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ABSTRACT.   Let R be an algebra over a field k, and  P, Q be two non-

zero finitely generated projective .R-modules.   By adjoining further generators

and relations to R, one can obtain an extension S of R having a universal iso-

morphism of modules, i: P®RS s Q <8)R S.

We here study this and several similar constuctions, including (given a sin-

gle finitely generated projective Ä-module  P)   the extension  S  of R   having a

universal idempotent module-endomorphism   e:  P ® S —► P ® S, and (given a

positive integer  n)   the fc-algebra  S  with a universal /c-algebra homomorphism

of R   into its  nXn   matrix ring, /:  R—► mn(S').

A trick involving matrix rings allows us to reduce the study of each of

these constructions to that of a coproduct of rings over a semisimple ring Rq

(= k X k X k, k X k,   and   k   respectively in the above cases), and hence

to apply the theory of such coproducts.   As in that theory, we find that the

homological properties of the construction are extremely goorf:   The global

dimension of 5 is the same as that of R unless this is 0, in which case it

can increase to  1, and the semigroup of isomorphism classes of finitely gen-

erated projective modules is changed only in the obvious fashion; e.g., in the

first case mentioned, by the adjunction of the relation [P] ■ [Q].

These results allow one to construct a large number of unusual examples.

We discuss the problem of obtaining similar results for some related

constructions:   the adjunction to R of a universal inverse to a given homo-

morphism of finitely generated projective modules, /: P —► Q, and the forma-

tion of the factor-ring R/Tp by the trace ideal of a given finitely generated

projective R-module P (in other words, setting P = 0).

The idea for a category-theoretic generalization of the ideas of the paper

is also sketched.
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1.  Introduction.  It is well known that there exist (nonzero) noncommutative rings

R such that the free right R-modules of two distinct ranks, Rm and R", are

isomorphic as modules. A module-isomorphism t: R" —► Rm can be represented

by an m x n matrix ((x/;)) having an « x m inverse matrix (0>/;-)), and W. G.

Leavitt observed in [25] that to study this phenomenon one could introduce the

ring (or more generally, algebra over a fixed commutative base-ring k) Vmn de-

fined by 2mn   generators ai} (i <m; j < n), b¡¡ (/<«;/< m) and the m2 +

n2 relations saying that the product matrices ((%)X(¿h)) and ((&h)X(%)) are

the m x m and n x n identity matrices. That is:

m

(1) Z anib¡j = 6/y-      Qi, j = 1, • • •, m),
í=i

n

(2) S bniau = Siy       (/z, / = 1, • • •, «).
j= i

These fc-algebras Vmn (for k a field), and the related algebras Umn, with

a universal left-invertible map from the free module of rank n to that of rank m,

and W^ with a universal idempotent m x m matrix, have been further studied

by P. M. Cohn [13], [15] and L. A. Skornyakov [30].  The results of this paper

include and strongly generalize those of these earlier investigations. Given a k-

algebra R, we shall study the rings obtained by "adjoining to R" universal homo-

morphisms, isomorphisms, left-invertible maps, and idempotent endomorphisms

between finitely generated projective i?-modules, and further related construc-

tions.

The idea of our approach will be to use the Morita equivalence between a

it-algebra R and its s x s matrix ring m^/?) for appropriate s, to take us from

the general case of our problem to the special case where the projective right

modules under study are direct summands in the free right R-module of rank 1.

Thus, if we are studying the adjunction of an isomorphism between projective

modules P and Q, we reduce to the case where R has orthogonal idempotents

ep and eg such that P = epR, Q = egR.

Then R = epR © eQR ® evR (ev = 1 - eP - eQ; direct sum as right

ideals) and the map (a, j3, y) H» aep + ßeg + yeu is a ring homomorphism

kxkx k—>R; and in terms of this map, the direct summands epR and egR of

R are induced by the summands fcxO x0 and 0 xkxO oi-k xkxk. Now the universal

extension of the fc-algebra k x k x k by an isomorphism of the module

fc x 0 x 0 with 0 x k x 0 is easily shown to be the ring m2(k) x k, where ep and

eg are identified with the matrix units ex x and e22 of m2(k ), and the iso-

morphisms introduced are e21 and e12.  The desired universal extension of R
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can now be obtained as the coproduct, over k x k x k, of R with this exten-

sion m2(k) x k.  The results of [7] give us plentiful information about the

module theory of this coproduct.

A word of caution:  It is misleading to speak of, say, the ring  Vm n

mentioned above as the universal fc-algebra R such that Rm = R"  as modules.

Rather, it is the k-algebra R with a universal isomorphism i: Rm—*Rn. The

first statement would imply that for every fc-algebra 5 such that Sm = S"   there

should exist a unique homomorphism /:  R —► S.  Rather, for each such S and

each isomorphism /:  Sm —+ S" we get a unique homomorphism/: R—> S such

that / = i ®f S. A fc-algebra with the former property does not exist.  (Even

above, I was imprecise at one point:   I said   Um n  had a universal left-invertible

map a: R" —* Rm. What I should have said is that it has a universal pair of

maps, a: Rn—+Rm, b: Rm —* Rn  suchthat ba = 1     .  The point is that

left inverses are not unique, and to determine a ^-algebra homomorphism R —►

S, one must specify not only the module-map 5" —► Sm to which a goes, but

also the left inverse of a  to which b  should be carried.)

In §7 we consider another type of construction.  Given a Är-algebra R  and

an integer n, we construct a fc-algebra S = m„(R) with a universal map R —►

m„(S),  that is, a "universal coefficient ring for n x n matrix representations of

R." Category-theoretically, ron  is the left adjoint of the n x n matrix-ring

functor mn:  fc-algebras—► ^-algebras.  Again, ro„  can be reduced to a combina-

tion of coproducts and matrix-ring functors. We find that not only does this

functor preserve many module-theoretic.properties, but tt>„(R) is always an

(n - l)-fir, in particular, if n>2, an integral domain.  It follows that most sorts

of homological properties, pathological or otherwise, that can be exhibited by a

fc-algebra can be exhibited by one that is an integral domain (§8).  E.g., Small

[31] has constructed a right hereditary non-left-semihereditary ^-algebra R;

tD2(/?) will have these same properties and also have no zero-divisors.

In §9 we apply a theorem of Cohn's to show that a large class of rings of

the sorts discussed above satisfy rc-term weak algorithm.

§§10 and 11 discuss the possibility of obtaining results similar to some of

the present ones for the constructions of adjoining a (right, left or 2-sided) inverse

to a given map of projective modules, and of putting a projective module equal

to zero (=  dividing out by its trace ideal).

In §12 we show how the idea that a fc-linear category is a generalized k-

algebra (cf. [28] ) can provide a unifying framework for all the results of this

paper and of [7] and can suggest some strong generalizations thereof.

In an appendix, §13, the special role of finitely generated projective modules

in these universal constructions is examined.
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2. Some terminology and conventions. All rings will be associative with

1, and all modules unital. When the contrary is not mentioned, "module" will

mean "right module".  Homomorphisms of rings or modules will be written on

the left, and composed accordingly.

Recall that for k a commutative ring a fc-algebra can be described as a

ring R given with a homomorphism of k into its center, while for R an

arbitrary ring, a ring S given with a homomorphism R —► S is called an .fi-

ring. We shall need a term for a combination of these two concepts. If R is a

fc-algebra, then a fc-algebra S given with a fc-algebra homomorphism R —► S

will be called an R-tingk. (In effect, "ringk" is being used as an abbreviation

for fc-algebra where the latter expression would be clumsy.)

If S is an Ä-ring and M an /?-module, then the 5-module M ®R S will

often be abbreviated M if there is no danger of confusion.  Likewise, if /: M

—> N is a homomorphism of i?-modules, then / ® S may be abbreviated / :

M —► N, and if x is an element of M (or R) its image in M (resp. 5) may

be denoted Jc.  (At times we may simply write jc; e.g. if for some set X we

take M to be the free module on X, ©^ xR, then we may write the free

S-module M as (By xS.)

For any ring R, the category oí finitely generated right 7?-modules will

be written Mod R, as in [7], and the full subcategory of finitely generated

projective right R-modules will be denoted   P-Mod R- Further notation will be

introduced as needed.

We shall occasionally refer to the concepts of firs (=  free ideal rings), n-

firs, and «-term weak algorithm, but except in §9, and to an extent §§7, 8,

these concepts will not be essential to an understanding of the main points dis-

cussed.  For background on these classes of rings, see [16].

3. Universal module-map constructions—general nonsense.  Let k be a

fixed commutative ring.  All the constructions we shall study can be built up

from the two described below:

Theorem 3.1 (Adjoining maps).   Let R be a k-algebra, M any R-

module, and P a finitely generated projective R-module.   Then there exists an

R-ringk, S, having a universal module homomorphism f: M®S —*P ®S;

that is, having an S-module homomorphism f such that given any R-ringk,   T,

and any T-module homomorphism g: M <8>T—>-P ®T,  there exists a unique

homomorphism S—>T of R-ringsk such that g =f®sT.

More generally, given a family of such pairs of modules, M¡, P¡ (i G /, a

set) there exists an R-ringk S having a universal family of homomorphisms

{ft: Mt9S—* P¡ ® SU S /} with the same universal property.
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Theorem 3.2 (Imposing relations).   Let R be a k-algebra, M any R-

module, P a projective R-module, and f: M —► P any module homomorphism.

Then there exists an R-ringk S such that f ® S = 0, and universal for that

property:   Given any R-ring T with f®T=0, there exists a unique homo-

morphism of R-rings,  S —► T.

More generally, given a family of such R-module maps, f¡: M¡—> P¡ (i G

I, any class), there exists an R-ringk universal for the property: For all i G 7,

f¡ ®R S = 0 (in fact, universal for this property as an R-ring).

Proofs. In the situation of Theorem 3.1, let us write M as the cokernel

of a map u of free R-modules, say on bases A  and B:  (&A aR —► @B bR

—► M, and for each a&A, let u(a) = SB buba  (ubaGR, zero for almost

all b). Then for any R-ring  T, M ® T has the presentation ®A aT-^+

®BbT—>M.

Let us write the finitely generated projective module P as a direct sum

mand in a free i?-module of finite rank ©c cR = P ®Q; specifically, as the

kernel of an idempotent endomorphism e defined by e(c) = 2c»ec cec'c

(ec>c G R). Then for any .R-ring  T, the map ë with coefficients e~c>c will

induce the decomposition @ccT = P®T@Q®T.

