question A.4. Can we prove a version of Theorem 3.2(iii) with F(2card(�))

replaced by F(max(2card(�), card(K))) for a wider class of functors F than the
“coproduct as K-algebras of I copies of A” functors of Corollary A.3?

An interesting test case would be that in which F is the functor taking I to
the K-algebra presented by an I -tuple of commuting idempotents. (This is not
answered by Lemma 8.3, which applies only to orthogonal idempotents.)

Remark: One can strengthen Proposition A.2 so as to increase max(2card(�),

card(K)) to card(K)card(�), which occasionally exceeds the former value; e.g., when
card(K) has the form ℵα+ω and is > 2card(�). To do so, replace ω in Lemma A.1
with the free abelian monoid A(�) on �, which has cardinality card(�), replace the
maps xa in the proof by all homomorphisms of A(�) into the multiplicative monoid
M of k, apply the theorem on linear independence of characters to conclude that
kA(�) contains a copy of the monoid algebra kM�, and use this version of the lemma
to get the strengthened proposition. (One can’t raise the cardinal in the proposition
higher than card(K)card(�), since dimK(EndK(V )) = dimK(V �) � dimK((K�)�) =
dimK(K�×�) = dimK(K�) � card(K�) = card(K)card(�); cf. [14, Theorem 2,
p. 247].)

It is curious that the nonembeddability results we are able to prove become
weaker than expected as soon as card(K) > card(�), but our positive results
become stronger only when card(K) > 2card(�).

APPENDIX B. ANOTHER EMBEDDING OF Sym(�) � Sym(�) IN Sym(�)

Here is the alternative proof of Lemma 4.1(i) mentioned shortly before the
statement of Lemma 4.1.

As in the preceding appendix, we begin by recalling a structure theorem for
coproducts, this time coproducts of groups. But we will make different assumptions
(we won’t assume there are only two groups, but we will assume the groups are
disjoint except for their identity elements, so that we do not have to write the
coprojection maps explicitly), we will use the structure theorem, initially, for a
different purpose (to motivate a somewhat bizarre action of the coproduct group),
and we will consider for most of this section arbitrary groups (or sometimes,
monoids) rather than a pair of copies of Sym(�), though that is the case to which
we will ultimately apply our result.

Let (Gi)i∈I be any family of groups whose sets of nonidentity elements are
pairwise disjoint. Recall that the general element of the coproduct group

∐
i∈I Gi

can be written uniquely as

gn . . . g2g1,(57)

where n � 0 and gn, . . . , g1 ∈ ⋃
i∈I Gi − {1}, say with

gr ∈ Gir (r = 1, . . . , n),(58)

and where successive indices ir , ir+1 are distinct; i.e., two elements from the same
group Gi never occur in immediate succession.
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Suppose we are given a representation of each Gi by permutations of a nonempty
set �i , and we form the direct product

∏
�i . Then starting at any point (xi)i∈I ∈

∏
�i , an expression (57) allows us to construct a “path” in

∏
�i : At the first step,

we move from (xi) to the point agreeing with (xi) on all but the i1-coordinate,
which is moved by g1; the next step takes us to the point whose i2-coordinate has
also been moved by g2, etc. This suggests that we make the set of “paths” in

∏
�i

in which each step involves changing just one coordinate, and two successive steps
never change the same coordinate, into a

∐
Gi -set.

Some difficulties arise. Though, by assumption, no gr in (57) is an identity
element, some of these factors may lie in the stabilizers of the coordinates they are
to be applied to. In such cases should we, as the above description might suggest,
allow trivial “steps” in our path, where no coordinate is changed? It turns out that
this would lead to difficulties; so we specify that in such cases, no step is added to
our path. Also, for inverses to behave correctly, we must allow some elements to
delete rather than adding steps to our paths.

The resulting construction is described in the next lemma. Note that it is not
claimed that if the �i are faithful Gi -sets, then the

∐
Gi -set �i∈I�i described

there is also faithful. Rather, we shall subsequently note additional conditions that
ensure faithfulness.

