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Abstract

For which groups G is it true that whenever one forms a direct limit of left G-sets,

lim
−→ i∈I

Xi, the set of its fixed points, (lim
−→I

Xi)
G, can be obtained as the direct limit

lim
−→I

(XG
i ) of the fixed point sets of the given G-sets? An easy argument shows that

this is the case if and only if G is finitely generated.

If we replace “group G” by “monoid M”, the answer is the less familiar condition

that the improper left congruence on M be finitely generated; equivalently, that M

be finitely generated under multiplication and “right division”.

Replacing our group or monoid with a small category E, the concept of a set

on which G or M acts with that of a functor E → Set, and the fixed point set
of an action with the limit of a functor, a criterion of a similar nature is proved.

Specialized criteria are obtained in the cases where E has only finitely many objects
and where E is a (generally infinite) partially ordered set.

If one allows the codomain category Set to be replaced with other categories,

and/or allows direct limits to be replaced with other classes of colimits, one enters
a vast area open to further investigation.

Key words: action of a group or monoid on a set; set-valued functor on a category;

commutativity of limits with direct limits (filtered colimits); partially ordered set.

1 Introduction.

Although the next three sections, concerning fixed point sets of group and
monoid actions, require no familiarity with category theory, I will (with apolo-
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gies to the non-categorical reader) frame this introduction in category-theoretic
terms.

It is a familiar observation that “left universal constructions respect left uni-
versal constructions and right universal constructions respect right universal
constructions” [1, §§7.7-7.8]. Thus, when one takes a limit of limits, or a col-
imit of colimits (in a context where the relevant limits or colimits all exist),
one can reverse the order of the two limit operations, or of the two colimit
operations, without changing the result. In contrast, left and right universal
constructions do not in general respect one another. (For instance, the free
group on a direct product set X×Y is not isomorphic to the direct product
of the free group on X and the free group on Y ).

But there are classes of cases where, anomalously, certain limits commute with
certain colimits. For instance, given directed systems of sets (Xi)I and (Yi)I

indexed by the same partially ordered set I, one finds that lim
−→

(Xi×Yi) ∼=
(lim
−→

Xi) × (lim
−→

Yi). Indeed, the fact that we can construct a direct limit of
algebras by putting an algebra structure on the direct limit of their underlying
sets is a consequence of this fact, given that algebra operations on X are set
maps X× · · ·×X → X.

This note investigates the question of which small categories E have the
property that limits of functors from E to Set always commute with direct
limits, that is, with colimits over directed partially ordered sets. It has been
observed [15, Thm. IX.2.1, p.211], [12, Thm. 4.73, p.72] that this happens if
E is a finite category, i.e., has only finitely many objects and finitely many
morphisms. More generally, it occurs whenever E has finitely many objects
and finitely generated morphism-set ([1, Prop. 7.9.3] = Corollary 8 below).
The result of §2 (first paragraph of the above abstract) is equivalent to the
statement that if E is a one-object category whose morphisms form a group,
this finite generation condition is necessary as well as sufficient.

In a general one-object category E, the morphisms form a monoid M. By the
result noted above, finite generation of M is sufficient for the construction of
limits over E (i.e., fixed-point sets of M-sets) to commute with that of direct
limits, but in this case it is not necessary. In §4 we obtain two criteria each of
which is necessary as well as sufficient. We find in §5 that one of these, finite
generation of the improper left congruence on M, when reformulated as finite
presentability of the trivial M-set, generalizes to arbitrary small categories
E, while the other, finite generation of M under multiplication and “right
division”, generalizes nicely to categories E with finitely many objects.

In §7 we examine the case where E is the category Jcat induced by a partially
ordered set J, and translate our general criterion into a condition on J. Half
of the condition we get can be stated in familiar language: It says that the
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set of minimal elements of J is finite, and every element lies above a minimal
element. (This is in fact necessary and sufficient for the comparison maps
associated with our limits and colimits to be injective in all cases; it is also
necessary for them always to be surjective.) The remaining condition appears
to be new. In language which we shall define, it says that the set of elements
of J “critical” with respect to the minimal elements is finite, and that these
critical elements “gather” all minimal elements under every element of J.

Note that the results of this paper only concern limits and colimits of functors
to Set; the behavior of functors to other categories can be strikingly differ-
ent. For instance [1, Exercise 7.9.5], in Setop, direct limits do not in general
commute with equalizers, though equalizers are limits over a certain finite cat-
egory; but they do commute with not necessarily finite small products; so we
have both negative and positive deviations from the behavior of Set-valued
functors. Clearly, it would be interesting to investigate more classes of cases
of commutativity between limits and colimits: for functors with codomains
other than Set, and for colimits over categories other than directed partially
ordered sets. If we fix one of the three variables – the small category over
which we take limits, the small category over which we take colimits, and the
codomain category – then we get a Galois connection [1, §5.5] on the other
two, and can study the resulting closure operators. The exercises in [15, §IX.2]
and the results and exercises at the end of [1, §7.9] give scattered results along
these lines, but for the most part, the topic seems wide open for study!

I am indebted to Birge Huisgen-Zimmermann and Ken Goodearl for organizing
the gathering at which I first spoke about some of these results, to Max Kelly,
Arthur Ogus, and Boris Schein for references to the literature, and to the
referee for several helpful corrections and suggestions.

The present note has various possible audiences, ranging from any mathe-
matician who uses direct limits, to the specialist in semigroups or categories
or partially ordered sets. I hope the reader will be patient with my reviewing
details that may be familiar to him or her, and also with my following, in §3,
a somewhat leisurely path of motivation to the results on monoids.

2 Direct limits and group actions.

Recall that a partially ordered set (I,≤) is said to be directed if for every pair
of elements i, j ∈ I, there exists k ∈ I majorizing both, i.e., satisfying k ≥ i
and k ≥ j. A directed system of sets means a family of sets (Xi)i∈I indexed by
a nonempty directed partially ordered set I, and given with connecting maps
αi,j : Xi → Xj (i ≤ j) such that each αi,i is the identity map of Xi, and
whenever i ≤ j ≤ k, one has αi,k = αj,k αi,j. (So a more complete notation
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for the directed system is (Xi, αi,j)i,j∈I.)

In this situation one has the concept of the direct limit of the given system.
This is constructed by forming the disjoint union

⊔

I Xi, and dividing out by
the least equivalence relation ∼ such that x ∼ αi,j(x) whenever x ∈ Xi and
i ≤ j. Denoting the resulting set lim

−→ I
Xi, and writing [x] for the equivalence

class therein of x ∈
⊔

I Xi, we get, for each j ∈ I, a map αj,∞ : Xj → lim
−→ I

Xi

taking x ∈ Xj to [x]. The characterization of lim
−→ I

Xi that we will use here
is that it is a set given with maps αj,∞ : Xj → lim

−→I
Xi for each j ∈ I, such

that every element of lim
−→ I

Xi is of the form αj,∞(x) for some j ∈ I, x ∈ Xj,
and such that

(1) αi,∞(x) = αj,∞(y) if and only if there exists k ≥ i, j such that
αi,k(x) = αj,k(y).

Property (1) is easily deduced from the above construction of lim
−→ I

Xi, using
the directedness of I. Note that it includes the relations

(2) αi,∞(x) = αj,∞(αi,j(x)) (i ≤ j ∈ I, x ∈ Xi)

corresponding to the generators of the equivalence relation in that construc-
tion.

If G is a group, then a directed system of left G-sets means a directed system
(Xi, αi,j)i,j∈I of sets, such that each Xi is given with a left action of G, and
each of the connecting maps αi,j is a morphism of G-sets (a G-equivariant
map). Henceforth we will generally omit the qualifier “left”. Given such a
directed system, it is easy to verify that lim

−→ I
Xi admits a unique G-action

making the maps αi,∞ morphisms of G-sets, i.e., such that

(3) g αi,∞(x) = αi,∞(gx) (g ∈ G, i ∈ I, x ∈ Xi).