Hence for any .R-ring  T, a module homomorphism g: M ®T —* P ®T

will be uniquely determined by a map h: ©B bT—► wc cT which left

annihilates w   and right annihilates e~; equivalently (since  C is finite) by any

family of elements hcb G T satisfying

2- hcbuba = 0 (aGA,cGC)      and     Z ec>chcb = 0 (c G C, b G B).
B CE:C

So let us define S as the .R-ringfc  gotten by adjoining to R  a family of

generators hcb  (c G C, b G 5) subject to the above relations.  Then these ele-

ments will constitute the coordinates of an S-module homomorphism /: M ® S

—► P ®S with the desired universal property. The case of an arbitrary indexed

family of maps is clearly no more difficult.

In the case of Theorem 3.2, we again write P as a direct summand in a

free module ©c cR. The fact that it is a direct summand insures that for any

R-ring T, the map f: P®T—>®ccT induced by the inclusion i: P—►

©c cR is again  1-1. Hence if we write for each m G M, f(m) = 2 cfcm

(fcm e -^)> we can see that for any R-ring T, f®T will be zero if and only

if all the fcm  go to zero in  T. So the desired universal ring S is simply the

quotient of R by the two-sided ideal generated by these elements.  Again, the

case of a family of maps is no different, (even if this family is indexed by a

proper class-since the coefficients fcm, belonging to R, will form a set).   D
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(In §13 we shall show why P must be assumed finitely generated and

projective in Theorem 3.1, and make some related observations on Theorem 3.2.)

Note that when M and P are both R,  the free module of rank 1, then

the construction of Theorem 3.1 is that of adjoining an indeterminate, and the

construction of Theorem 3.2 is that of imposing a relation, in the usual senses.

From the point of view of the categorist, Theorem 3.1 says that the functor

from jR-ringSj.  to sets, associating to  T the set Homr (M ® T, P ® T), is

representable.

The ring S constructed in Theorem 3.1 will be denoted R<f: M®—►

P®)  or R(f: M—>P>, and that of Theorem 3.2, R<f®=0) or R<f = 0).

These are well defined up to natural isomorphism.  Note that if a: M = M1,

ß: P= P1 are isomorphisms of R-modules, the rings R<f: M—*P) and

R(f:  M'—► P') are isomorphic under the unique map of R-rings taking the

module-map / to ß ~ lf'a.  The analogous observation holds for the second

construction.

Now that we can introduce generators and relations, we can describe more

complicated constructions.  Given a fc-algebra R  and a homomorphism /:

P —* Q between two finitely generated projective R-modules, we may construct

an R-ringfc R{(f®)~ l) or R<f _1> in which /   becomes an isomorphism, by

adjoining a map g:  Q—>P, then setting  \-—gf   and  l--fg equal to

zero.  If one only sets the first of these equal to zero, one gets a ring

R(g',gf =1-) with a universal left inverse to /.  There /   becomes an iso-

morphism of P  and a direct summand of Q, with a distinguished cosummand

Ker fg, in a universal manner.  Imposing instead the other equality gives

R<g\fg — l->, were gf   gives the projection of P   onto a direct summand,

which is isomorphic to  Q under /,  and is given with a distinguished cosum-

mand Ker gf. If / was an isomorphism to begin with all three of these uni-

versal constructions leave R  unchanged; but if / was (only) one-sided inverti-

ble, it is not hard to show that all three will change R.

Given a fc-algebra R  and two finitely generated projective .R-modules P

and Q, we can adjoin a universal isomorphism between P® and  Q® by first

freely adjoining a map P® —► Q®, then adjoining an inverse. We shall call the

resulting R-ringfc RQ, fT : P = Q). Here if P and  Q were already isomorphic

.R-modules, the construction is equivalent to universally adjoining an automorphism

of P.  E.g., if P and  Q are both the free right R-module of rank  1, the new

.R-ringfc  is the ^-algebra R<x, x~l) obtained by freely adjoining to R  one in-

determinate and an inverse thereto.  Again, one can adjoin a map P —► Q and

a one-sided inverse only, getting a ring R<i: P —► Q, j:  Q —>P; ji= l->.

Given a single finitely generated projective module P, one may obtain an
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i?-ringfc  with a universal direct sum decomposition P = Px ©P2  by adjoining

to R  a universal idempotent endomorphism of P®. This ring will be written

Rie: P —*■ P ; e2 = e>.  Or one can annihilate P entirely by setting its identity-

map equal to zero.  The resulting ring, R<1- = 0> or simply R<P = 0> is easily

seen, from its universal property or by examination of the construction, to be

the quotient R/Tp of R by the trace ideal of P.

Of the above constructions, we shall obtain "good" module-theories in §5

for those of adjoining a universal map, R<f: P —► Q), adjoining a universal iso-

morphism, R(i, i~ : P = Q) (when P and Q are nonzero finitely generated

projective modules) adjoining one-sided invertible maps, R(i: P —*■ Q, j:  Q —►

P; ji = 1 -> (when Q i= 0) and adjoining a universal direct-sum decomposition,

R(e: P —* P; e2 = e). The base-ring k is assumed a field in each case.

On the other hand we cannot expect the operation of adding an arbitrary

relation / = 0 to a ring to preserve good homological properties, since one can

get arbitrary fc-algebras by imposing relations on free associative algebras.

Concerning the operations of adjoining a one- or two-sided inverse to a

given map /, and of killing (the identity map of) a projective module, I shall

say what little I know in §§10, 11.

Let us put all the above constructions into a general framework.  Define a

^-linear category (for k an arbitrary commutative ring) as a category in which

every Horn-set Horn (X, Y) is given a structure of ^-module, such that the

composition maps, Horn (Y, Z) x Horn (X, Y) —► Horn (X, Z) are fc-bilinear.  A

fc-linear functor will mean a functor between fc-linear categories that maps Horn-

sets by fc-module homomorphisms.  In particular, for R  a fc-algebra the category

of all .R-modules has a natural fc-linear structure, hence so do the full subcategories

Mod R  of finitely generated R-modules, and   P-Mod R  of finitely generated

projective R-modules.  If T is an R-ringfc,  the restriction of scalars functor

from T-modules to R-modules, and the functor _® T going the other way, are

clearly ̂ -linear.

The construction of the following theorem may be obtained by one applica-

tion of Theorem 3.1 to obtain all the morphisms needed, followed by one applica-

tion of Theorem 3.2 for relations.

The reader should be able to express the constructions discussed above as

examples of this construction!

Theorem 3.3. Let R be a k-algebra, and let us be given small k-linear

categories A and  8, and k-linear functors F:   A —► P-M od R and G:   A

—► 8,  such that G is a bijection on objects.   Then there exist an R-ringk,

S = R<8> and a k-linear functor H:   8 —► P-Möd S which make the following

diagram commute:
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A-► P-ModR
l
l

G ¡ _»S

B-----^ P-Mod S

and which are universal for this property.    O

This R-ringfc depends on A, F and G as well as R and 8. Never-

theless we shall use the compact symbol R(B>; there will be little occasion for

confusion, and the notation is suggestive since it is the morphisms and relations

of 8 that are being "adjoined" to R. (For specific cases of this construction

we shall continue to write R<i, i~l: P = Q) etc.)

Note that if F, F1: A —► P-Mod R are isomorphic functors, they yield

isomorphic extension rings.  (Cf. earlier discussion of "a: P s P\")

By comparison of universal properties, one verifies without difficulty the

behavior of the above construction with respect to change of R. This is where

coproducts come in:

Theorem 3.4. Let R, A, B, F, G be as above, and R' any R-ring^   Then

R\B) may be identified with the coproduct R' jlr R(B) of R' with R(B>

over R:

A-► ModR-► ModR'

I      I i
B-► ModRiB)-■* McdR'^R R<B>.   □

Finally, note that any universal construction for finitely generated projec-

tive right R-modules is equivalent to a dual construction for finitely generated

projective left R-modules, because of the well-known contravariant equivalence

(duality) between the categories of such modules, given by "*" = Horn (_, R).

(Here it is understood that all homomorphisms of modules are written on the left

and composed accordingly. An alternative, and frequently convenient convention

would be to write homomorphisms of left modules on the right and so compose

them.  Then "*"  becomes covariant, but we have to work with categories with

two different conventions on composition, or else set up unnatural definitions

of domain and codomain in the category of left modules!  So we shall stick to

left-hand notation here.) Introducing superscripts  ^  and  ^  for the moment,

to distinguish right and left module constructions, we have:

Theorem 3.5.   Under the hypotheses of Theorem 3.3, the universal rings

S = /W8>w and S* = i?<8op>(/) associated with the following diagrams:
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A —s—* P-Mod(r) R Aop —!£-> P-Mod(0 R

|_®5 Gop
I

Is'®

B — ---* P-Mod(r) S Bop —3U p-Mod(/) ^

ere naturally isomorphic.    D

Between logical right-left symmetry and the above duality by "*", we find

that the study of the properties of right or left modules over a ring obtained by a

universal construction on right or left projective modules can be reduced to a case

of right modules and a right-universal construction. Namely, first reduce, by

logical symmetry, to the case where the question is one of right module theory.

Then if after this reduction the construction involves projective left modules, use

the above theorem to translate it into a construction on projective right modules.

E.g., left inversion of a map of left modules = right inversion of a map of right

modules.  Many of the constructions we shall study below are self dual in this

sense:  Making the finitely generated right module P a direct summand in, or

isomorphic to the module  Q is equivalent to making the left module P*  a

direct summand in, or isomorphic to the left module  Q*. Hence these construc-

tions have the same homological behavior on the right and left.

So we shall say little more about left modules, leaving the obvious observa-

tions to the reader who has need of them.

4. Matrix rings.  For «  a positive integer, mn :   R¿ngk —► R-óig^  will

denote the n x n matrix-ring functor on the category of fc-algebras.

By functoriality, it is clear that if R  is a Ä:-algebra, we have on the k-

algebra m„(R) a natural structure of rnn(/:)-ringfc.  If we call the algebra together

with this additional structure 3W„(R), we have a factorization of m„:

W„                               3„
(3) ¡Ungk-► mn(k)-Ringk-* V.ÁjnQk,

where 3n  is the forgetful functor.