Up to the step of achieving faithfulness, our construction works as well for
arbitrary monoids as for groups, so the lemma below is stated in that context. As
usual, we understand actions to be left actions. Note that in the statement below,
subscripts n and r do not correspond to the subscript i above; rather, each of the
steps xr (r = 1, . . . , n) in our “path” is itself an I -tuple xr = (xr,i )i∈I .

Lemma B.1. Let (Mi)i∈I be a family of monoids, and for each i ∈ I let �i be an
Mi -set. Let �i∈I�i be the set of all finite sequences (x1, . . . , xn) (n � 1) where each
xr ∈ ∏

i∈I �i (r = 1, . . . , n), every pair of successive terms xr , xr+1 (1 � r < n)

differs in one and only one coordinate, and the coordinate at which xr+1 differs
from xr is not the same as the coordinate at which xr differs from xr−1 (1 < r < n).

Then �i∈I�i may be made a
∐

i∈I Mi -set (which we might call the “path
product” of the Mi -sets �i) by defining the action of each g ∈ Mj (j ∈ I ) on
x = (x1, . . . , xn) ∈ �i∈I�i by the following rules:

Let x′
n ∈ ∏

i∈I �i denote the I -tuple obtained from xn by modifying

its j -coordinate via the action of g on that element of Mj . Then

(i) If x′
n = xn, we define gx = x.

(ii) If x′
n 	= xn, then:

(ii.a) If either n = 1, or if n > 1 and the coordinate at which xn differs

from xn−1 is not the j th, we define gx = (x1, . . . , xn, x
′
n),

(ii.b) If n > 1 and the coordinate at which xn differs from xn−1 is
the j th, then:

(ii.b.1) If x′
n 	= xn−1, we define gx = (x1, . . . , xn−1, x

′
n), while

(ii.b.2) If x′
n = xn−1, we define gx = (x1, . . . , xn−1).

(59)
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Proof. By the universal property of the coproduct
∐

i∈I Mi , an action of that
monoid on the set �i∈I�i will be defined if we verify that for each j ∈ I , the above
conditions define an action of Mj on that set.

This could be done by brute force, dividing into cases according to which
headings of the above definition the actions of two successive elements of Mj come
under. But there is a trick that greatly simplifies this calculation (cf. [4, proof of
Proposition 3.6.5]). For each j , we shall define a bijection ϕj between �i∈I�i and
a set (�i∈I�i)(j), such that it will be easy to define an action of Mj on (�i∈I�i)(j),
and also easy to verify that when we transport this action from (�i∈I�i)(j) to
�i∈I�i via the bijection ϕj , the resulting action is described by (59). Roughly,
elements of (�i∈I�i)(j), like elements of �i∈I�i , will represent “paths” in

∏
�i ,

but in (�i∈I�i)(j) we require every such path to have a final step involving the
j -coordinate, at the price of allowing this step (and only this step) to be trivial (i.e.,
to satisfy xn−1 = xn).

Here is the precise description. We take the elements of (�i∈I�i)(j) to be
sequences x = (x1, . . . , xn) of elements of

∏
�i , this time with n always � 2, such

that

(i) (x1, . . . , xn−1) ∈ �i∈I�i ,
(ii) xn−1 and xn are either equal, or differ in the j th coordinate only.

(iii) If n > 2, the coordinate at which xn−2 and xn−1 differ is not the j th.

Note that none of these conditions constrains the j th coordinate of xn. Hence a
monoid action of Mj on (�i∈I�i)(j) may be defined by the rule

g(x1, . . . , xn−1, xn) = (x1, . . . , xn−1, x
′
n),(60)

where, as in the statement of the lemma, x′
n is obtained from xn by modifying its

j th coordinate by the action of g, and leaving all other coordinates unchanged.
Let us now define ϕj : �i∈I�i → (�i∈I�i)(j) to leave unchanged all x =

(x1, . . . , xn) ∈ �i∈I�i with n > 1 in which the coordinate at which xn−1 and xn

differ happens to be the j th, while appending to every other element of �i∈I�i a
repetition of its final term. It is straightforward that this is a bijection, and easy to
verify that the action of Mj on �i∈I�i induced, via this bijection, by its action (60)
on (�i∈I�i)(j), is as described in (59), completing our proof. �

We now want to use the above construction to get faithful actions. We shall see
that we can do this if our monoids are right cancellative, hence in particular, if they
are groups.