For any G-set X, let us write

XG = {x ∈ X | (∀g ∈ G) gx = x}

for the fixed-point set of the action. If (Xi, αi,j)i,j∈I is a directed system of
G-sets, we see that each map αi,j carries the fixed set XG

i into XG
j . Writing

βi,j for the restriction of αi,j to a map XG
i → XG

j , we thus get a directed
system of sets (XG

i , βi,j), and we can form its direct limit lim
−→ I

XG
i .

It is now straightforward to verify that one has a map

(4) ι : lim
−→I

XG
i −→ (lim

−→ I
Xi)

G, defined by ι(βi,∞(x)) = αi,∞(x)

(x ∈ XG
i ).

Theorem 1 If G is a group, I a directed partially ordered set, and
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(Xi, αi,j)i,j∈I a directed system of G-sets, then the set-map ι of (4) is one-to-

one.

Moreover, for any group G, the following conditions are equivalent:

(5) For every directed partially ordered set I and directed system

(Xi, αi,j)i,j∈I of G-sets, the set-map ι of (4) is bijective.

(6) G is finitely generated.

PROOF. The assertion of the first sentence follows from (1) and the fact
that the maps βi,j are restrictions of the αi,j.

To see that (6) implies (5), let {g1, . . . , gn} be a finite generating set for G,
and consider any element of (lim

−→I
Xi)

G, which we may write αi,∞(x) for some
i ∈ I and x ∈ Xi. The element x ∈ Xi may not itself be fixed under G,
but by assumption, for every g ∈ G we have g αi,∞(x) = αi,∞(x), in other
words, αi,∞(gx) = αi,∞(x). By (1) this means that for each g ∈ G there
exists k(g) ≥ i in I such that αi,k(g)(gx) = αi,k(g)(x).

Since I is directed, we can find a common upper bound k for k(g1), . . . , k(gn),
and we see from the G-equivariance of the maps αk(gj ),k that αi,k(x) will be
invariant under all of {g1, . . . , gn}, hence will belong to XG

k . The element
βk,∞(αi,k(x)) is thus an element of lim

−→I
XG

i , and (2) shows that it is mapped

by (4) to the given element αi,∞(x) ∈ (lim
−→I

Xi)
G, as required.

Conversely, if G is a non-finitely-generated group, let I be the set of finitely
generated subgroups of G, partially ordered by inclusion; this is clearly a
directed partially ordered set. For each H ∈ I, let XH be the transitive G-set
G/H, and define connecting maps by αH1,H2

(gH1) = gH2 for H1 ≤ H2; this
gives a directed system. Since each H ∈ I is a proper subgroup of G, each
of the G-sets XH satisfies (XH)G = ∅, so lim

−→ I
(XH)G = ∅. On the other

hand, any two elements g1H1 ∈ XH1
and g2H2 ∈ XH2

have the same image in
XH3

for any H3 containing H1, H2, and g−1
1 g2 , so lim

−→ I
XH is the one-point

G-set. Thus (lim
−→ I

XH)G 6= ∅, and (5) fails. ✷

Digression. One may ask whether (5) is equivalent to the corresponding state-
ment with I restricted to be the set N of natural numbers with the usual
ordering ≤ , this being the kind of direct limit one generally first learns about.
If we call this weakened condition (5N), I claim the proof of Theorem 1 may
be adapted to show that (5N) is equivalent to

(6N) Every chain H0 ≤ H1 ≤ . . . of subgroups of G indexed by N

and having union G is eventually constant.
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Indeed, suppose G is a group for which (5N) fails, so that we have a directed
system (Xi)i∈N and an element αj,∞(x) ∈ (lim

−→N
Xi)

G which is not in the

image of ι. Then no αj,k(x) lies in XG
k , and letting Hi be the isotropy

subgroup of αj,j+i(x) for each i, it is easy to see that these subgroups give a
counterexample to (6N). Conversely, if we have a counterexample to (6N), then
setting Xi = G/Hi gives a counterexample to (5N).

But are there any groups that satisfy (6N) and not (6)? Clearly (6N) cannot
hold in any countable non-finitely-generated group. It will also fail in any
group which admits a homomorphism onto a group in which it fails, from
which one can show that it fails in any non-finitely-generated abelian group
[2, paragraph following Question 8]. However, examples are known of uncount-
able nonabelian groups that satisfy (6N): Infinite direct powers of nonabelian
simple groups [13], full permutation groups on infinite sets [16,2], and others
[5,6,19,20].

(Groups satisfying (6N) but not (6) are said to be of “uncountable cofinality”.
The same condition on modules has been studied under a surprising variety
of names [8, p.895, top paragraph].)

3 Monoid actions – initial observations.

If we replace the group G of the preceding section with a general monoid M,
a large part of the discussion goes over unchanged. Given a directed system
(Xi, αi,j)i,j∈I of left M-sets, we get an M-set structure on lim

−→ I
Xi, and there

is a natural map

(7) ι : lim
−→ I

XM
i −→ (lim

−→ I
Xi)

M given by ι(βi,∞(x)) = αi,∞(x)

(x ∈ XM
i ),

which is always one-to-one; and again we may ask for which M it is true that

(8) For every directed partially ordered set I and directed system
(Xi, αi,j)i,j∈I of M-sets, the set-map ι of (7) is bijective.

The argument used in the proof of Theorem 1, (6) =⇒ (5), shows that a
sufficient condition is

(9) M is finitely generated.

Attempting to reproduce the converse argument, we can say, as before, that
if M is not finitely generated its finitely generated submonoids N form a
directed partially ordered set; however, there is no concept of factor-M-set
M/N, as would be needed to continue the argument.
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And in fact, there exist non-finitely-generated monoids for which (8) holds. For
instance, let M be the multiplicative monoid of any field F ; note that 0 ∈M.
Given an element αj,∞(x) ∈ (lim

−→ I
Xi)

M , we have αj,∞(x) = 0αj,∞(x) =
αj,∞(0x), hence there exists k ∈ I such that αj,k(x) = αj,k(0x). We now
observe that for every u ∈M we have

uαj,k(x) = uαj,k(0x) = αj,k((u 0)x) = αj,k(0x) = αj,k(x),

so αj,k(x) ∈ XM
k , so the arbitrary element αj,∞(x) ∈ (lim

−→ I
Xi)

M is in the
image of (7).

Recalling that an element z of a monoid M is called a right zero element if
uz = z for all u ∈M, we see that the above argument shows that a sufficient
condition for (8) to hold, clearly independent of (9), is

(10) M has at least one right zero element.

With a little thought, one can come up with a common generalization of (9)
and (10). Recall that a left ideal of a monoid means a subset L closed under
left multiplication by all elements of M. Combining the ideas of the two
preceding arguments, one can show that (8) holds if

(11) M has a nonempty left ideal L which is finitely generated as a
semigroup.

But we can generalize this still further. We don’t need left multiplication by
every element of M to send every element of L into L. We claim it suffices
to assume that

M has a finitely generated subsemigroup S such that {a ∈ M |
aS ∩ S 6= ∅} generates M.

Indeed, assuming the above holds, and given as before a directed system
(Xi)i∈I of M-sets and an element αj,∞(x) ∈ (lim

−→ I
Xi)

M , choose k ≥ j such
that for all elements g of a finite generating set for S, we have g αj,k(x) =
αj,k(x); thus αj,k(x) is invariant under the action of S. Writing αj,k(x) = y,
note that for any a ∈ M such that aS ∩ S 6= ∅, if we take s, t ∈ S such
that as = t, and apply the two sides of this equation to y, we get ay = y,
showing that y is fixed under the action of each such element a. Since such
elements generate M, we can conclude that y ∈ XM

k , from which (8) follows
as before.

In the condition just considered, nothing is lost if we replace the semigroup S
by the monoid S ∪ {1}. (The same was not true of (11), where the property
of being an ideal would have been lost.) So let us formulate that condition in
the more natural form
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(12) M has a finitely generated submonoid M0 such that {a ∈ M |
aM0 ∩M0 6= ∅} generates M.