Recall that the functor sJDí„  is in fact an equivalence of categories [7, §10].

Its inverse (strictly:  inverse up to isomorphism) <3J}~1 :  mn(k)-V.ÁyiQk—►

RÁngk may be constructed as taking an m„(fc)-ringfc, R, to the Âr-algebra

e11Re11   with unit Cj j (= the image in R of the matrix unit enG mn(k)).

This is the construction from which the above claim is easiest to verify [7, §10].

Once one knows that 9D?„  is an equivalence, one sees that its inverse can be con-

structed more elegantly as the centralizer of mn(k) in R.

Further, for R  any fc-algebra, ModR  and  Modm„(R) are equivalent

fc-linear categories.  (That is, R  and ro„(R)  are Morita equivalent.) Given an
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R -module M, we define xn(M) to be the module of row vectors of length n

in the elements of M, on which elements of m„(R)  act via the usual rules for

multiplying a vector by a matrix, applied to the R-module structure of M. We

may construct r"1   by taking a right tnn(R)-module N to the R-module Afen

[7, § 10].  Because r„  is an equivalence of categories, and in fact extends to the

categories of arbitrary (not necessarily finitely generated) R- and mn(R)-modules,

it respects projectivity, homological dimension, etc.

Note that xn takes the free right R-module of rank n to the free right

m„(R)-module of rank 1. This fact will allow us to make the crucial reduction

of finitely generated projective modules to cyclic projective modules in the next

section.

The functor xn  is also natural in R, in the sense that, for any homo-

morphism R —*■ S of fc-algebras, the following diagrams will commute (where

r.o.s. means "restriction of scalars"):

r„
ModR -*Modm„(R)       ModR Modm„(R)

_®Ä5

UodS' Modm„(5) Mods-

_®m„(Ä)mn(5)

Modm„(S)

We deduce again by comparing universal properties:

Theorem 4.1.  As in Theorem 3.3, let R be a k-algebra,  A and  B small

(k-linear) categories, and F:   A—>P-ModR, G:   A—► B (k-linear) functors,

with  G bijective on objects.  Let n be a positive integer, and let us map  A

into  P-Mod mn(R) by vn ° F.

Then the resulting universal extension ring, m„(R)<8>, universal for the

second diagram below, may be identified with mn(R(B>), where R(B) is con-

structed from the first diagram:

AP-tAodR
vf

P-Mod m„(R)

B
H H'

i

i

P-ModR<8>        8—-—-> P-Modm„(R)<B>.   □

Or, to put the conclusion in the form in which we shall use it in the next

section, R{B) may be constructed as TÎ~l(1Jl „(R^BÏ).

(Strictly, we should only speak of m„(R)<8>, not 2J?n(R)(8>,  since Theorem

3.1 applies to the category  R¿ngk.  But the point here is that we remember the

structure of mn(fc)-ring on tnn(R), and since mn(R)<8> is constructed as an

lñ„(R)-ring, it inherits, in particular, a structure of mn(fc)-ring, so we can apply

9JÎ"1   to it.  In the theorem, all this is hidden in the phrase "may be identified

with"!)
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5.  Main theorems. We shall first formulate, then prove Theorems 5.1-5.3.

Throughout §§5-11, k will be a field.

First, let R  be a fc-algebra and P a nonzero finitely generated projective

right R-modulé.  Let S = Rie:  P —►F; e2 = e).  Thus, over S, P=P®S

decomposes as:

P = Pr e P2    where

Px = Im(e) = Ker(l -e)

i>2 = Ker(l -e) = Im(e).

We define a fundamental S-module to mean an S-module obtained as the

direct sum of a module M ®R S (M an R-module) and of a family (possibly

empty, possibly infinite) of copies of Px   and P2.  The full subcategory of all

finitely generated S-modules which can be given a structure of fundamental

module will be denoted   fund S Ç Mod S.  Following the notation of [7],

S ©(Fund -S) Ç 5e(Mod S) will denote the abelian semigroup of isomorphism

classes of finitely generated fundamental S-modules under the composition in-

duced by  ©, i.e.   [A] + [B] = ¿e{ [A (B B]. (Throughout this paper, semigroup

will mean semigroup with identity element. When a semigroup is written addi-

tively, this element will be denoted 0.)

Theorem 5.1.   Over the ring S = R(e: P—►/>; e2 = e), every sub-

module of a fundamental module is isomorphic to a fundamental module.   The

abelian semigroup Se(fand S) may be obtained from  5e(ModR) by ad-

joining two new generators   [Px]  and  [P2]  and one relation   [Px] + [P2] =

[P]. For any R-module M,  h dims M = h dimfi M; and of course h dims Px

= h dims P2 ~ 0-  Globally,  r gl dim S = r gl dim R,  unless r gl dim R = 0,

in which case r gl dim S < 1.

Next, let P and  Q be two nonzero finitely generated projective modules

over a fc-algebra R,  and let us form S = R<i, z'-1: P = Q). This time, define

a fundamental S-module to mean one of the form M ®R S (M an R-module).

This again gives us a full subcategory Fund S ÇMod S, and a subsemigroup

Se(¥undS)cS^(UodS).

Theorem 5.2.   Over the ring S = R<i, i~l: P = Q),  every submodule of

a fundamental module is isomorphic to a fundamental module.   The abelian semi-

group S&(Vund S) is obtained from S^QÁodR) by imposing one relation

[P] = [Ö]. (I.e., the congruence on Se(ModK) given  by {([A], [B])\A~=B}

is generated by ([P], [Q]).) For any R-module M,  h dims M = h à\mR M.

Globally,  r gl dim S = r gl dim R  unless  r gl dim R = 0, in which case

rgl dimS< 1.
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Finally, again let P and  ß be two nonzero finitely generated projective modules

over a fc-algebra R, this time take the universal mapping ring S = R(f: P —► Q),

and again define a fundamental module to mean one of the form M ®R S (M

an R-module).

Theorem 5.3.  Over the ring S = R<f: P —► Q), every submodule of a

fundamental module is isomorphic to a fundamental module. Se(Fund S) =

S#(frÁodR) under the map   [M] —*[M\, and this map preserves homological

dimensions,   r gl dim S = max(r gl dim R, 1).

Proof of Theorems 5.1-5.3.  We first note that for any positive integer

n, the hypotheses and conclusions of these theorems are respected by the opera-

tion m„  applied to the rings, and Vn  to the modules. Hence by Theorem 4.1,

to prove any of these results for a given R, it would suffice to prove it for

m„(R), with r„(P)  for P, etc.  Given R, let us choose n in the case of

Theorem 5.1 to be large enough so that P can be embedded as a proper direct

summand in the free right R-module of rank n, and in the cases of Theorems

5.2 and 5.3, large enough so that P ®Q can be so embedded.  The m„(R)-

module corresponding to the free R-module of rank n is free of rank 1, hence

we are reduced to proving these theorems in the case where P, respectively

P © Q, is a proper direct summand of the free right R-module of rank 1, R.

Let us call the complementary summand  U # 0 in each case. We now consider

the three theorems one by one.

In the situation to which Theorem 5.1 has been reduced, we have R =

P (& U as right modules.  The projections onto these two summands will be

given by left multiplication maps, say by elements ep, e¡j G R.   Thus, ep, ev

will be orthogonal idempotents in R,  with ep + ev = 1  and P = epR,   U =

euR.

The sub-fc-algebra of R generated by ep and ev may be identified with

k x k, under the map (a, ß) I-» epa + evß. Writing R0 for k x k, we note

that the R-modules P and  U are induced by .R0-modules (in fact, ideals):

P = epR= P0 ®Ro R,   where P0 = k x 0,

U = evR = U0 ®Rq R, where  U0 = 0 x k.

It follows, by Theorem 3.4, that S = R<e: P —*P; e2 = e) may be

constructed as R jlr   R0(e: P0 —*■ P0; e2 = e). Now the latter factor in

this coproduct, the result of adjoining to k x k a universal idempotent endomor-

phism of its projective module k x 0, is easily seen to be (k x k) x k,
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made a (k x k)-ting by the map  (a, ß) r-» (a, ex, ß), and with e represented

by (1, 0, 0).(2) The induced decomposition of the ideal P0 = k x k x 0 is as

(1, 0, 0)k ® (0, 1, 0)k.  The corresponding summands of P   in S, (1, 0, 0)S

and (0,1, 0)S, are the desired Px   and P2.  Let us henceforth write ep ,

ep , and (as before) ev for the elements e = (1, 0, 0), ep - e = (0, 1, 0),

and ev = (0, 0, 1) of fc x fc x k, and for their images in S.

We now turn to [7, §2] for information about the module theory of S =

R jlr   (k x k x k).  Every module over k x k x k is a direct sum of copies

of epk,epk and evk, which induce the S-modules PX,P2   and  U, hence

the "standard modules" of [7] are the S-modules of the form M® ((BPX) ®

($BP2) ® (©Ü) (M an   R-module.  By a symbol like (BPX, we mean a direct

sum of copies of Px ; i.e., ©7 Px   for some index-set /.)  The summand © U

is induced by an .R-module, hence may be absorbed into the M; hence the stan-

dard modules over our coproduct are, up to isomorphism, what we have here called

the fundamental S-modules.  Our claims about submodules of fundamental modules,

and homological and global dimensions, now come right out of [7, Theorem 2.2

and Corollaries 2.4, 2.5]. Corollary 2.8 of that paper tells us that the abelian

semigroup S^(Fund S) is given as a pushout by the diagram:

^^rSe(ModR) -—_____^
Se(ModR0) ~~~~~^: S@(rundS).

^"~*S®(Modfc xk xk) —-""

Now S0(Mod R0) is the free additive semigroup (with 0) on two gener-

ators,   [epk]   and [e^fc].  Likewise,  S$(Mod k x k x k) is the free abelian

semigroup on the three generators   [ep k], [ep k], [evk], and can be described

as obtained from the former semigroup by adjoining two generators   [ep k]   and

[ei>2^]> and one relation,   [ep k] + [ep k] = [ePk]. Hence the pushout semi-

group,  Sç>(Vuyu S), is obtained from  S#(ModR) by adjoining the images of

these two generators,   [Px]   and [P2], and the corresponding relation,   [Px] +

[P2] = [P].  The proof of Theorem 5.1 is now complete.