Let us call an action of a monoid M on a set 
 strongly faithful if for every finite
family of distinct elements g1, . . . , gn ∈ M , there exists y ∈ 
 such that g1y, . . . , gny

are distinct. (The n = 0 case of this condition says that 
 is nonempty.) It is easy
to see that if 
 is a faithful M-set, then the disjoint union 1 ∪ 
 ∪ 
2 ∪ 
3 ∪ · · ·
(indexed by the natural numbers, with each 
n given the product M-set structure) is
strongly faithful, and that this construction does not increase infinite cardinalities.
On the other hand, we have
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Lemma B.2. Let (Mi)i∈I be a family of monoids, each having the right cancella-
tion property

ac = bc �⇒ a = b (a, b, c ∈ Mi),(61)

and for each i ∈ I , let �i be a strongly faithful left Mi -set. Then �i∈I�i , defined
and made a

∐
i∈I Mi -set as in Lemma B.1, is a faithful

∐
i∈I Mi -set.

Proof. Given distinct elements g = gm . . . g2g1 and h = hn . . . h2h1 in
∐

Mi , we
wish to find an x ∈ �i∈I�i such that gx 	= hx. We shall construct below such an
element which is of length 1, i.e., a 1-tuple (x1) with x1 ∈ ∏

�i . To do this let us,
for each j ∈ I , choose the j -coordinate of x1 as follows. Let rj,1 < · · · < rj,mj

be the
values of r for which gr ∈ Gj and sj,1 < · · · < sj,nj

the values s for which hs ∈ Gj .
Although the elements

1, grj,1, grj,2grj,1, . . . , grj,mj
· · ·grj,2grj,1, and

1, hsj,1 , hsj,2hsj,1 , . . . , hsj,nj
· · ·hsj,2hsj,1

(62)

of Mj need not all be distinct, successive elements of each of these lists will be so,
by right cancellation. For each j ∈ I let us use strong faithfulness of Mj to choose,
as the j -coordinate of x1, an element of �j whose images under distinct elements
of the combined list (62) are distinct. (For some j , the mj and nj in (62) may both
be zero, in which case this condition is vacuous.) Thus, the images of x1 under
successive terms of each list in (62) are distinct.

It follows from this choice that each time we apply an element gr or hr in building
up gm · · ·g1x or hn · · ·h1x, it in fact moves the coordinate of the term of gr−1 · · ·g1x,
respectively hr−1 · · ·h1x to which it is applied, and successive steps move different
coordinates. Thus, we are always in case (ii.a) of the definition of the action of Mir ,
so the final elements gm · · ·g1x and hn · · ·h1x reflect all the steps of this process.
In particular, if m 	= n, the elements gx and hx have different lengths, if m = n

and the sequence of indices in I determined by g and h differ, then gm · · ·g1x and
hn · · ·h1x are clearly different, while if m = n and these sequences are the same,
then there must be some j ∈ M such that the sequences of elements of Gj differ;
and if we look at the first terms where this occurs, then by right cancellativity, the
corresponding terms of (62) will differ, and by our choice of x1,j , the elements gx

and hx will differ at that step. �
(The above action will, in fact, be strongly faithful – we could have handled any

finite set of elements of
∐

i∈I Mi as we did {g,h}; but we only need the two-element
case, and it allowed simpler notation.)