To see that this is strictly weaker than (11), consider the monoid presented
by infinitely many generators xn (n ∈ N) and y, and the relations saying
that all the elements xny (n ∈ N) are equal. Then (12) holds with M0 the
submonoid generated by {y, x0y}, but one can verify that there is no left ideal
L as in (11). (In particular, the left ideal My is not finitely generated as a
semigroup: the infinitely many elements xnx0y (n ∈ N) cannot be obtained
using finitely many elements of that ideal.)

Note that in condition (12), one obtains the elements of M0 from a finite gen-
erating set using arbitrarily many multiplications; then gets each element a in
the set-bracket expression from two elements of M0 by an operation of “right
division”, and then obtains the general element of M from these by again
using arbitrarily many multiplications. Looked at this way, it would be more
natural to allow arbitrary sequences of multiplications and right divisions; i.e.,
to consider the condition

(13) There exists a finite subset S ⊆ M such that the least subset
N ⊆ M satisfying (i) S ∪ {1} ⊆ N, (ii) a, b ∈ N =⇒ ab ∈ N
and (iii) ab, b ∈ N =⇒ a ∈ N, is M itself.

We shall see in the next section that this, too implies (8). That (13) is weaker
than (12) may be seen by considering the monoid with presentation

M = 〈xn, yn, z, w (n ∈ N) | xnynz = z, ynw = w〉.

Namely, one can show that given a finitely generated submonoid M0 ⊆ M,
only finitely many of the elements xn can satisfy xnM0 ∩M0 6= ∅, hence not
all xn will appear in the set-expression shown in (12), so, as these elements are
irreducible, (12) cannot hold. However, starting with the finite set {z, w}, the
“right division” process of (13) gives us all elements of the forms xnyn and yn,
another application of right division gives all elements xn, and from the yn,
the xn, and the original two elements z and w, closure under multiplication
produces all of M.

4 Left congruences, and a precise criterion.

To approach more systematically the problem of characterizing monoids that
satisfy (8), let us recall a useful heuristic for generalizing results about groups
G and G-sets to monoids M and M-sets:

8



(14) Groups : normal subgroups : subgroups : :
monoids : congruences : left congruences.

Normal subgroups N of a group G classify the homomorphic images f(G) of
G, by listing the elements that fall together with 1 under f. To determine the
structure of a homomorphic image f(M) of a monoid M, it is not sufficient
to consider elements that fall together with 1; instead one must look at the set
of all pairs of elements that fall together, C = {(a, b) ∈M×M | f(a) = f(b)}.
Sets C that arise in this way are called congruences on M ; these are precisely
the subsets C ⊆ M×M such that

(15) C is an equivalence relation which is closed under left and right
translation by elements of M.

When we study the structures of left G-sets X for G a group, the key concept
is the set Gx of elements of G fixing a given x ∈ X, which may be any
subgroup. For M a monoid and x an element of a left M-set, the analogous
entity is the set Cx = {(a, b) ∈ M×M | ax = bx}. This can be any subset
C ⊆ M×M satisfying

(16) C is an equivalence relation closed under left translation by all
elements of M.

Such a set is called a left congruence on M.

For G a group, every G-set is a disjoint union of orbits Gx ∼= G/H. There
is no such simple structure theorem for a set X on which a monoid M acts.
Nevertheless, such an X is, of course, a union of orbits Mx ∼= M/Cx, and
this fact will allow us to reduce (8) to a condition on left congruences.

(Aside: We have mentioned 2-sided congruences, i.e., sets satisfying (15), only
for perspective. Right actions of monoids lead to a third concept, that of a
right congruence, left-right dual to (16). But since right actions of M are
equivalent to left actions of the opposite monoid, we lose no generality by
restricting attention in this note to left M-sets.)

Given a monoid M and a subset R ⊆ M×M, there is a least left congruence
C containing R, the left congruence generated by R, obtained by closing
R under the obvious operations (one each to obtain reflexivity, symmetry,
transitivity, and left translation by each element of M). Thus, one can speak
of a left congruence being finitely generated.

The whole set M×M constitutes the improper left congruence on M. We
shall now show that the necessary and sufficient condition on a monoid M
for (8) to hold is
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(17) The improper left congruence on M is finitely generated.

Moreover, we will find that the final condition (13) of the preceding section is
also equivalent to this.

The reader who is inclined to skip the proof below as straightforward should
note that the step (8) =⇒ (17) involves an unexpected hiccup; I therefore
recommend reading at least that step.

Theorem 2 If M is a monoid, I a directed partially ordered set, and

(Xi, αi,j)i,j∈I a directed system of M-sets, then the set-map ι of (7) is one-

to-one.

Moreover, for any monoid M, the following implications hold among the con-

ditions introduced above:

(9)
w

w

�

(10) =⇒ (11) =⇒ (12) =⇒ (13) ⇐⇒ (8) ⇐⇒ (17).

PROOF. The first assertion and the implications through (13) have already
been noted. (Moreover, none of those implications is reversible; examples were
given where this was not obvious.) We shall complete the proof by showing
(13) =⇒ (8) =⇒ (17) =⇒ (13).

Given a finite set S as in (13) and an element αj,∞(x) ∈ (lim
−→I

Xi)
M , let us

take k ∈ I such that the finitely many relations sαj,k(x) = αj,k(x) (s ∈ S)
all hold, and let y = αj,k(x). Then it is easy to check that the set N = {s ∈
M | sy = y} satisfies conditions (i)-(iii) of (13), hence is all of M. Thus y
is an element of XM

k mapping to the given element αj,∞(x) of (lim
−→ I

Xi)
M ,

proving (8).

The proof that (8) =⇒ (17) starts like the corresponding argument for groups:
If the improper left congruence on M is not finitely generated, let I be the set
of all finitely generated left congruences on M, partially ordered by inclusion.
The M-sets XC = M/C (C ∈ I) will form a directed system such that
lim
−→ I

XC is the 1-element M-set; hence (lim
−→ I

XC)M 6= ∅; but we claim that

each set XM
C (C ∈ I) is empty.

For assume, on the contrary, that XM
C were nonempty. If M were a group,

that would make XC a singleton, hence it would make C the improper left
congruence, a contradiction. For M a general monoid, we can only conclude
that some equivalence class [a] ∈ XC is fixed under the action of M. However,
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given such an [a], let C ′ be the left congruence on M generated by C and the
one additional pair (a, 1). Then in M/C ′ the generating element [1] = [a] is
M-fixed, so C ′ is the improper left congruence, this time indeed contradicting
the assumption that the latter is not finitely generated.

Finally, to show (17) =⇒ (13), suppose {(a1, b1), . . . , (an, bn)} is a finite gener-
ating set for the improper left congruence on M. Let S = {a1, . . . , an, b1, . . . ,
bn}, let N be the set constructed from S as in (13), and let U ⊆ M×M
be the set of ordered pairs which can be written (as, at) with a ∈ M and
s, t ∈ N. By the closure properties of N we see that each (as, at) ∈ U ei-
ther has both components in N (if a ∈ N, by (13)(ii)) or neither (if a /∈ N,
by (13)(iii)). It follows that the least equivalence relation C containing U will
not relate elements in N with elements not in N. Moreover, U is closed under
left translation by members of M, hence so is C, i.e., C is a left congruence
on M. But C contains {(a1, b1), . . . , (an, bn)}, so by choice of this set, C
must be the improper left congruence; hence as it does not relate elements in
N with elements not in N, we must have N = M, establishing (13). ✷

We remark that none of conditions of the above theorem except (9) is right-
left symmetric. Indeed, let M consist of the identity element and an infinite
set S of right-zero elements. Then M satisfies (10), hence satisfies all these
conditions other than (9), but I claim that the opposite monoid Mop does
not satisfy (17), hence does not satisfy any of the conditions shown. For any
equivalence relation on the underlying set of a monoid respects both left mul-
tiplication by the identity and left multiplication by any left zero element;
hence every equivalence relation on Mop is a left congruence; but the im-
proper equivalence relation on an infinite set is not finitely generated.