The case of S = R<i, i'_1 : P = Q) given in Theorem 5.2 is quite similar.

After our reduction we can write R- P®Q®U = epR ® eQR ® evR, where

the e's  are orthogonal idempotents summing to  1, and this makes R  a (k x

k x fc)-ringfc. The universal extension of R0 = k x k x k by an isomorphism

i, i-1:  epk = e0k is seen to have the form m2(fc) x k, made a (k x k x k)-

(2)  Note that essentially, this is a consequence of the fact that  He; e2 = e> s k X k.

If one wishes to make this argument formal, one should prove a "Theorem 3.6", on direct

products of universal-construction rings, saying basically  i?i<Bi> X Ä2<82) s< (Rx X R2) '

<Ai x 82>.   The reader will find it easy to do so.  I felt that § 3 was getting tedious enough,

without putting in a result that we would use in such a trivial way.
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ring via  (a, ß, y) h» (aex x + ße22, y), with i  and z-1   being given by  (e21,0)

and (e12, 0).  (Again, this is best seen by first dropping the final factor k, and

verifying that (k x k)<i, t~l:  k x 0 = 0 x k)   is simply m2(k).) We see that

SB(Hod m2(k) x k) is free on  2  generators,   \t2(k) x 0]   and   [Oxi], the

former being the common image of  [epk]   and   [e^k],  and can be obtained

from  Se(ModR0)  by adjoining the relation   [epk] = [egk]. We see that

again the definition of "fundamental module" that we have made characterizes

the standard modules in the sense of [7] over the coproduct ring S, and our

claims follow as before.

The situation for Theorem 5.3, where S = R(f: P —> Q), is a little dif-

ferent.  The corresponding extension of R0 = k x k x k has the form

t2(k) x k, where t2(k) denotes the lower triangular matrix ring, (k  k),  with / =

(e21,Q). Now t2(k), and hence t2(k) x k, has global dimension  1, that is,

it is hereditary, but has nonprojective modules. (In fact, every module over this

ring is a direct sum of copies of the obvious projective modules generated by

(exl,0), (e22, 0),  and (0,1), and of the unique simple nonprojective module,

the cokernel of the map /: P0-+Q0; explicitly, ((°  °), 0)/((° °), 0).) Hence

the "fundamental" modules over the coproduct ring S,  as we chose to define

them, are not all of the standard modules.

The solution to this difficulty is to use Corollaries 2.10 and 2.11 of [7] in

place of Theorem 2.1 and Corollary 2.8.  As noted there, the projective modules

over any R0-ñng form an "R0-stable class". In the case of t2(k) x k, we note

that the natural map from  S$(Mod R0) to S@  of this class of modules is an

isomorphism.  It is easy to deduce that the class of modules over the coproduct

ring S induced by this class of modules over t2(k) x k, and all modules over

R,  is precisely the class we have called "fundamental".  The indicated corollaries

(along with Corollaries 2.4 and 2.5 as before) now give the asserted results.  The

proof of Theorems 5.1—5.3 is complete.   D

(Note that the idempotent ev, and the corresponding final factor "_ x k"

have been inactive throughout these proofs. We needed  U merely to enlarge P

or P ® Q to a free module. We avoided having to distinguish cases by assuming

without loss of generality that  U was always nonzero.  However, we see that

when P,  respectively P ® Q is already free, we can carry out our constructions

without any  "£/",  and thus in a slightly simpler, and perhaps pedagogically

preferable, form.)

Suppose now that P and  Q are nonzero finitely generated projective

modules over a fc-algebra R, and that we adjoin to R  a map from P to  Q

and a left inverse thereto, obtaining the universal extension ring

S = R<i: P-*Q, j:  Q-*P\ //=!->•
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Then ij will be an idempotent endomorphism of Q, resulting in a decomposi-

tion Q — Qx ®Q2, and the maps i and / give an isomorphism between  P

and ôj.  Hence let us define a fundamental S-module as one of the form

M®(@Q2) (M an R-module).

The study of this construction could be carried out in the same way as the

three previous.  (We would find that the appropriate universal extension of the

ring R0 = kxkxk = epk + e^k + evk has the form m2(k) xk xk, made

an R0-ring by the map  (a, ß, y) \-* (aex x + ße22, ß, y), with the module-maps

i  and / given by (e21,0, 0) and (e12,0, 0).) However, it is more interesting

to note that the construction can be reduced to a combination of two of those

studied above:

Theorem 5.4.   The k-algebra S = R(i: P —+Q, j:  Q-+P: ji = l->
_      _ p

may be obtained by first forming the algebra R' = R(e:  Q —* Q; e2 = e),  then

putting S = R'ti, i~l: P = Qx). Every submodule of a fundamental S-module

is isomorphic to a fundamental S-module.   S^(¥und S) is obtained from

Sqji(MudR) by adjoining one generator   [Q2]   and one relation,   [P] + [Q2]

= [Q]. For any R-module M, h diniy M = h dimÄ M, and globally,  r gl dim S

= r gl dim R,  unless  r gl dim R = 0, in which case r gl dim S < 1.

Proof. That S may be constructed as described is immediate by universal

properties. (Put j = i~1F; e = ij.) The homological and global dimension

results follow immediately from Theorems 5.1 and 5.2 above.

The fundamental S-modules, as we have defined them here, are not all the

fundamental modules of S = R'<j, z'_1 : P = Qx),  as defined for Theorem 5.2;

rather, they are the subclass constructed by taking for .R'-module M only funda-

mental jR'-modules (as defined for Theorem 5.1). Now note that when the con-

struction S = R'd, z'_1 : P = Qx) is reduced to a coproduct over a ring R'0,

the class of fundamental R'-modules is R'0-stable.  Hence replacing the applications

of [7, Theorem 2.2 and Corollary 2.8] in the proof of Theorem 5.2, above, by

[7, Corollaries 2.10, 2.11], we see, with the help of Theorem 5.1, that the class

of fundamental S-modules is closed under submodules and that  S^(fund S)

has the form asserted.   D

Consider the following generalization of the above construction, which is

sometimes useful.  Let R  be a fc-algebra, and Px, • • •, Pn  nonzero finitely gen-

erated projective .R-modules, and A  any nonempty subset of the index-set

{1, •••,«}. Let us adjoin to R  in a universal manner maps fx : Px —► P2,

•••,/„: Pn —> P j ; and for all indices a G A (but no others!) let us set the

cyclic product /a_, • • • f2fxfn " ' fa- Pa—*-Pa  equal to  1- . Then for
i —        —        p"

any a, a G A, the products fa>_x ••• fa+xfa: Pa^Pa' and fa_x •••

fa'+tfa'- ^a' —*^a w*^ &• inverses to one another, making Pa = Pa>.  Let us
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denote the common isomorphism class of the Pa  (a G A) by   [P'].

On the other hand, for b &A, the map eb —fb_x • • • ft,+ if¡,'- P¡, —*"

Pb  will be idempotent (because A  is nonempty, and for any aEA, the

product el  contains the subproduct fa_l ' ' ' fa, which can be deleted).

Hence it induces a direct-sum decomposition Pb z=P'b ®Qb-  Since the corre-

sponding cyclic product for   aEA  is 1- , let us define F,a=Pa, Qa = 0 for

aeA. P"

It is straightforward to show that the maps fm   (m G {1, • • •, n})  respect

the decompositions Pm = P'm ®Qm- This means they take the form

fm   =   Cm )■   P'm   ®  Cm  —"PLj.1©   Ö™4-,Vo     g  I in + i      ^»i + i

where im  is an isomorphism, in fact, im_l ' • • im = 1-,    (m = 1, • • •, n).

The gm   are homomorphisms Qm —► Qm + j, hence can be non trivial only when

neither m nor m + 1  lies in A, so that Qm   and Qm + 1   are both nonzero.

One now easily verifies that our algebra S = R(fm: Pm—*Pm + x   (m =

1, • **,«); /a_! • • • /a = 1- ) can equivalently be obtained by the following
p a

steps:

(1) For all b G {1, • • •, n}-^4, adjoin to R universal idempotents eb:

Pb-+Pb-
These give decompositions Pb =P'Ö ®Qb.  For a G A, vie define P'a =

Pa, Qa = o.
(2) For m = 1, •••,«- 1  (NB),  adjoin isomorphisms z'm, /TO! : Pj„

-^»i+i- (We may also define in=hlql ••• C¿,: P'n^P'x)

(3) For all ô  such that neither b nor b + 1  lies in ^4,  freely adjoin

a map of nonzero projective modules: gb:  Qb —► Qb+X-

(For other m, we may formally write gm = 0.  Thus we can now define

fm=im+8m: Pm—*Pm + i   f°r all m, to establish the correspondence with

our original description of S.)

Hence, by a finite number of applications of Theorems 5.1—5.3, one can

establish properties of this construction quite analogous to the other results we

have proved; in particular, the usual homological and global dimension formulae,

and the description of S@(fund S) as obtained from  S®(Mod R) by equating

the elements   [Pa]   (a G A) to a single value   [P"], and adjoining new generators

[Qb]   and relations   [Pb] = [Qb] + [Pf]   for all b €A

Note that in all the constructions considered in this section, the result

"submodules of fundamental modules are fundamental" implies in particular, that

all projective S-modules are fundamental.  Hence the structure of Sm(P-Hcd S)

is obtained from that of S®(P-ModR) by the same construction that gives

Sounds) from S0(ModR).
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In the results of this section we have assumed throughout that the projective

R-modules P and Q we were operating on were nonzero, so that the structure

of R0-ring (R0 =k xk xk etc.) that we got on R  after our reduction would

be faithful, and the results of [7] would apply.

Suppose we try each of these constructions with P and/or Q the zero

module.  In the constructions of adjoining a universal idempotent endmorphism

of P, or a universal map P —► Q, or, for the case P = 0, of embedding P

universally as a direct summand in Q, we simply get S = R. The properties of

S then differ in a few minor ways from those stated in Theorems 5.1, 5.3, and

5.4, but there is clearly no difficulty in describing these properties!

On the other hand, if we adjoin a universal isomorphism of a projective

module P to the zero module, or a universal embedding of P as a direct sum-

mand in the zero module, this is equivalent to the less well understood construc-

tion R<P = 0) (§11).