Now letting G0,G1 be two isomorphic copies of the group Sym(�), disjoint
except for the identity, each represented naturally on �, we get as in the paragraph
before Lemma B.2 strongly faithful actions of G0 and G1 on 1 ∪ � ∪ �2 ∪ �3 ∪
· · ·, which has cardinality card(�). Calling this set, regarded as a G0-set �0, and
regarded as a G1-set �1, the above lemma tells us that the coproduct of G0 and
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G1 acts faithfully on �0 � �1, which is also of cardinality card(�), completing our
alternative proof of Lemma 4.1(i).

More generally, the submonoid of surjective endomaps of � satisfies (61), so the
above construction embeds the coproduct of two copies of that monoid in Self(�).

On the other hand, if we delete the right cancellativity assumption (61) from
the hypothesis of Lemma B.2, there will in general be no choice of Mi -sets �i

making �i∈I�i faithful. For if one of the monoids, say M1, has elements a 	= b and
c satisfying ac = bc, and at least one other of the monoids is nontrivial, say M2,
with a nonidentity element d , then in

∐
Mi we find that adc and bdc are distinct

elements having the same action on �i∈I�i for any family of Mi -sets �i .

APPENDIX C. SOME CONDITIONS ON COMPLETE LATTICES

We noted in the discussion preceding Question 5.9 that the conditions we had
proved on chains of solution sets in Sym(�) and Self(�) were consequences of
the stronger statement that the lattice of all such solution sets embeds in the system
of closed sets of a topological space having a basis of � card(�) open sets. The
same observation holds for the results obtained in later sections on solution sets in
Equiv(�), etc.

The next lemma compares these and related conditions. Here a κ-generated
topological space means a topological space having a basis of open sets of
cardinality � κ; equivalently, having a subbasis of open sets of that cardinality;
equivalently, having such a basis or subbasis of closed sets. An embedding of
lattices, of complete lower semilattices, etc., means a one-to-one homomorphism
of such structures; an embedding of partially ordered sets means a (necessarily
one-to-one) map that preserves both the relations � and 	�.

Lemma C.1. Let κ be an infinite cardinal, and A a complete lattice. Then of the
following conditions, each implies the next, and conditions with the same roman
numeral and different suffixes are equivalent.

(i.a) A is embeddable as a complete lower semilattice in P(κ).
(i.b) A is generated as a complete upper semilattice by a set of � κ elements.
(ii.a) A is embeddable as a complete lower semilattice in a complete lower

semilattice generated by � κ elements.
(ii.b) A is embeddable as a partially ordered set in a complete lower semilattice

generated by � κ elements.
(ii.c) A is embeddable as a partially ordered set in P(κ).
(ii.d) A is embeddable as a complete lower semilattice in the system of closed

subsets of a κ-generated topological space.
(ii.e) A is embeddable as a partially ordered set in the system of closed subsets of

a κ-generated topological space.
(ii.a*)–(ii.e*) The duals of (ii.a)–(ii.e); i.e., the corresponding statements with

“lower semilattice” replaced by “upper semilattice”, and “closed subsets”
by “open subsets”, wherever applicable. (So, no change in (ii.c)).
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(iii) Every chain in A has a dense subset of cardinality � κ .
(iv.a) No chain in A has a family of > κ disjoint intervals.
(iv.b) No chain in A has > κ jumps.

(v) A contains no well-ordered or reverse-well-ordered chain of cardinality > κ .

Moreover, if for each family of conditions whose equivalence is asserted above,
we denote the common condition using the corresponding roman numeral with
suffixes dropped, then the implications (i) ⇒ (ii) ⇒ (iii) are irreversible for all κ ,
but are both reversible if A is restricted to be a chain; the implication (iv) ⇒ (v) is
irreversible for κ = ℵ0, while the reversibility of (iii) ⇒ (iv) for κ = ℵ0 is equivalent
to Suslin’s Hypothesis, known to be independent of ZFC.