Incidentally, there is a simpler example for monoids than for groups showing
that (8) can fail but the analogous statement (8N) on direct limits indexed by
the natural numbers hold; equivalently, that the improper left congruence may
be non-finitely generated, yet not expressible as the union of a countable chain
of proper left congruences. Let M = ω1, the first uncountable ordinal, made a
monoid under the commutative binary operation sup. Every left congruence
on M corresponds to a decomposition into disjoint convex sets (i.e., intervals);
let us associate to each proper left congruence C the least α ∈ ω1 such that
(0, α) /∈ C. By considering the sequence of ordinals associated in this way
with a countable ascending chain of such left congruences, we see that its
union cannot be the improper left congruence.

Before leaving the topic of monoids and their left congruences, let me men-
tion a tantalizing open question of Hotzel [11] (slightly restated): If a monoid
M has ascending chain condition on left congruences, must M be finitely
generated? An affirmative answer has been proved under the assumption of
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ascending chain condition on both right and left congruences [14]. For some
further observations see [17, Problem 1].

5 Functors on small categories.

As noted in the introduction, a monoid M can be regarded as the system
of morphisms of a one-object category E. An M-set X is then equivalent
to a functor E → Set, and the fixed-point set of the action of M on X is
the limit of that functor. In the remaining sections, we shall extend the ideas
of the preceding section by replacing fixed-point sets of monoid actions with
limits of set-valued functors on a general small category.

If E is a small category we shall, to maintain parallelism with preceding
sections, call a covariant functor E → Set an “E-set”, and denote such
functors by X and neighboring letters. Objects of E will generally be de-
noted E, F, . . . and morphisms of E by letters a, b, . . . . For E, F ∈ Ob(E),
the set of morphisms E → F will be written E(E, F ). We will assume
that E(E, F ) and E(E ′, F ′) are disjoint unless E = E ′ and F = F ′. If
α : X → X ′ is a morphism of E-sets, its component set-maps will be denoted
α(E) : X(E)→ X ′(E) (E ∈ Ob(E)).

We recall that if X is an E-set, then lim
←−E

X can be constructed as the set of
Ob(E)-tuples x = (xE)E∈Ob(E), with xE ∈ X(E) for each E ∈ Ob(E), which
satisfy the “compatibility” conditions

(18) (∀E, F ∈ Ob(E), a ∈ E(E, F )) X(a)(xE) = xF .

By a directed system of E-sets we shall mean a family of E-sets (Xi)i∈I indexed
by a nonempty directed partially ordered set I, and given with morphisms of
E-sets αi,j : Xi → Xj (i ≤ j ∈ I) such that each αi,i is the identity morphism
of the E-set Xi, and for i ≤ j ≤ k ∈ I, one has αi,k = αj,k αi,j.

Given such a system, we see that for each E ∈ Ob(E), the sets Xi(E)
(i ∈ I) and set-maps αi,j(E): Xi(E) → Xj(E) form a directed system of
sets. If we take the direct limit of each of these systems, functoriality of the
direct limit construction yields, for each morphism a ∈ E(E, F ), a set-map
lim
−→ i∈I

Xi(E)→ lim
−→ i∈I

Xi(F ) which we shall write (lim
−→ i∈I

Xi)(a), and whose
action on elements is described by

(19) (lim
−→ i∈I

Xi)(a)(αj,∞(E)(y)) = αj,∞(F )(Xj(a)(y)) (y ∈ Xj(E)).

These maps together make the family of direct-limit sets (lim
−→ i∈I

Xi(E))E∈Ob(E)

into an E-set, which we shall denote lim
−→ i∈I

Xi. (It is not hard to show that

12



this E-set is in fact the direct limit, i.e., colimit [15, p.67], [1, §§7.5-7.6], of the
directed system (Xi)i∈I in the category of E-sets, though we shall not need
that fact.) As with any E-set, we can take its category-theoretic limit, getting
a set

lim
←−E

(lim
−→ i∈I

Xi).

On the other hand, starting with our original directed system (Xi)i∈I of E-
sets, we can take the limit over E of each E-set Xi, getting a system of sets
(lim
←−E

Xi)i∈I . The functoriality of this limit construction yields connecting
maps which we may denote

lim
←−E

αi,j : lim
←−E

Xi → lim
←−E

Xj (i ≤ j ∈ I),

so we may form the direct limit of these sets, getting a set

lim
−→ i∈I

(lim
←−E

Xi).

And once again there is a natural set-map connecting these constructions,

(20) ι : lim
−→ i∈I

(lim
←−E

Xi) −→ lim
←−E

(lim
−→ i∈I

Xi).

To describe ι explicitly, consider an element of lim
−→ i∈I

(lim
←−E

Xi), written as

αi,∞(x) for some i ∈ I and x ∈ lim
←−E

Xi. Since x is an Ob(E)-tuple (xE) sat-
isfying (18), we can apply αi,∞(E) to each component xE, getting an Ob(E)-
tuple of elements of the sets lim

−→ i∈I
Xi(E) (E ∈ Ob(E)). The compatibility

conditions (18) on the components xE of the given element (xE) imply the
compatibility of the components of the resulting family (αi,∞(E)(xE))E∈Ob(E),
so that this becomes an element of lim

←−E
(lim
−→ i∈I

Xi), which is easily shown to

be independent of the choice of expression αi,∞(x) for our given element of
lim
−→ i∈I

(lim
←−E

Xi).

This time, however, even injectivity of ι is not automatic. To obtain a criterion
for it to hold, we will use a lemma on partially ordered sets. Recall that a
subset D of a partially ordered set J is called a downset (or “order ideal”) if
s < t ∈ D =⇒ s ∈ D. We shall regard the set of downsets of any partially
ordered set as ordered by inclusion. A partially ordered set is called downward

directed (the dual of “directed”) if for any two elements u, v of the set, there
is an element w majorized by both of them.

Lemma 3 Let J be a partially ordered set. Then the following conditions are

equivalent:

(21) There exists a finite subset A ⊆ J such that every element of J
majorizes at least one element of A .

13



(22) J has only finitely many minimal elements, and every element of

J majorizes a minimal element.

(23) Every set S of nonempty downsets of J which is nonempty and

downward directed under inclusion has nonempty intersection.

PROOF. Clearly (22) =⇒ (21). To show (21) =⇒ (23), let A be as in (21),
let S be as in the hypothesis of (23), and for each a ∈ A which does not
belong to all the elements of S, choose an element s(a) ∈ S not containing a.
Since A is finite and S is downward directed, we can find some s ∈ S which
is majorized by (i.e., is a subset of) all these sets s(a). Being a nonempty
downset, s must contain some element of A by (21), and by choice of s that
element belongs to all members of S, proving (23).

Finally, assuming (23) we will prove (22). On the one hand, (23), applied
to chains S and combined with Zorn’s Lemma (used upside down) shows
that every nonempty downset contains a minimal nonempty downset, which
must be a singleton consisting of a minimal element; hence every element of J
majorizes a minimal element. Moreover, if the set of minimal elements were in-
finite, then the set S of cofinite subsets of that set would be a counterexample
to (23); so there are indeed only finitely many minimal elements. ✷

We can now get a criterion for the injectivity of the set-maps ι, and a little
more.

Proposition 4 If E is a small category, the following conditions are equiva-

lent:

(24) For every directed partially ordered set I and directed system

(Xi, αi,j)i,j∈I of E-sets, the set-map ι of (20) is one-to-one.

(25) There exists a finite family A of objects of E such that every

object of E admits a morphism from one of the objects of A.

Moreover, condition (25) is also necessary for the map ι to be surjective for

all directed systems.