I have not attempted to cram into Theorems 5.1—5.4 all the information

one could get from [7] about these constructions, but only to illustrate the

method, and set down enough information to permit some interesting examples in

the next section. One can also get from Theorem 2.3 of [7] information on

homomorphisms among fundamental modules possibly more important for homo-

logical investigations than the superficial structure results described here.  From

Proposition 2.1 of [7] one gets descriptions of the R-module structures of funda-

mental S-modules, from which one can in turn get analogs of [7, Corollaries 2.10,

2.11].  Using the normal form for elements of a coproduct [7, Proposition 4.1;

and §9] one can also get results such as the following:

Addendum 5.5 to Theorem 5.3.   The universal map f:P—*-Q is  1-1.

More generally, given any two R-modules  U and  V, the map

Horn (Q, V) ®k Horn (U, P) -* Horn (ÏÏ, V)

-
given by a®b—>a °f°b   is  1-1.   D

Finally, one can apply these methods to many more universal constructions.

6. Applications and examples. We mentioned earlier three classes of univer-

sal module map algebras that have been studied previously:

Vmn =kU,r1:  W^m,

Um „ = m  W -> F\ /:  P» — W; ji = l_>,
k"

Wn = k(e:  W-* F~; e2 = e).
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Theorems 5.1, 5.2 and 5.4 now yield immediately:

Theorem 6.1. For k a field and n, m positive integers, the rings  Um n,

Vmn and  Wn are hereditary.  For each of these rings S,  let /GSe(P-ModS)

denote the isomorphism class   [S]   of the free moâule of rank  1.  Then as ad-

ditive semigroups with  0, the S$(P-ModS) have, respectively, the following

presentations:

Umn: generators I, [P] ; relation mI = nI+[P].

Vmn: generator I; relation ml = ni.

Wn: generators  I, [P], [Q] ;      relation ni = [P] + [Q].

In particular,   Umn  is an (m - l)-fir,   Wn an  (n - \)-fir, and  Vm n

an mf(m- l,n - lyfir, and if m = n, afir (!).   D

(Various parts of the above result were already known.  Leavitt and Cohn

determined the structures of the semigroups of free modules over  Vm „   and

Umn   [25], [13]. Cohn proved the last sentence of the above theorem, except

for the fact that   Vnn  is a fir, in [13] and [15]. The only result that showed

some of these rings to be hereditary, and determined the structures of all projec-

tive modules, is Skornyakov [30], for  Vx 2.(3))

In fact, extending the spirit of the above constructions, we find that the

semigroups S$(P-Mod R) can be just about tailor-made:

Theorem 6.2. Let k be a field, and A be a finitely generated abelian

semigroup with a distinguished element I # 0, such that:

(i) (Vx, y eA)(x + y = 0) =» (x =y = 0), and

(ii) (Vx G .4X3 V G A, n > 0), x + y = ni.

Then there exists a k-algebra R which is right and left hereditary, such

that Sç,(P-Mod R) = A as semigroups with distinguished element I. R can

be taken to have the weak universal property that for any k-algebra S and any

homomorphism <p of A into S®(P-Mod S), sending I to [S], there will

exist a (generally nonuniquel) k-algebra homomorphism f: R —> S such that

the map induced by _®R S from S^P-ModR) ^.A to S^P-MudS) is

precisely 0.

Proof.   Choose a finite set of nonzero generators for A, of the form

{I,px,qx,'",pr,qr\ with the property that for each i, p¡ + q¡ = n¡I for

some n{ > 0.  Any finitely generated abelian semigroup is finitely related (for

the semigroup ring of a free abelian semigroup of finite rank is Noetherian!),

nonzero powers will form a strictly ascending chain of submodules.  Further, if

(3)   A proof for   f2>3   is alleged in the same paper, but is incorrect.
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so we may choose a finite set of relations

(4) Uf = v}.     (j = 1, • - •, s),

defining A in terms of these generators. Dropping any relations of the form

0 = 0, we see from hypothesis (i) that each u, and each u- will be a non-

vacuous sum of p's, tf's  and Ps.

To construct R now, adjoin to k, by r successive applications of the

construction of Theorem 5.1, idempotent matrices

e¡:  F<-»£"';     e2=e¡      (i=l, •••,/•)

giving decompositions k ' = P¡® Q¡.  Then impose by s  applications of the

construction of Theorem 5.2 the relations (4) among the   [P¡], [Q¡]   and /.

The assertion that the resulting fc-algebra R  is hereditary and the description of

S<$(P-Mud R) follow immediately from Theorems 3.1 and 3.2.

To see the weak universal property, let S and <f> be as in the statement

thereof.  For i = 1, • • •, r, choose a module-decomposition S"' = Pf ® ßf

where   [Pf] = <p(p¡),   [ßf ] = <¡>(q¡),  and let ef be the projection of S"'  on-

to Pf along ßf.  Likewise choose isomorphisms af (j = 1, • • •, s) between

the direct sums of copies of Pf, ßf  and S corresponding to the formal sums

u¡ and v¡ in (4).  By the universal module mapping property of R  these in-

duce a homomorphism of Ar-algebras, /: R —► S, with the desired properties.   D

A particular case is:

Example 6.3.   There exists by Theorem 6.2 a right and left hereditary

ring R suchthat Sa¡(P-ModR) is isomorphic to the additive semigroup A

of rational numbers generated by   {1,1H}, the free module of rank  1  cor-

responding to   1 G A.

Such a ring R will be an integral domain satisfying condition N of

A A Klein [24], but which cannot be embedded in, or even mapped homomor-

phkdly into, any skew field

The first assertion is clear. As to the meaning of the second, recall that

Klein [24] observes that a necessary condition for the embeddability of a ring

R in a skew field is:

N: If m isa positive integer, and C a nilpotent m x m matrix over

R, then C" = 0.

This was the key to his example [23] (discussed on pp. 67—68 below)

answering Malcev's question on the embeddability of rings in skew fields.

Now if C is a nilpotent m x m  matrix over any ring R, consider it as

a nilpotent endomorphism of the module Rm, and note that the kernels of its
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R is right semihereditary, each of these kernels will be a direct summand in Rm

(because the image of the map in question is projective), hence each will be a

direct summand in the next.  So if n is the least integer such that C" = 0, we

get a decomposition of Rm   into a direct sum of «  nonzero submodules.

If R  is the ring described in the first assertion of Example 6.3, such a de-

composition corresponds to an expression of m  as a sum of n  nonzero members

of  {1, VA, • • • }. By the order properties of the real numbers, this is possible

only if n <m.  So the order of nilpotence of C is < m, so R  does indeed

satisfy Klein's condition.

R is also a domain, because left multiplication by a nonzero zero-divisor

would similarly lead to a direct-sum decomposition of the free module of rank  1.

But now suppose that this ring R  could be mapped into a skew field K.

Apply the functor S^P-Mod _) to the maps k-+R-+K.  SB(P-ModK)

is isomorphic to the additive semigroup N of nonnegative integers, so we get

maps N —► S®(P-Mod R) —► N composing to the identity, i.e., a retraction of

the semigroup   {0, 1, Vh, • • • } onto N,  which clearly does not exist. In con-

crete terms, let P be the projective .R-module corresponding to  VAE A.  Then

P®P = R3. Tensoring over R with any .R-sfield K, we would get a AT-vector

space  V such that   V ® V has dimension 3, which is impossible.

(We shall show elsewhere, using results of P. M. Cohn, that a semihereditary

ring R  can be mapped homomorphically into a skew field if and only if the

natural map N —► S^(P-¡Áod R) has a left inverse <p, and embedded in a skew

field if and only if 0 can be taken to have zero "kernel":  0-1(O) = {0}.)

Back to generalities about S®(P-Mod R):

Theorem 6.4.   If in Theorem 6.2, the assumption that A be finitely

generated is dropped, the conclusion holds with "hereditary" weakened to "semi-

hereditary".

Proof. As before, except that we now make a transfinite (well-ordered) sequence

of universal constructions. At each limit ordinal, we take the direct limit ring.

Direct limits respect S$(P-Mod_), and the property of being semihereditary

(but not that of being hereditary). Each universal construction-step also respects

the property of being semihereditary—this follows by applying to finitely generated

ideals the fact that submodules of fundamental modules are isomorphic to funda-

mental modules.   D

This suggests:

Question 6.5.  What restrictions, if any, are imposed on  S^(P-Mod R)

(R a k-algebra), by the condition that R be hereditary! Are any additional

restrictions imposed by asking that R have the weak universal property of

Theorems 6.2 and 6.4?
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For commutative R, being hereditary definitely does restrict S®(P-lAodR).

To see this, note that if P, Q G P-Mod R, then the support of P in  Spec R,

an open-closed subset, will contain the support of ß if and only if ß can be

written as a direct summand in a direct sum of copies of P.  Hence from the

structure of 50(P-Mod R)  one can determine the partially ordered set of open-

closed subsets of Spec R.  This will be a lattice with unique complements, so

one gets in turn its structure of Boolean algebra, which can be identified with the

Boolean algebra B(R) of idempotent elements of R.  But a necessary condition

for R  to be hereditary is that B(R) be hereditary [3, Theorem 4.4].  There

exist nonhereditary Boolean algebras B (and these can in fact be realized in

the form B(R) with semihereditary commutative R, e.g., R = B), so the

condition that R  be hereditary does indeed nontrivially restrict  Sa¿(P-Mod R)

in the commutative case.

Returning to noncommutative R, and to Theorem 6.4, note that in many

non-finitely-generated cases we can still show the R  of that theorem to be

hereditary.  For example, suppose A  is a pushout over the nonnegative integers,

N, of a family of finitely generated semigroups:

+ A

Then R,  if constructed as above in terms of an appropriate set of generators

and relations, will be the coproduct over k of the corresponding rings for the

A¡, hence, by Theorem 5.2 and the results of [7], hereditary.  Starting with a

direct product k"  in place of k, and using matrix-reductions as in the preceding

section, we can get pushouts of still more general diagrams.

For another example, note that the universal ring for the semigroup gener-

ated by  I In (with distinguished element  1) is (if appropriately constructed)

wn(k). Hence a universal ring for the additive group of nonnegative rational

numbers is given by the direct limit of the system:

k -* m2(k) ->m6(fc) —->mnl(k) -» • • •

(where the map mn,(k) —► m(n+i)\(k) *s Siven by applying mn!  to the map

k —*M„+i(k)). Now in a von Neumann regular ring, a countably generated

right ideal is projective, hence a countable direct limit of semisimple artin rings

is hereditary; in particular, the ring described above is hereditary.