Proof. (i.a) ⇒ (i.b): Given a complete lower semilattice embedding f : A → P(κ),
let us associate to each α ∈ κ the meet g(α) ∈ A of all elements x ∈ A satisfying
α ∈ f (x). We see that g(α) will be the least y such that α ∈ f (y), and we deduce
that every x ∈ A is the join in A of {g(α) | α ∈ f (x)}. So {g(α) | α ∈ κ} generates A

as a complete upper semilattice.
(i.b) ⇒ (i.a): Given a generating set {gα | α ∈ κ} for A as a complete upper

semilattice, we find that an embedding A → P(κ) as complete lower semilattices
is given by the map x �→ {α | gα � x}.

(i.a) ⇒ (ii.c) is immediate.
To prove the equivalence of the versions of (ii), we shall show (ii.a) ⇒ (ii.d) ⇒

(ii.e) ⇒ (ii.b) ⇒ (ii.c) ⇒ (ii.a). Since (ii.c) is self-dual, it will follow that these
conditions are also equivalent to their starred variants.

(ii.a)⇒ (ii.d): It suffices to show that every complete lower semilattice A′
generated by a set {xα | α ∈ κ} is embeddable as a complete lower semilattice in
the system of closed subsets of a κ-generated topology. Given such an A′, define
for each x ∈ A′ the “principal downset”

D(x) = {
y ∈ A′ | y � x

} ⊆ P
(
A′).(63)

We see that these sets form a complete lower semilattice isomorphic to A′; hence
if we define a topology on the underlying set of A′ using the D(x) as a subbasis
of closed sets, A′ embeds as a complete lower semilattice in the complete lattice of
closed sets of that topology. Moreover, the closed sets D(xα) (α ∈ κ) also form a
subbasis of closed sets for this topology, so it is κ-generated, as required.

(ii.d) ⇒ (ii.e) ⇒ (ii.b): Trivial.
(ii.b) ⇒ (ii.c): Suppose A is embeddable as partially ordered set in a complete

lower semilattice A′ as in (ii.b). Thus, A′ satisfies the dual of (i.b). Hence it satisfies
the dual of (i.a), hence A, being embeddable in A′ as a partially ordered set,
satisfies (ii.c).

(ii.c) ⇒ (ii.a): Note that the map D of (63) (with A in the role of A′) is an
embedding A → P(A) as complete lower semilattices. Hence it will suffice to
show that (ii.c) implies that the image of A under D lies in a complete lower
subsemilattice of P(A) generated by � κ elements. Given an embedding f : A →
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P(κ) as in (ii.c), let us define for each α ∈ κ the set cα = {x ∈ A | α /∈ f (x)} ∈ P(A).
We see that for every x ∈ A, the D(x) of (63) is the intersection of those members
of {cα | α ∈ κ} ∪ {A} ⊆ P(A) that contain x, so D carries A into the complete lower
subsemilattice of P(A) generated by these elements.

(ii) � (i): Let A be a lattice consisting of a least element 0, a greatest element 1,
and 2κ pairwise incomparable elements lying between these. Clearly it does not
satisfy (i.b). To see that it satisfies (ii.d), recall that the product topology on P(κ)

is κ-generated, and let us map A into the closed sets of that topology by sending 0
to ∅, 1 to the improper subset, and the 2κ intermediate elements to the singletons
{S} ⊆ P(κ) (S ⊆ κ). (Alternatively, one can show that A satisfies (ii.c) by noting
that P(κ × 2) ∼= P(κ) has an antichain of cardinality 2κ , consisting of the sets (s ×
{0}) ∪ (sc × {1}) (s ⊆ κ).)

(ii.c) ⇒ (iii): It suffices to show that every chain C in P(κ) has a dense subset of
cardinality � κ . Let C be such a chain, and for each pair α,β ∈ κ such that some
x ∈ C contains α but not β , choose such an element, xα,β . This gives a family of
� κ elements which is easily seen to be dense.

(iii) � (ii): Take A as in the example used to show (ii) � (i), but this time with
> 2κ pairwise incomparable elements. This clearly satisfies (iii), but in view of its
cardinality, cannot satisfy (ii.c).

On the other hand, the assertion that if A is a chain the implications (i) ⇒ (ii) ⇒
(iii) are reversible follows from the obvious implication (iii) ⇒ (i.b) in this case.