PROOF. First, assume (25), and let us be given two elements αj,∞(x) and
αj′,∞(y) in lim

−→ i∈I
(lim
←−E

Xi) (where x = (xE)E∈Ob(E) and y = (yE)E∈Ob(E)),

having the same image in lim
←−E

(lim
−→ i∈I

Xi). Thus, the images of these two

Ob(E)-tuples agree in each component lim
−→ i∈I

Xi(E) (E ∈ Ob(E)). By the

directedness of I we can find k majorizing both j and j′ and such that
for each of the finitely many objects E ∈ A, αj,k(E)(xE) and αj′,k(E)(yE)
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coincide. Now by assumption, every F ∈ Ob(E) admits a morphism from one
of the objects E ∈ A, so the conditions (18) on the Ob(E)-tuples αj,k(xE)
and αj′,k(yE) show that the F -components of these tuples coincide as well.
Hence αj,k(x) = αj′,k(y); hence αj,∞(x) = αj′,∞(y), proving (24).

To get the converse, let us define a preordering on Ob(E) by writing E ≤ F
if there exists a morphism from E to F, and let J be the partially ordered
set obtained by dividing Ob(E) by the equivalence relation “E ≤ F ≤ E ”.
If (25) fails, this says that J does not satisfy (21), hence by the preceding
lemma we can find a downward directed set S of nonempty downsets in J
having empty intersection. We shall now construct a directed system of E-sets
indexed by the (upward) directed partially ordered set Sop.

Given s ∈ S, let us say that an object E ∈ Ob(E) “belongs to” s if the
equivalence class of E in J is a member of s. For each s ∈ S, we define an
E-set Xs by letting Xs(E) be the two-element set {−1, +1} if E belongs to
s, and the one-element set {0} otherwise. Given a morphism a ∈ E(E, F ),
we let Xs(a) be the identity on {−1, +1} if E and F both belong to s; as
s is a downset, the remaining possibilities all have F not belonging to s, in
which case we let Xs(a) be the unique map Xs(E)→ Xs(F ) = {0}.

If s ⊇ t are members of S, then we define the map αs,t : Xs → Xt to act
as the identity at objects E ∈ Ob(E) belonging either to both s and t or
to neither, and as the unique map {−1, +1} → {0} on elements belonging
to s but not to t; these maps clearly make (Xs, αs,t)s,t∈S a directed system
indexed by Sop. Now because S has empty intersection, we see that at each
E ∈ Ob(E), the sets Xs(E) become singletons for sufficiently large s ∈ Sop,
so lim
−→Sop

Xs is an E-set all of whose components are singletons; hence the set
lim
←−E

(lim
−→Sop

Xs) is a singleton.

On the other hand, for each s ∈ S we can construct (at least) two distinct ele-
ments of lim

←−E
Xs; an element x+ which takes value +1 at every E belonging

to s (and, necessarily, value 0 at all other E), and an element x− which takes
value −1 at all E belonging to s. The maps lim

←−E
αs,t : lim

←−E
Xs → lim

←−E
Xt

(s ⊇ t) take x+ to x+ and x− to x−; thus we get distinct elements x+ and
x− in lim

−→Sop
(lim
←−E

Xs). Hence the map (20) cannot be one-to-one.

The final assertion of the proposition is proved by a construction exactly
like the preceding, with ∅ used in place of {−1, +1}. In that case we get
lim
−→Sop

(lim
←−E

Xs) empty, and lim
←−E

(lim
−→Sop

Xs) again a singleton, so that (20)
is not surjective. ✷

To formulate a criterion for (20) to be bijective for all directed systems of E-
sets, let us define a congruence C on an E-set X to be a family (CE)E∈Ob(E),
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where each CE is an equivalence relation on X(E), and which is functorial,
in the sense that

(26) (s, t) ∈ CE, a ∈ E(E, F ) =⇒ (X(a)(s), X(a)(t)) ∈ CF .

If, more generally, we define a “binary relation” R on an E-set X to mean a
family R = (RE)E∈Ob(E), where each RE is a binary relation on X(E), and
no functoriality is assumed, then for every such relation R we can define the
congruence generated by R to be the least congruence C such that for each
E ∈ Ob(E), RE ⊆ CE . It is not hard to verify a more explicit description
for this congruence C : for each E ∈ Ob(E), CE is the equivalence relation
on X(E) generated by the union, over all F ∈ Ob(E) and a ∈ E(F, E), of
the image in X(E)×X(E) of RF ⊆ X(F )×X(F ) under X(a)×X(a). We
will call a congruence on X finitely generated if it is generated by a binary
relation R such that

∑

E∈Ob(E) card(RE) <∞. (Since we cannot assume the
sets X(E) disjoint, it is not sufficient to say that card(

⋃

RE) is finite.) The
improper congruence on an E-set X will mean the congruence whose value at
each E is the improper equivalence relation on X(E).

For any object E of E, the covariant hom-functor E(E,−) : E → Set may
be regarded as an E-set, which we will denote HE . Since we have assumed that
distinct pairs of objects have disjoint hom-sets, these E-sets will be disjoint,
and we can form the union of any set of them. We can now state and prove

Theorem 5 Let E be a small category satisfying (25), and A a finite set of

objects of E as in that condition, i.e., such that every object of E admits at

least one morphism from an object of A. Let H denote the E-set
⋃

E∈A HE .
Then the following conditions are equivalent:

(27) For every directed partially ordered set I and directed system

(Xi, αi,j)i,j∈I of E-sets, the set-map ι: lim
−→ i∈I

(lim
←−E

Xi) →

lim
←−E

(lim
−→ i∈I

Xi) of (20) is bijective.

(28) The improper congruence on H is finitely generated.

PROOF. Since (25) is equivalent to injectivity of the maps (20), what we
must prove is that under that assumption, surjectivity of all such maps is
equivalent to (28).

First assume (28), and suppose we are given a directed system (Xi)i∈I of E-
sets, and an element x = (xE) ∈ lim

←−E
(lim
−→ i∈I

Xi). Each coordinate xE of x

can be written αjE ,∞(yE), where jE ∈ I is an index depending on E, and
yE ∈ XjE

(E). We shall only use finitely many of these elements, namely those
with E ∈ A. By the directedness of I we can find an index j that majorizes
all the jE with E ∈ A; we thus get a family of elements of Xj , namely
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y′

E = αjE ,j(yE) ∈ Xj(E) (E ∈ A). These will generate a sub-E-set Y ⊆ Xj,
whose F -component, for each F ∈ Ob(E), consists of all elements Xj(a)(y′

E)
(E ∈ A, a ∈ E(E, F )).

Let us map the E-set H =
⋃

E∈A HE onto Y by sending each a ∈ HE(F ) =
E(E, F ) (where E ∈ A, F ∈ Ob(E)) to Xj(a)(y′

E) ∈ Xj(F ). (This can be
thought of as an application of Yoneda’s Lemma to each of the sub-E-sets HE

(E ∈ A) of H.)

By choice of the yE, the image in lim
−→ i∈I

Xi of the sub-E-set Y ⊆ Xj has in
each coordinate F only a single element, namely xF . Thus by applying the
morphism αj,k for large enough k, we can make any given pair of elements in
any coordinate fall together. But the fact that Y is an image of H and that
the improper congruence on H is finitely generated means that some finite
family of these collapses imply all of them. Thus, we can find some k ≥ j
such that the image of Y in Xk has just one element in each coordinate. The
Ob(E)-tuple of elements of Xk so determined will be an element z ∈ lim

←−E
Xk

which maps to x in lim
←−E

(lim
−→ i∈I

Xi). Taking the image of this element z in

lim
−→ i∈I

(lim
←−E

Xi) we get an element of the latter set that maps to x under ι,

proving (27).

The proof of the converse will also follow that of the corresponding result for
monoid actions, though this time the “hiccup” will involve adjoining card(A)
additional pairs, rather than just one, to a certain finitely generated congru-
ence. Assuming (27), let I be the directed partially ordered set of all finitely
generated congruences on H, and for each C ∈ I, let XC be the E-set H/C.
Then we see that lim

−→C∈I
XC is an E-set with just one element in each compo-

nent, hence lim
←−E

(lim
−→C∈I

XC) is a singleton. Hence by (27) the same is true of

lim
−→C∈I

(lim
←−E

XC), so least one of the sets lim
←−E

XC (C ∈ I) is nonempty. Say

x = (xE) ∈ lim
←−E

XC for some C ∈ I. For each E ∈ Ob(E) the element xE

will be the C-congruence class [aE] of some element aE ∈ E(FE, E) ⊆ H(E),
where FE ∈ A. If for every F ∈ A we adjoin to C the additional pair
(idF , aF ), we get a congruence C ′ on H which is still finitely generated, and
which I claim is the improper congruence. Indeed, the compatibility condi-
tions (18), which by assumption hold for the components xE = [aE] of x,
now hold also for all translates [a] (a ∈ E(F, E)) of the images [idF ] of the
generators idF of H. This establishes (28). ✷

The following terminology provides a useful way of looking at this result.