The universal ring for the semigroup defined by generators 7, p¡, q¡ (i =

0, 1, • • •) and relations
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P0 = h       Pi = Pi+l  +Qt   (»" = 0, 1, ' ' • )

is similarly the direct limit of the system:

k—+kxk—+kx(kxk)—+kxkx(kxk) —*•••,

and so hereditary for the same reason.  It is, in fact, the ring of continuous k-

valued functions on the 1-point compactification of the natural numbers. If we

replace this compact space by the spectrum of any other countable Boolean

algebra, we get a similar example.

On the other hand, some semigroups which we do not know whether one

can realize as  S®(P-MudR) for hereditary R  are:  the additive group of

nonnegative real numbers;  {0} U {rational numbers > 1}, and the semigroup

of continuous integer-valued functions on the spectrum of a nonhereditary Boolean

ring.

The results of §5 throw an interesting light on the theorem that a free as-

sociative algebra over a field k is a fir.  Such an algebra is a coproduct of copies

of the polynomial ring k[x], so the results of [7] make this a consequence of

the fact that k [x]   is a principal ideal domain. We all can prove this in our

sleep by the Euclidean algorithm; but we can now obtain this result, alternatively,

by describing k[x]   as k<x:  k—► k). In effect, the proof of Theorem 5.3

has reduced this module-theoretic question about k[x]   to one about the still

simpler ring t2(k)\

Of course, the proof of Theorem 5.3 uses the results of [7], which are

based on heavy computational machinery which is ultimately descended from the

Euclidean algorithm (cf. [7, §3]).

7. Endomorphism-ring constructions and the left adjoint of tnn. Let R be

a fc-algebra, and P a finitely generated projective R-module. Then by Theorem

3.3, for any fc-algebra B we can construct an R-ringfe, S, with a universal

homomorphism of fc-algebras, H: B —► End^ P.  (We adjoin to R  an endomor-

phism of P for each element of B, and the appropriate relations among these.

This means taking for  A  and  8 in that theorem 1-object categories, where the

object of A has endomorphism ring k and maps to P in  P-ModR, and the

object of B has endomorphism ring B.)

This make P  a (B, SJ-bimodule^.  (the subscript k here meaning that

right and left multiplication by elements of k, via B and S, agree).  Hence

we get a functor _®B P  taking the category of right R-modules to the category

of right S-modules.  For any R-module AT, let Ñ denote the S-module N ®B P.

As usual, for M an R-module, M will denote M ®R S.  We shall call an S-

module of the form M ® ÏÏ (M an R-module, N a R-module) a fundamental

S-module. Note that 'S St P.
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Theorem 7.1.   Over the k-algebra S = R(B —► End P),  every submodule

of a fundamental module is isomorphic to a fundamental module.   The semigroup

5®(Fund S) may be constructed as a pushout over N,  the nonnegative integers:

i^L^Sffi(ModR)
NCT ZZSJRwdS).

777p* 5e(M od B) -—"^

For all R-modules M,  h dim^ M = h dimß M, and for all B-modules N,

h diniy N = h dims N. Globally, r gl dim S = max (r gl dim R, r gl dim B),

unless the right-hand side is 0, in which case r gl dim S < 1.

Suppose M is a finitely generated R-module not having any direct summand

isomorphic to P.   Then any fundamental S-module which is a homomorphic image

of M can be written M',  where tá is some homomorphic image of M.  For

such an M, Ms M' <=> M^M1.

Proof.   As in §5, we first reduce by the matrix-ring construction to the

case where P is a proper direct summand in R: R = P ® U = epR + evR.

Putting R0 = epk + evk = k x k, we find that R0(B —► End R0> = B x k,

so S = R-u.Äo (B x k).

A standard module over this coproduct algebra will have the form (M ®R S)

®(L ®Bxk S), where M is an R-module and L  a (B x /c)-module.  The

first summand is of the form M, as desired.  To analyze the second, note that

a (B x fc)-module L will be a direct sum of a R-module N and a /c-module   V,

each made a (B x Ä;)-module in the obvious manner.  Another way of writing

this is L = (N ®B X) ® (V ®k Y), where X denotes R, made a (B, B x k)-

bimodule by the natural left R-module structure and the right (R x fc)-module

structure of ep(B x k), and  Y denotes k with the natural left /c-module

structure and the right structure ev(B x k). Hence when we go on to tensor

over B xk with S, we get (N®BP)®(V ®k £/).  The first summand has

the form Ñ, as desired, while the second is a direct sum of copies of £/, and

so can be thrown into the summand M. This proves that the standard S-modules

as in [7] are here again precisely the fundamental S-modules.

The results of the first paragraph of the theorem follow easily.

The last paragraph follows from [7, Theorem 2.3(q.v.)] :  If M has no direct

summand isomorphic to P,  then the only sort of basic transfer one can perform

on M will involve copies of U= U0 ®R   S. But over B x k, U0-induced

basic modules play a very simple role in the module theory, and we see that in

the construction of the cited theorem, basic transfers can in this case be eliminated;

and the result follows.   D

Now suppose that for   P in the above theorem we take the free module
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of rank n. We may write the resulting ring as S = Riß —► m„> (since for any

ring A, End(A") =mn(A)). As the free R-module R"  is induced by a k-

module, k", Theorem 3.4 yields:

Proposition 7.2. R<B —*■ ny a R j¡_k k<B —» m„>.   D

So for the rest of this section we shall examine the construction

k(B -* m„>, which we shall call Kn(B). This will be a fc-algebra S with a

universal map of R into its n x n matrix ring; in effect, a universal coefficient

ring for n x n  matrix representations of B.

Our taking P free also allows a simplification in the construction of the

ring given in the proof of Theorem 7.1:  we can drop the module  U (cf.

parenthetical remark after proof of Theorems 5.1—5.3, p. 46.   Doing so, and

showing the matrix reduction involved in that proof explicitly, we find that

R<B —>mn) =5«-1(ni„(R) -u.fc B) gJÇ"1   as defined in §4), and in particular,

m„(R) = kW — m„> = TÇl(mn(k) jik B).

Note that the universal property of ro„  says that it is the left adjoint to

the functor m „:   RÁngk—► R<ingk- Recall (p. 41 above) that m„ factors:

Rmgk-*-* mn(k)-Rmgk-► Ringk.

Now it is easy to see that the forgetful functor  3n  has the left adjoint

mn(k) -u-fc _:   RJb/igk —► mn(k)-Rwgk, while since 9D?„  is an equivalence

of categories, its inverse will be its left adjoint. The adjoint of a composition is

the composition of the adjoints (when these exist), thus "explaining" the formula

Let us now apply Theorem 7.1 to this construction id„.  The  "R" of that

theorem is now k, so we shall replace  "R" by R.  Since all ^-modules are free,

the fundamental S-modules have the form F ® Tv*, where F is a free S-module

and A^ anR.-module.  But S" = P =K, hence we can transfer copies of S"

from F to N, and write the most general fundamental S-module as 7t ® Sm

(m < n).

In the last assertion of the theorem, the possible choices for M are precisely

the /c-vector spaces of ranks m <n. It thus says that any fundamental homo-

morphic image of a module Sm   (m <ri) has the form Sm    (m' < «),  and

that the rank m  of Sm  is unique.  Since in particular, a homomorphic image

of Sm  in a free S-module is fundamental, this says that S is an (n - l)-fir.

Summarizing, we have:

Theorem 7.3.   Let R be a k-algebra, n a positive integer, and S the

k-algebra ^n(R) = k(R —>mB>.  Then every submodule of a fundamental S-

module ff ® Sm  is isomorphic to a fundamental S-module.   The semigroup
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S<e(Fund S) 02« be obtained from  Se(Mod R) by adjoining one generator

[S], and one relation   [R] =n[S], (i.e., R^S".  Of course,   [S]   is the

"distinguished element" of this semigroup, though that of S$(Mod R) was

[R] ).  For all R-modules N,  h dims N = h dimÄ A^, and globally,  r gl dim S

= r gl dim R,  unless r gl dim R = 0, in which case r gl dim S < 1.

Last but not least,  S is an (n - \)-fir.    D

The constructions described above overlap those considered in §§5 and 6.

Specifically, they include those cases in which only one projective module is in-

volved:  thus, R{e: P —► P ; e2 = e> can be described as R<k x k —► End P>,

and the P = ß cases of the other constructions similarly reduce.  In particular

in Theorem 6.1, we have  Wn =nn(k x k),   Vnn = nn(k[x, x~1]), and  Unn

= nn(k(x, y; xy = 1>).

One can use the preceding results on further universal constructions, e.g.,

adjoining to a ring R  two universal commuting n x n matrices (or more gen-

erally, endomorphisms of a finitely generated projective module P), etc.  How-

ever, we shall make some other sorts of applications in the next section.

The interested reader will have no difficulty in proving:

Addendum 7.4 to Theorem 7.3.   If, for some integer i, R is an (i - 1)-

fir, then tt)„(R) is an  (ni - \)-fir.  If R is not an i-fir, then Xo„(R) is not

an ni-fir.    O

Further Remarks.   We described ro„(R) as a "universal coefficient

ring" for n x n matrix representations of R. A "universal coefficient ring" would seem

to be a good way, generally, to look at the left adjoint of any representable

functor (cf. [22], [11]) with domain the category of associative rings or k-

algebras.  For instance, the formal power series functor   p:   Ringk —► R<Lngk

is representable, and so by universal algebra (not by results of this paper) it has

a left adjoint, associating to a fc-algebra R  a fc-algebra S = k<R —► p),

characterized as having a universal map R —► p(S). What homological or other

good properties this construction may have, we do not know.  Some examples

already have names:  the left adjoint to the commutator-brackets functor from

associative algebras to Lie algebras is called the (Poincare-Birkhoff-Witt) universal

enveloping algebra construction.  The left adjoint to the group-of-units construction

RÁngk —► Ghûup is the group-algebra construction, G t-* k[G]. If we com-

pose this functor and adjoint with m„  and its adjoint nn  respectively, we see

that the left adjoint to GLn:   Ringk—► Gwup is the construction G h»

ron(fc[G]), providing a universal /c-algebra for «-dimensional representations of

any group G.