(iii) ⇒ (iv.a): Given any chain C in A and any dense set S of � κ elements of C,
we see that for every interval [x, y] in C, at least one element of S must belong to
[x, y], showing that C cannot have > κ disjoint intervals.

Concerning the reverse implication, recall that Suslin’s Hypothesis says that
every totally ordered set S having no uncountable family of disjoint intervals has a
countable dense subset, and that this is independent of ZFC [19]. Assuming Suslin’s
Hypothesis, we immediately get (iv.a) ⇒ (iii) for κ = ℵ0 by applying that statement
to an arbitrary chain C in A.

In proving the converse assertion, note that (iv.a) and (iii) are statements about
a complete lattice A (first sentence of the lemma); so we need to show that if S is
any counterexample to Suslin’s hypothesis, we can obtain from it a complete lattice
A that satisfies (iv.a) but not (iii). Given such an S, let A be its completion as a
totally ordered set; I claim that A inherits the properties making S a counterexample
to Suslin’s conjecture, and thus gives the desired example. Indeed, for any infinite
dense subset D ⊆ A, if we take an element of S between every two distinct elements
of D (and throw in the greatest and/or least element of S if these exist), we
get a dense subset D′ of S of the same cardinality; so since S has no countable
dense subset, neither does A. Likewise, if some chain C ⊆ A had an uncountable
family of disjoint intervals, then for each of these intervals [x, y]C we could
choose x′, y′ ∈ S with x � x′ < y′ � y, getting an uncountable family of disjoint
intervals [x′, y′]S in S; so chains in A inherit from S the nonexistence of such
families.

Since (iv.a) and (iv.b) are negative statements, we will prove their equivalence in
contrapositive form:

399



¬(iv.a) ⇒ ¬(iv.b): If a chain C in A has a family of disjoint intervals [xα, yα]
where α ranges over some λ > κ , in then the subchain C′ = {xα, yα | α ∈ λ}, the
pairs xα < yα will be jumps.

¬(iv.b) ⇒ ¬(iv.a): If C has > κ jumps, let us associate to each jump x < y the
two-element interval [x, y]. There is the slight difficulty that distinct jumps may not
yield disjoint intervals: the upper endpoint of one may equal the lower endpoint of
the other. However, if we take a family of these intervals maximal for the property
of being pairwise disjoint, is easy to verify that this still has cardinality > κ , giving
the desired assertion.

(iv.b) ⇒ (v) is clear.
To show that for κ = ℵ0, (v) � (iv.b), let A be R × 2, lexicographically ordered.

This has continuum many jumps (a jump (r,0) < (r,1) for each real number r), but
has no uncountable well-ordered or reverse well-ordered subsets. �

Some remarks on the above lemma:
It is, of course, condition (ii) and its consequences (iii)–(v) that are directly

relevant to the results of preceding sections. I have included (i) for perspective.
(i) is the only condition in the lemma that is not equivalent to its dual. To show this

inequivalence, let A ⊆ P(κ) consist of ∅ and all sets of cardinality κ . This clearly
satisfies the dual of (i.a), but we claim it does not satisfy (nondualized) (i.b). Indeed,
given a putative generating set {xα | α ∈ κ} for A as a complete upper semilattice
(where we allow repetitions in the indexing in case this set has cardinality < κ),
one can construct by transfinite recursion an element y ∈ P(κ) having κ elements,
but missing at least one element from each xα 	= ∅ in our family. We see that y will
belong to A, but not to the complete upper subsemilattice generated by {xα}.

We could have written (i.a*) and (i.b*) for the duals to (i.a) and (i.b), adding to
the lemma their mutual equivalence and the implication (i*) ⇒ (ii); but so naming
those conditions would have broken the convention that conditions beginning with
the same roman numeral are equivalent.