Definition 6 Let E be a small category. By the trivial E-set we will mean the

functor T that associates to every object of E a 1-element set (with the only

possible behavior on morphisms). If E satisfies (25) and (for H constructed

as in Theorem 5 from a set A as in (25)), also (28), we will say that the
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trivial E-set is finitely presented.

Note that for T the trivial E-set defined above, and X any E-set, the set
lim
←−E

X can be identified with the hom-set SetE(T, X). From this point of
view, Theorem 5 is an instance of the general observation that for an algebraic
structure S (in this case, T ), the covariant hom-functor determined by S
respects direct limits if and only if S is finitely presented.

(We have, for simplicity, not defined the general concept of a presentation
of an E-set. Briefly, this may be done as follows. A representable functor
HE (E ∈ Ob(E)) can be considered an E-set X “free on one generator in
X(E)”, namely idE. A disjoint union of E-sets of this form (with repetitions
allowed), modulo the congruence generated by a given set of ordered pairs, can
be regarded as the E-set presented using the images of the elements idE ∈ HE

as generators and the given ordered pairs as relations. Incidentally, the reader
may have noted that Definition 6 has the formal defect that the condition on
E as stated depends on the choice of A. But Theorem 5 shows that it is in
fact independent of A; and, indeed, for E-sets as for other finitary algebraic
objects, if an object is finitely generated, one can show that the property of
finite relatedness is independent of one’s choice of finite generating set.)

Though Theorem 5 is elegant, it does not give convenient conditions analogous
to (9)-(13) of Theorem 2. These, too, may be generalized to arbitrary small
categories E, but the statements are simplest when E has only finitely many
objects. I will develop the generalization of (13) to that case below, and at the
end of the next section will state and sketch the proof of the corresponding
result for general E.

Let us call a subcategory E0 of a category E right division-closed if for any
two morphisms a, b of E whose composite ab is defined, we have

(29) ab, b ∈ E0 =⇒ a ∈ E0.

Proposition 7 Let E be a category with only finitely many objects. Then the

following conditions are equivalent:

(30) E satisfies the equivalent conditions of Theorem 5.

(31) There exists a finite set S of morphisms of E, such that the

smallest subcategory E0 of E which has the same object-set as E,
and contains S, and is right division-closed in E, is E itself.

PROOF. Assuming (30), take for A as in Theorem 5 the full object-set of E,
so that H is the union of the E-sets HE associated with all the objects of E,
and let R be a finite generating set for the improper congruence on H. Let S
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be the set of all elements occurring as first or second components of members
of R, and let E0 ⊆ E be constructed from S as in (31). Let U be the set of all
pairs (as, at) with s ∈ E0(E, F ), t ∈ E0(E

′, F ), a ∈ E(F, G), E, E ′, F, G ∈
Ob(E). As in the last paragraph of the proof of Theorem 2, each element
of U either has both components or neither component in E0. Hence the
equivalence relation C generated by U also has this property. Moreover, U,
and hence C, is closed under left composition with morphisms of E, hence C
is a congruence on H, and it contains all members of the generating set R,
hence it is the improper congruence. Now for every morphism a ∈ E(E, F )
of E, the improper congruence on H contains (idF , a), and idF ∈ E0, hence
by our “both or neither” property of C, a ∈ E0. So E0 = E, proving (31).

Conversely, suppose S is a finite set of morphisms for which the conclusion
of (31) holds, and consider the congruence C on H generated by all pairs
(a, idF ) where a ∈ S ∩E(E, F ) (E, F ∈ Ob(E)).

For each E, F ∈ Ob(E), let E1(E, F ) denote {a ∈ E(E, F ) | (a, idF ) ∈ C}.
I claim this gives the morphism-set of a right division closed subcategory
E1 ⊆ E with object-set Ob(E). It is immediate that it contains all identity
morphisms; now suppose a : F → G and b : E → F are morphisms of E, with
b ∈ E1. The latter relation means (b, idF ) ∈ C, hence as C is a congruence,
we also have (ab, a) ∈ C, hence (ab, idG) ∈ C ⇐⇒ (a, idG) ∈ C, i.e., ab ∈
E1 ⇐⇒ a ∈ E1, proving both closure under composition and right division
closure. Hence since S was chosen as in (31), E1 must be all of E. This
says that C contains all pairs (a, idF ) with a ∈ E(E, F ), E, F ∈ Ob(E), so
by transitivity, C is the improper congruence on H, which is thus finitely
generated, proving (30). ✷

6 Digression: four corollaries.

A case of Proposition 7 which has been noted before is

Corollary 8 (= [1, Prop. 7.9.3], cf. [15, Thm. IX.2.1, p.211], [12, Thm. 4.73, p.72])
If E is a category with only finitely many objects, and whose morphism-set

is finitely generated under composition, then on directed systems (Xi)i∈I of

E-sets, the operations lim
←−E

and lim
−→ I

commute; i.e., (27) holds. ✷

This note is in fact the result of pondering how to improve on the above
result from [1]. (Incidentally, in the statement in [1], I assumed the category
E nonempty, but allowed direct limits over possibly empty directed partially
ordered sets. In this note I have made the opposite choices, requiring in the
definition that direct limits have nonempty index sets, but not so restricting
E. As observed in [1, Exercise 7.9:2], the result holds if either the category or
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the directed partially ordered set is required to be nonempty, but fails when
they are both empty.)

Let us record next a pair of results implicit in the proofs of Theorem 2 and
Proposition 7, along with their duals. (The proofs, and that of the final result
of this section, will just be sketched; they will not be used in the remainder
of this note.) We will use for monoids as well as for categories the term “right
division-closed” introduced above, and define “left division-closed” for both
sorts of structures dually. (The terms used by semigroup theorists, e.g. in
[4,18], are “left, respectively, right unital”, though in [7], where the conditions
were first introduced, they were “left, respectively, right simplifiable”.) For
a an element of a monoid M and Y0 a subset of an M-set Y, we shall in
Corollary 9(iii*) write a−1Y0 for the inverse image of Y0 ⊆ Y under the map
Y → Y given by the action of a; and we shall similarly use inverse image
notation in Corollary 10(iii*) in connection with the set-maps Y (a) forming
the structure of an E-set Y. Note that in Corollary 9(iii*), “M-set” still means
left M-set, despite the dualization being carried out.

The first half of the next result is due to Schein [18, Theorem 2].

Corollary 9 (to proof of Theorem 2; cf. [18]) Let M be a monoid, and N a

subset of M. Then the following conditions are equivalent:

(i) N is a right division-closed submonoid of M.

(ii) N is the equivalence class of 1 under some left congruence on M.

(iii) There exist an M-set X, and an element x ∈ X, such that N =
{a ∈M | ax = x}.

Likewise, the following conditions are equivalent:

(i*) N is a left division-closed submonoid of M.

(ii*) N is the equivalence class of 1 under some right congruence on M.

(iii*) There exist an M-set Y, and a subset Y0 of Y, such that N =
{a ∈ M | a−1Y0 = Y0}. (I.e., N is the set of elements a ∈ M which carry

both Y0 and its complement into themselves.)