Amitsurin[l] associates to a/c-algebra R  a commutative /c-algebra C
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with a universal map R —♦ mn(C). We see that this ring will in fact be   c (ro„(R)),

where   c   is the abelianization functor (quotient-by-the-commutator-ideal, the

left adjoint of the inclusion   Comm RÁngk —*■ R<wgk)- However since the func-

tor   C   has, as far as I know, no nice homological properties, we can deduce

nothing, from the present results, about this construction.

If R  is a fc-algebra, then homomorphisms of R  into n x n matrix-rings

over sfieldsfc  correspond to homomorphisms of 1D„(R)  into  sfieldsfc. P. M.

Cohn has used this observation in his work on noncommutative algebraic geometry.

([17, pp. 55-58].  He calls ro„ Mx/n.)

8.  Applications:  "Integrity is no defense", or "Everything you've wanted

to know about integral domains but were afraid to ask".  By integral domain we

will mean ring without zero-divisors, not necessarily commutative.  Recall [16]

that  1-fir = integral domain.  L. Small [31] (improving a result of Chase) gives an

example of an algebra R over an arbitrary field k which is right hereditary but not left

semihereditary; in fact, not even left 1-hereditary. (A ring is called right or left

a-hereditary, for a cardinal a, if all right, resp. left ideals generated by a ele-

ments are projective as modules.)  By Theorem 7.3 (and its right-left dual),

ro„(R)  for any positive integer n  will be a /c-algebra which is right hereditary

but not left semihereditary, (in fact, not left «-hereditary) and which will also be

an (n - l)-fir.  In particular, taking n > 1, we get:

Example 8.1. An integral domain which is right but not left semi-

hereditary.   D

The moral of this example is that being an integral domain, or even an n-

fir, is no protection against most homological pathologies!  Explicitly:

Corollary 8.2   Suppose P is a property of algebras over a field k,

such that if R satisfies P,  so does R Jikmn(k), and such that if m„(R)

satisfies P, so does R (or more generally, such that in the latter case R will

satisfy a related condition Pn).  Then if there is any k-algebra R satisfying P,

there is an (n - \)-fir, namely ïDn(R), satisfying P (resp.  P„). In particular,

taking any n > 1,  we get an integral domain satisfying P (resp.  Pn).   D

Here is a similar application, answering a question raised by J. C. Robson:

Example 8.3.   A right and left hereditary integral domain with an infinite

ascending chain of idempotent 2-sided ideals.   Let k be a field, and R  the k-

algebra of continuous fc-valued functions on the one-point compactification of the

positive integers.  Then R is hereditary, as observed on p. 54 above, and clearly

has an infinite ascending chain of idempotent ideals. These properties are respected

by mn  (any n), and by the results of [7], _nfc m„(R) likewise respects the

properties of being right and left hereditary.  Further, note that if / is any ideal

of a /c-algebra R  (k a field), R' another fc-algebra, and S = R -U-fc R',
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then (R/7) M.k R' = S/SIS.  Since R/I embeds in  (R/7) -iLfc R\  the map / •-»■

SIS from the partially ordered set of ideals of R  to the partially ordered set of

ideals of S is  1-1.  Finally, for two ideals /, /CR,  we have  (SIS)(SJS)D

SUS, so if / is idempotent, so is SIS.  It follows that for R  as above, and

any n > 1, nn(R) will satisfy the desired conditions.

One can list a few more properties of this example:  The free module of

rank n will have an infinite ascending chain of direct summands, Px Ç P2

Ç • • •, such that the chain of ideals described above are in fact the trace ideals

Tp   Ç TP   Ç • • • ; and the quotients of the ring by these ideals are again

hereditary, in fact, isomorphic to the original ring.

One can deduce from Corollary 7.5 that if P is a condition which is satisfied

by some fc-algebra, respected in the manners indicated by  — -u.mn(k) and

m„(_), and also preserved by ultraproducts, then there exists a semifir satisfying

P. But I know no application of this observation.

9.  The «-term weak algorithm for universal rings; with applications. To

show that  Um n  is an (m - l)-fir, and similar results for  Vm n  and  Wn,

P. M. Cohn in fact showed that these rings satisfied r-term weak algorithm, for

appropriate values of r  [13], [15].  He presented in general form the conditions

needed for this argument in Theorem 3.1 of [15]. We shall use this theorem to

get fairly general hypotheses under which a /c-algebra defined by a /c-linear univer-

sal mapping property—as in Theorem 3.3, but with R = k—will satisfy «-term

weak algorithm.

This rather long and technical section can be skipped by those not interested;

it is not required for anything else in this paper.

If k  is a commutative ring and  A  is a ^-linear category, we shall call an

object X G Ob (A) right isolated if, for all   Y * X, Eom(Y, X) = 0, left

isolated if, for all  Y # X, Horn (X, Y) = 0.  Let us call X a seed if it is right

and left isolated, and Horn (X, X) = k.  Note that in the context of the next

theorem, to require that an object I of A  be a seed is to forbid ourselves to

impose on R  relations on the constructed module homomorphisms that involve

any maps already in  P-Mod k and having range or domain F(X), except for

lFtxy This is> indeed, a condition frequently satsified in the constructions we

have considered.  In particular, for many of these constructions, all objects of A

satisfy condition (a) below.  Since the proof of Theorem 9.1 is more complicated

when we must also consider case (b), we shall first prove the theorem assuming

that only (a) occurs, and give a number of applications of this case, then return

to the proof and show how to handle (b) as well.

Theorem 9.1.  Let k be a field,  A and  8 small k-linear categories,

and F:   A —► P-M od k and G:   A —* B k-linear functors, such that G yields

a bijection of objects,  Ob A ̂  Ob B.
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Suppose n is a positive integer such that for every XGOb(A), either:

(a) X is a seed in A and F(X)E P-Mod k has dimension > n, or

(b) G(X) is left or right isolated in 8, G: HomA (X, X) —► HomB(G(X), G(X))

is surjective, and F(X) =£ 0.

77ze« the universal k-algebra R = /c<8> is either 0, or satisfies n-term weak

algorithm with respect to an appropriate filtration.  (The condition for R to be

nonzero, and the form of the filtration, are given in the proof.)

A-^-+P-Modfc

-®fefi

I
B ——> ModR

Proof (Assuming all objects satisfy (a)). Clearly, if for some X G

Ob (A), Horn (G(X), G(X)) is the zero ring, then /c<8> = 0.  Hence let us assume

Horn (G(X), G(X)) is a nonzero /c-algebra for all X; then we shall show that R

satisfies «-term weak algorithm. (The condition for R # 0 will be less trivial

in the general case of the theorem.)

For each X G Ob (A), let d(X) > n denote the dimension of the vector

space F(X) G P-Mod k. Then we can identify F(X) with the vector space

c d(jr)(fc) of column vectors of height d(X) over k (by choosing a basis).

Thus, Horn p. Mq<i k(F(X), F\Y)) is the space of d(Y) x d(X) matrices over

k. For any fc-algebra R, we can likewise identify F(X) ®k R  with  C d(^-)(R),

and Homp.M<KlÄ (F(X) ® R, F(Y) ®R) with the set of d(Y) x d(X) matrices

over R.

Thus, the /c-linear functor H:   8 —► P-Mod R  which we wish to study

will consist of ^-linear maps from the vector spaces Homg (G(X), G(Y)) into

these spaces of matrices over R.  So to get a description of our universal R,

let us begin by choosing, for each X, y G Ob (A) a fc-basis S(X, Y) for

Honig (G(X), G(Y)). When X = Y we require that this basis contain  ^c{X)

(assumed # 0):  S(X, X) = T(X,X)V {1}.  For X ¥= Y we define  T(X, Y)

" s(x, n
Now let 0 be the free associative /c-algebra on a set of symbols:

tl}     (i < d(Y), j < d(X); t G 7XX, Y); X, Y G Ob (A)).

(Here rí;- will eventually represent the (i, j) component of the matrix H(t).)

Let us also define

(5> Ogw)// - 6« G@     & / < dW' xe0b(A>>-

Thus, we have now defined s^- G 0 for each s in the basis S(X, Y) of

each Horn   (G(X), G(Y)) and each appropriate i, j. We can now extend by
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/c-linearity to get maps:

f^fij

HomB(G(X), G(Y)) —► 0
(i<d(Y),J<d(X)).

Or, fitting these fy into d(X) x d(Y) matrices, and identifying these with

homomorphisms of modules of column vectors, we get, for each X, Y G Ob (A),

a map:

/ i- ((/<,))

(6)
HomB(G(X), G(Y)) r- Hony^Jc^í©), cd(y)(0)).

These maps are ^-linear, and take identity elements to identity matrices.

We shall now show how to divide out the free algebra 0 by relations saying that these maps

also respect composition; over the quotient ring R, the maps / h» (O will

define a functor  8—*■ P-Mod R, with the desired universal property.

For our fc-linear maps of Horn-spaces to respect composition, it will clearly

suffice that they do so on our basis-sets, i.e., that:

((s,y))((4)) - (((«%■))      (s G S(Y, Z), s' G S(X, Y); XY,ZG Ob (A)).

Because our maps already send identity elements of S(X, X) to identity

matrices, the above equation holds automatically when s  and/or s1 is an identity

element, so it suffices to impose the above relations for elements t G T(Y, Z),

t' G T(X, Y). Expanding the above matrix-equations into equations in elements,

we get:

K?    '**** = (tt')hi      (h < diZ)' ' < d(X)' ' G T(Y' Z)'

t'eT(X, Y); X, Y, Z G Ob (A)).

Note that in the above equation, tt' G Homg (G(X), G(Z)) is in general

not a member of the basis  T(X, Z), so the expression on the right-hand side of

(7) represents a Är-linear combination of elements t"hj (t" G T(X, Z), h, j fixed

in (7)), and possibly a scalar term arising from (5).

We now define R to be the factor-ring of the free algebra 0 obtained by

imposing the relations (7). We shall continue to write fy  for the images in R

of the generators ty of 0. R will indeed be the universal fc-algebra of our

theorem, the functor H being given by (6). We shall now prove by [15, Theorem

3.1] that R  satisfies «-term weak algorithm with respect to the filtration de-

fined by v(a) = minimum degree of expressions for a in terms of the gener-

ators tu (each t„ being taken of degree   1).