Conditions (ii.d) and (ii.e) (and hence their duals), which refer to a κ-generated
topological space, are equivalent to the formally stronger conditions referring to a
κ-generated Hausdorff (and if we wish, totally disconnected) topological space. For
given a topological space X as in one of those statements, which we may assume
without loss of generality to be T0, and which has a subbasis of � κ closed sets, we
can throw in the complements of those sets to get a stronger topology on X which
is still κ-generated, but is now totally disconnected and Hausdorff, and whose lower
semilattice of closed sets contains the lower semilattice of sets closed in the original
topology.

It is curious that the example we gave for (ii) � (i) in the proof of the lemma
is an instance of (37) with card(I ) > κ . Thus, although the lattice A in question
satisfies (ii), the lattice L=

A∧,1 does not even satisfy (v). The example given above
satisfying the dual of (i.a), but not (i.b), similarly contains such an instance of (37),
in view of Sierpiński’s result [18] that there exists a family of > κ subsets of κ ,
each having cardinality κ , but with pairwise intersections all of smaller cardinality.
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These observations suggest the first part of the next question. The second part is
also natural, in view of the simpleminded example we used for (iii)�(ii).

Question C.2.

(a) If we add to the hypotheses of Lemma C.1 the assumption that L=
A∧,1 satisfies

(v), does this change the validity of the nonimplications shown? (If not, we
might try imposing the stronger condition (iv) or (iii) on these lattices, and/or
looking at L=

A∧,J for J of larger cardinality, up to κ.)

(b) If we add to the hypotheses of Lemma C.1 the assumption that A has cardinality
� 2κ , or that it has order-dimension � κ (i.e., is embeddable as a partially
ordered set in a direct product of � κ totally ordered sets – both conditions
being implied by (ii)), does this affect the validity of the assertion (iii) � (ii)?

Our final corollary, below, answers a couple of other questions suggested by that
lemma. The formulation of statement (b.2) of that corollary uses implicitly the
fact that in a complete upper semilattice A′ with least element, every subset has
a greatest lower bound, so that A′ may be regarded as a complete lattice (though
if A′ was obtained as a complete upper subsemilattice of a complete lattice A, the
meet operation of A′, will not in general agree with that of A). Statement (b.2*)
uses the dual observation.

Corollary C.3.

(a) For the conditions of Lemma C.1 that treat A only as a partially ordered
set, namely (ii.b), (ii.c), (ii.e), (ii.b*), (ii.c*), (ii.e*) and (iii)–(v), the
implications stated in that lemma (for A the underlying partially ordered
set of a complete lattice) in fact hold for any partially ordered set A.

(b) Let C be a complete lattice, and A a nonempty subset of C. Then the
following conditions are equivalent.

(b.1) As a partially ordered set, A forms a complete lattice.
(b.2) A has a greatest element, and forms a complete lower subsemilattice of a

complete upper subsemilattice B of C having a least element.
(b.2*) A has a least element, and forms a complete upper subsemilattice of a

complete lower subsemilattice B of C having a greatest element.

(Note: in (b.2) and (b.2*), the statement that A is a complete lower or upper
subsemilattice of B means that it is closed under the relevant meet or join
operations of B , not under those of C, which do not in general carry B into itself.)

Sketch of proof. (a) The versions of condition (ii) listed here all involve embed-
dings of A as a partially ordered set in a certain complete semilattice B , which, by
adjoining a greatest or least element if necessary, can be assumed a complete lattice.
The mutual equivalence of these conditions for complete lattices, applied to B , gives
embeddings of B; these in turn lead to the embeddings of A as a partially ordered
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set that we want. The same method yields the implication (ii) ⇒ (iii). The proofs of
the remaining implications were entirely order-theoretic, and go over unchanged.

(b) Clearly, (b.2) ⇒ (b.1). On the other hand, if A satisfies (b.1), and one lets
B denote the result of closing A in C under arbitrary joins and throwing in the
least element, then one finds that arbitrary meets in A are still meets under the
operation of B , so that B witnesses (b.2). Thus, (b.1) ⇔ (b.2), and by duality, (b.1)
⇔ (b.2*). �
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