Sketch of proof. Assuming (i), let C be the equivalence relation on M
generated by {(as, at) | a ∈ M, s, t ∈ N}, and observe as in the proof of
Theorem 2, (17) =⇒ (13), that C is a left congruence and relates elements
of N only with elements in N, establishing (ii). The implications (ii) =⇒
(iii) =⇒ (i) are straightforward.
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The second half of the result will follow from the first by left-right dualization
if we can establish that (iii*) is equivalent to the existence of a right M-set
X with an element x such that N = {a ∈ M | xa = x}. Now given a
left M-set Y and a subset Y0 such that N = {a ∈ M | a−1Y0 = Y0}, the
contravariant power functor yields a right M-set X = P(Y ), in which the
element x = Y0 indeed satisfies N = {a ∈ M | xa = x}. Conversely, given a
right M-set X with an element x satisfying this relation, it is easy to verify
that in the left M-set Y = P(X), the subset Y0 = {S ⊆ X | x ∈ S} satisfies
N = {a ∈M | a−1Y0 = Y0}. ✷

We can now see the significance of condition (13) in Theorem 2. Although,
as noted at the beginning of §4, a general left congruence on a monoid is not
determined by the set of elements congruent to 1, the improper left congruence
is clearly determined by that set. Condition (13) translates finite generation
of the improper left congruence into finite generation of M as a set that can
occur as the equivalence class of 1 under a left congruence.

The analogous result for small categories is

Corollary 10 (to proof of Proposition 7) Let E be a small category, and for

every pair of objects E, F ∈ Ob(E) let E0(E, F ) be a subset of E(E, F ). Then

the following conditions are equivalent:

(i) The sets E0(E, F ) are the morphism-sets of a right division-closed sub-

category E0 ⊆ E with the same object-set as E.

(ii) There exists a congruence C on the E-set
⋃

E∈Ob(E) HE , such that for all

E, F ∈ Ob(E), E0(E, F ) = {a ∈ E(E, F ) | (a, 1F ) ∈ C}.

(iii) There exist an E -set X, and for each E ∈ Ob(E) an element xE ∈
X(E), such that for all E, F ∈ Ob(E), E0(E, F ) = {a ∈ E(E, F ) | axE =
xF}.

Likewise, the following conditions are equivalent (where for E ∈ Ob(E), HE

denotes the contravariant hom functor E(−, E)) :

(i*) The sets E0(E, F ) are the morphism-sets of a left division-closed sub-

category E0 ⊆ E with the same object-set as E.

(ii*) There exists a congruence C on the right E-set (contravariant Set-
valued functor)

⋃

E∈Ob(E) HE such that for all E, F ∈ Ob(E), E0(E, F ) =
{a ∈ E(E, F ) | (a, 1E) ∈ C}.

(iii*) There exist a (left) E -set Y, and for each E ∈ Ob(E) a subset Y0(E) ⊆
Y (E), such that for all E, F ∈ Ob(E), E0(E, F ) = {a ∈ E(E, F ) |
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Y (a)−1Y0(F ) = Y0(E)}.

Sketch of proof. Analogous to the proof of Corollary 9. So, for instance, to
get (i) =⇒ (ii), we use E0 as in the proof of Proposition 7 to construct on H
a binary relation U, and from that, the congruence C. ✷

Since this relation between right division-closed subcategories and congruences
on H holds for arbitrary E, why does Theorem 5 need the hypothesis that E
have only finitely many objects? Because when it has infinitely many objects,
the E-set

⋃

E∈Ob(E) HE is not finitely generated, so the statement that its
quotient by the improper congruence is finitely presented does not mean that
the latter congruence is finitely generated. However, with this viewpoint in
mind, one can come up with a generalization of that theorem to arbitrary E.

Corollary 11 (to Theorem 5 and proof of Proposition 7) Let E be a small

category satisfying (25), and A a finite set of objects of E as in that condi-

tion. Let S0 be a set of morphisms of E which, for each F ∈ Ob(E) − A,
contains exactly one morphism from a member of A to F, and which contains

no elements other than these. Then E satisfies the equivalent conditions of

Theorem 5 if and only if it satisfies

(32) There exists a finite set S1 of morphisms of E such that the

smallest subcategory E0 of E which has the same object-set as E,
and contains S0∪S1, and is right division-closed in E, is E itself.

Sketch of proof. (32) is equivalent to the statement that the pairs (a, idF ),
where a ∈ S0 ∪ S1 and F is the codomain of a, generate the improper
congruence on

⋃

E∈Ob(E) HE . Now those pairs with a taken from S0 simply
serve to “eliminate” the generators idF of

⋃

E∈Ob(E) HE with F ∈ Ob(E)−A;
i.e., dividing out by the congruence generated by those pairs alone gives the
E-set H of Theorem 5. Thus, (32) is equivalent to the statement that the
improper congruence on that E-set is generated by a finite set of pairs, which
is the desired condition (28).

To set up a formal proof, for each F ∈ Ob(E) − A, let aF ∈ E(EF , F )
(where EF ∈ A) be the corresponding element of S0, while for F ∈ A let
us set EF = F, aF = idF . Then given S1 as in (32), one shows that the
improper congruence on H is generated by the finite set of pairs (baF , aF ′)
for b : F → F ′ in S1, while conversely, given a finite generating set R for
that improper congruence, one can take S1 to be the set of components of
members of R. ✷
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An easy class of examples are categories E having an initial object Einit. Then
if one takes A = {Einit}, there is a unique set S0 as in the statement of the
above theorem, and letting S1 be the empty set, one finds that (32) holds.

7 Posets.

Groups and monoids, with which we began this note, are categories where “all
the structure is in the morphisms”, and essentially none in the class of objects
and the way morphisms connect them. In this section we will consider the
opposite extreme, the case of partially ordered sets J regarded as categories.

If J is a poset, we shall write E = Jcat for the category having for objects the
elements of J, and having, for each E, F ∈ J, one morphism λ(E, F ) : E → F
if E ≤ F, and no morphisms E → F otherwise. (We write E, F, . . . for
elements of J for consistency with the notation of the last two sections.)

From Proposition 4 we know that a necessary condition for Set-valued limits
over such a category E to respect direct limits is that the set A of minimal
elements of J be finite, and every element of J lie above an element of
A. Note that the E-set H constructed as in Theorem 5 from this set A
associates to each E ∈ J the set {λ(F, E) | F ∈A, F ≤E}. By that theorem,
to strengthen our necessary condition to a necessary and sufficient one, we
need to know for which J the improper congruence on this E-set H is finitely
generated.

For an instructive example of an infinite poset for which this congruence is

finitely generated, let the underlying set of J consist of all real numbers ≥ 1,
ordered in the usual way, together with two elements 01 and 02 which are less
than all other elements, and mutually incomparable. Thus, A = {01, 02}, and
for all E other than these two elements, we have H(E) = {λ(01, E), λ(02, E)}.
It is easy to see that the improper congruence on H is generated by the single
pair (λ(01, 1), λ(02, 1)). On the other hand, if we delete the element 1 and
consider the corresponding functor on (J − {1})cat, it is not hard to see that
the improper congruence on this functor is no longer finitely generated.

The element 1 ∈ J is what we shall call a “critical element” with respect to
the subset {01, 02}. In the example above, it served to “gather” the strands of
H emanating from 01 and 02. Let us give precise meanings to these terms.

Definition 12 Let J be a partially ordered set. For E ∈ J we shall write

down(E) for {F ∈ J | F ≤ E} (the “principal downset” generated by E).

Given E ∈ J and subsets A, B ⊆ J, we shall write R(A, B, E) for the
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equivalence relation on A∩ down(E) generated by the union over all F ∈ B∩
down(E) of the improper equivalence relations on the sets A ∩ down(F ). We

shall say that B gathers A under E if R(A, B, E) is the improper equivalence

relation on A ∩ down(E).

Given a subset A ⊆ J and an element E ∈ J, we note that {E} always

gathers A under E. We shall call E A-critical if J − {E} does not gather

A under E.

It is straightforward to verify the transitivity relation

(33) If A, B1, B2 are subsets of J and E an element of J, such that
B1 gathers A under every element of B2 and B2 gathers A under
E, then B1 gathers A under E.

Also, the next-to-last sentence of Definition 12 implies the reflexivity condi-
tion:

(34) If A, B are subsets of J, then B gathers A under every E ∈ B.

Note that in the next lemma, we do not assume that every element of J
majorizes some member of A (though we will add that assumption when we
apply the lemma).

Lemma 13 Let J be a partially ordered set and A ⊆ J a finite subset. Let

us write E for Jcat, and H for the union, over all E ∈ A, of the covariant

hom-functors HE . Then the following conditions are equivalent:

(35) There exists a finite subset B ⊆ J which gathers A under every

E ∈ J.

(36) The set of A-critical elements of J is finite, and gathers A under

every E ∈ J.

(37) The improper congruence on the E-set H is finitely generated.

PROOF. (36) =⇒ (35) is immediate. To get the converse, take B as in (35)
and let B ′ denote the set of A-critical elements of J. Applying (35) to an
element E ∈ B ′, we see, from the definition of the statement that E is A-
critical, that E ∈ B. Hence B ′ ⊆ B, so in particular B ′ is finite; it remains to
show that for any E ∈ J, B ′ gathers A under E. In doing so we may assume
inductively that B ′ gathers A under every F ∈ J such that the number of
elements of B that are < F is smaller than the number that are < E, or
such that these numbers are equal but the number ≤ F is smaller than the
number ≤ E.
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If E /∈ B, the former assumption shows that B ′ gathers A under each element
of B ∩ down(E), hence (33), with B ′ and B ∩ down(E) in the roles of B1

and B2, shows that B ′ gathers A under E, as desired. On the other hand,
if E ∈ B, the inductive assumptions show that B ′ gathers A under every
element of J that is < E. Now if E is not A-critical, we can apply (33) with
B ′ and down(E) − {E} in the roles of B1 and B2 respectively, and again
conclude that B ′ gathers A under E. On the other hand, if E is A-critical,
then it belongs to B ′, and (34) (with B ′ in the role of B) yields the same
conclusion.

(35) ⇐⇒ (37): Note that for any E ∈ J, the definition of H(E) shows that
this set is in bijective correspondence with down(E) ∩ A, via λ(A, E) 7→ A,
and that for any set B, the equivalence relation R(A, B, E) on down(E)∩A
corresponds to the restriction to H(E) of the congruence generated by the im-
proper equivalence relations on the sets H(F ) (F ∈ B∩down(E)). It follows
that given B as in (35), the improper congruence on H is generated by the
finite set of pairs {(λ(F, E), λ(F ′, E)) | E ∈ B; F, F ′ ∈ A ∩ down(E)}. Con-
versely, assuming (37), we may take a finite generating set S for the improper
congruence on H and let B = {E | (∃F, F ′ ∈ A) (λ(F, E), λ(F ′, E)) ∈ S},
and we see that this B witnesses (35). ✷

The above lemma, combined with Theorem 5, yields necessary and sufficient
conditions for a category of the form Jcat to have the property we are in-
terested in (last paragraph of theorem below). We can also get from it some
necessary conditions for this to be true of an arbitrary small category (first
paragraph).

Theorem 14 Let E be a small category, and J the partially ordered set

whose elements are the equivalence classes of objects of E under the equiv-

alence relation that relates E and F if there exist morphisms from E to

F and from F to E (cf. proof of Proposition 4). Let A denote the set of

minimal elements of J, and B the set of A-critical elements. Then necessary
conditions for limits over E to respect direct limits of E-sets are (i) A is

finite, (ii) every element of J lies above an element of A, (iii) B is finite,

and (iv) B gathers A under every element of J.

If E is in fact a category formed from a partially ordered set by the con-

struction ( )cat (equivalently, if E ∼= Jcat), then the conjunction of these four

conditions is sufficient as well as necessary.

PROOF. The final assertion is immediate from Proposition 4, Theorem 5,
and Lemma 13.

To get the assertion of the first paragraph, suppose that limits over E respect
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direct limits of E-sets. Conditions (i) and (ii) follow from Proposition 4. Let
us write the set of minimal elements of J more distinctively as A(J), let
A(E) ⊆ Ob(E) be a set of representatives of these elements, and let H(Jcat) and
H(E) denote the Jcat-set and the E-set determined by these respective sets of
objects. Then by Theorem 5 our assumption implies that the trivial congruence
on H(E) is finitely generated, while by Lemma 13, the conclusions (iii) and (iv)
that we want to prove are equivalent to saying that the same is true of the
trivial congruence on H(Jcat).

Now there is an obvious functor R : E → Jcat taking each object of E
to its equivalence class in J. It is easy to see that the composite functor
H(Jcat)◦R : E → Jcat → Set admits a surjective homomorphism H(E) →
H(Jcat)◦R; hence as the improper congruence on H(E) is finitely generated,
the same is true of the improper congruence on H(Jcat)◦R, and hence, as R is
surjective on objects, of the improper congruence on H(Jcat), as required. ✷

8 Remarks

As noted in the introduction, given a directed system of algebras (Ai)I , un-
derstood to be finitary, one can construct its direct limit by taking the direct
limit of underlying sets and putting an appropriate algebra structure on this
set, essentially because direct limits respect finite products of sets, and an
algebra structure is given by maps on such product sets. On the other hand,
direct limits do not in general respect infinite products; indeed, such a prod-
uct can be thought of as a limit over Jcat where J is an infinite antichain,
and such a J does not satisfy condition (i) of Theorem 14. So direct limits of
infinitary algebras cannot be constructed as in the finitary case. An example
is

Example 15 A directed system of algebras with one ℵ0-ary operation, such

that the algebra structure cannot be extended to the direct limit set in any

natural way.

Details. For each positive real number a let Aa be the closed interval [0, a] ⊆
R, given with the ℵ0-ary supremum operation (x0, x1, . . . ) 7→ sup(x0, x1, . . . ).
These sets form a directed system under inclusion, but the operation sup
clearly does not extend in a natural way to their direct limit, [0,∞). For
instance, one has no natural definition of sup(0, 1, 2, . . . ), because the map
ι : lim
−→a∈R

(AN

a ) → (lim
−→a∈R

Aa)
N does not have (0, 1, 2, . . . ) in its image. It is

not hard to show that no extension of sup to [0,∞) makes this set the direct
limit of the algebras Aa. (The uncountability of R is not necessary to this
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example; one may replace R with N. I just felt that the supremum function
on real numbers was the more “important” example.)

We also noted in the introduction that the results of this paper are spe-
cific to Set-valued functors, and fail for functors with other codomains, e.g.,
Setop. For another example, let Metr be the category of metric spaces, with
distance-nonincreasing maps as morphisms. Then one has

Example 16 A directed system of Z2-sets X0 → X1 → · · · , in Metr such

that the map ι : lim
−→ i

(Xi)
Z2 → (lim

−→ i
Xi)

Z2 is not surjective.

Details. For each i, let Xi be the set {0, 1}, with d(0, 1) = 1/(i + 1), and
with Z2 acting by switching 0 and 1, and let all connecting morphisms be the
identity on underlying sets. Each of the sets XZ2

i is empty, so lim
−→ I

XZ2

i = ∅.
However, from the metric space axiom d(x, y) = 0 =⇒ x = y one sees that
the direct limit of this directed system is the 1-point metric space, on which
Z2 acts trivially; thus, (lim

−→I
Xi)

Z2 is nonempty.

A type of question related to that considered in this note arises in sheaf the-
ory. A sheaf of sets on a topological space V is a certain sort of functor
(o(V )op)cat → Set, where o(V ) is the set of open subsets of V, partially or-
dered by inclusion; and an analog of the question we have considered is, “When
does the global-sections functor commute with direct limits of sheaves?” But
that problem is not actually a case of the problem considered above, because
of the nontrivial form that the direct limit construction takes for sheaves. A
class of situations where that commutativity holds is obtained in [10, Exer-
cise II.1.11], and in greater generality in [9, Proposition 3.6.3].
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Hom) with some colimits, Czechoslovak Math. J. 53 (128) (2003) 891–905.
MR 2004i:16002.

[9] Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku
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