We must first put the generators and relations for R  in the form needed
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for that theorem. Here n + 1  will take the place of that theorem's «.(4)

For the family of generators there called (xiv), we take the tiv with v <

« + 1 (thus, the index-set / of that theorem is here Ux,y ¿00 x f» *0-

Since d(X) > n by hypothesis, v always has the full range  1 ,•••,« + 1  as

required). Similarly, for the family (yv.-) (not required to be disjoint from (xiv))

we take the tvj with v < « + 1, and for the family (zh), we take remaining

generators, the t» with i, j> n + 1.  The defining relations (7) then take the

form [15, (3.5)] if we bring all terms with / > « + 1   to the right.

We must now demonstrate the existence of the « + 1  normal forms re-

quired by that theorem.  Fix any ß G {1, • • •, « + 1}.  Recall that the /nth

normal form is obtained by bringing to the right in our defining relations all but

the ßüi term of the summation; so that (7) becomes:

(V      W'u = ("%/ "    ^     *h/u    (n> J etc-as m t7»-

We use these formulas to reduce any expression in the given generators to

a fc-linear combination of monomials which involve no subwords th t' ¡ with

t G T(Y, Z), t' G T(X, Y). (Subwords thßt'ßj with t G T(Y, Z), t' G T(X, Y1),

Y ¥= Y  are allowed.)  Indeed, any application of a formula (lß) to a monomial

w in our generators will reduce it to a linear combination of monomials w'

each having either shorter length than w, or the same length but fewer "bad!'

subwords, so the process will eventually yield an expression with no such sub-

words.  To show that this expression is independent of the choices we make of

which subword to reduce when, it suffices, by [8, Theorem 1, (a) => (b)], to

check that for any word formed from two "overlapping" words as on the left-

hand side of (7ß), the results of the two ways of reducing them can themselves

be reduced to a common value.  The words we must test are clearly:

(8) '«/«&      (t G r(7> Z)'  { G T(X' n '" e m Z);
g<d(Z), j<d(W)).

The fact that the two possible reductions of this term reduce in turn a

common value will follow from the associative law in  8; to be precise, from

the equation t(t't") = (tt')t". One could carry out this calculation by brute

force, but we can simplify it by adding to (8) some further terms which we know

do reduce unambiguously. (Cf. [8, Theorem 1, (a') => (b)].) Indeed, consider

instead of (8) the sum:

(8') Z t   t' t". Tghlhilij>

in which all terms except the one in question are uniquely reducible. Now if,

on the one hand, we reduce the first pair of factors in all terms of the above sum

(4)  The theorem in question establishes (n — l)-term weak algorithm. The \(R) in/

the statement of the theorem is the least  m  for which m-term weak algorithm does not hold.
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having h = p (which in particular involves one of the possible reductions of the

term (8)), we see from (7^) that all degree-3 terms will cancel, and we will get:

(8") I (tt')git';r

If we now in this expression reduce all terms with i = p we get:

(8'"> (tt't%.

It is clear that by the same procedure, but starting from the right, we will

get the same results; so we have proved the existence of the normal form with

respect to the index p.

It remains only to show that the normal form for each index p. satisfies

the condition N    of [15, p. 273].  It is easy to see (even in the general case of

[15] ) that to verify this condition, it suffices to vîrify it with /, g, and h taken

to be members of the given set of generators.  The condition then becomes:  If

/, g,  and h are generators, such that the word fg is ju-reduced, while the word

gh has reduced form   \gh]ß, then the degree-3 terms of f[gh]ß  are /z-reduced.

This is clearly true—the point being that given /,  the irreducibility of a product

/ • y, where y is an irreducible monomial with leftmost factor t¡¡ (t G T(X, Y))

depends only on i (whether it equals p.), and the range-object X (whether it

equals the domain-object of the rightmost factor of f).  But we see from (lß)

that all highest-degree term« resulting from a reduction have the same "left-hand

data" as did the original word!

So [15, Theorem 3.1] now tells us that R  has «-term weak algorithm,

completing the proof of Theorem 9.1 when all X G A  satisfy (a).   D

As applications we have:

Theorem 9.2,  Let k be a field, R a k-algebra, and « a positive integer.

Then the k-algebra XOn(R) satisfies (n - Vyterm weak algorithm with respect to

an appropriate filtration  v.

Proof. H>n(R) is the case of the construction of Theorem 9.1 in which

A  consists of a single seed X, mapped by F to kn G P-Mod k, and   8  con-

sists of a single object G(X) with Hom8 (G(X), G(X)) = R.    D

(I can prove by other methods the analog for this theorem of Ad-

dendum 7.4 above, namely:  if R  satisfies (i - l)-term weak algorithm with

respect to some filtration, then n>„(R) satisfies (ni - l)-term weak algorithm

with respect to an appropriate induced filtration.)

We similarly get:

Theorem 9.3. Suppose A is a semigroup satisfying the conditions of

Theorem 6.4 (i.e., like Theorem 6.2 but not necessarily finitely generated), and

suppose that for some positive integer n, A can be presented in such a way
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that in all defining relations where the element I occurs, it occurs with coefficient

> n.   Then the k-algebra R of that theorem, constructed using such a presenta-

tion, will satisfy n-term weak algorithm.

Proof. Though in proving Theorems 6.2 and 6.4 we did the construction

in a number of steps, it is not hard to see that the resulting universal ring R  has

the form klB) for a  8 (and  A, F, G) having all the properties required by

the case of Theorem 9.1 that we have proved.   D

The algebras  Umn,Vmn  and  Wn   of §6 are examples of this construc-

tion, hence the first two satisfy min((m - 1), (n - l))-term weak algorithm, and

the last, (« - l)-term weak algorithm.  But in fact, one of the original applications

of the method of [15, Theorem 3.1] was to show that  Um „  satisfies (m - 1)-

term weak algorithm, regardless of n.(5)

Indeed, if we look at the generators a¡, (i <m,j<, n) and b¡¡ (i < n,

j < m) and relations  2/<m bnpi} = 8hj defining this algebra, we see that we

never sum over a subscript with range «, so the fact that some subscripts have

such a range imposes no limitation on the number of normal forms we can

obtain-we can write our relations in the form (lß) for p = 1, • • •, m even if

« <m.

To incorporate this fact, that we do not have any relations on the sums

2,<„ ohtbff, into a presentation of Umn  as a universal mapping algebra k(B)

(which will necessarily be a different presentation from the one which only gave

us min ((m - 1), (n - l))-term weak algorithm), we set up the categories A and

B  so that the range of the map to be represented by ((a,-)) and the domain of

the map to be represented by ((b¡j)) are distinct objects of 8.  Thus:

*v
= A

<7

*V
= 8    _-?—

I •*■

ç ModR

(5)   For the next few paragraphs,  m  and  n   denote the subscripts in   Vm¡n,  so the

n  of Theorem 9.1 corresponds to  m — I.
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(If we consider the dot indicating an object also to represent its identity map,

then the dots and arrows in our pictures of A  and   8  are meant to give &-bases

for these categories; while in  P-Mod k and  P-Mod R we only show the images

of A  and  B.  The triangles in the lower two diagrams are commutative.)

The property of this diagram that now insures that we do not sum over an

index having range « is precisely the fact that p and p' satisfy condition (b)

in the statement of Theorem 9.1. The "right or left isolated" part insures that

we nowhere introduce both generators mapping into and generators mapping out

of such an object, and the surjectivity of HomA (X, X) —*■ Homß (G(X), G(X))

insures that we do not introduce any e«Jomorphisms of these objects.

Note that for objects X which satisfy condition (b), the statement of

Theorem 9.1 does not require X to be a seed in  A—and indeed, we use the map

i: p —> p' in the construction of Um n  above.

Note also that in the description of Umn, since we never sum over the

index «, we need not even think of it as a matrix index.  That is, instead of

defining R  by one m x   n and one n x m matrix of generators, and a rela-

tion assigning a value to their product, we could have introduced «  m x 1  and

n  \ x m matrices, and «2   relations on their  lxl  products.  Thus we may

replace the "«-dimensional" objects p and p'  of A  by "one-dimensional"

objects, and increase the number of generating maps by a factor of «. This idea

will be used in the proof below to obtain an initial simplification.  It is really un-

necessary for a case like the above, where the corresponding objects of A, p and

p', have trivial endomorphism rings, but its value in the general case will be,

precisely, to eliminate complexities arising from the consideration of these rings.

Proof of Theorem 9.1: General case.   Partition the objects of A into

three disjoint sets:  A(a),  consisting of objects satisfying condition (a) of the

hypothesis,  Atry consisting of objects satisfying (b) whose images under G are

right isolated in  B, and  A^)  consisting of objects satisfying (b) and having left

isolated images.  (If an object is eligible for more than one of these sets, make the

choice arbitrarily.)

For X G A(ry   Y G A(,)  we know nothing about  Uom(X, X), Hom(J£ Y),

or Horn (Y, Y).  (All other Horn-sets, or at least their images in  B, are deter-

mined by our hypothesis; in particular, all Hom-sets in  A  involving objects of

A(a).) Therefore, let us simplify things by defining a new fc-linear category  A',

having the same objects as A, and the same Hom-sets except that the Hom-sets

of the above three types are replaced by the sets of matrices,

HomP-M~ifc(FW> *W).  nomp.Hadk(F(X), F(Y)),

and

Homp.MûiU(F(y),PP0)-
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The functor F factors through  A'  in an obvious natural way (diagram below).

We define   8'  as the pushout (among ^-linear categories with object set

Ob A = Ob B = Ob A')  of the maps of A  into  B  and  A':

-A' P-Mod*

G'

8
i
8'

It is not hard to see that the universal fc-algebra for the new diagram

F'
A' Modk

G'

8'
will be the same as for

Modk

8

The new diagram will also still satisfy the hypotheses of our theorem, assuming

the old one did.  But it may happen that the new functor, G':  A' —► 8', is

not faithful.  In this case, it is easy to deduce that our universally constructed

algebra R will be the zero ring.  Henceforth, we will assume G' faithful, and

prove that R has «-term weak algorithm.

Let X be any object of A'try  Because

Horn a' (X, X) s HomB. (F"(X), F"(X))

= Horn p.m<mU (<?(*), G'(X)) =md(x)(k),

a full matrix ring, the object X will behave in the fc-linear category A' like a direct sum of

d(X) copies of some object X, and likewise its images F'(X), G'(X) will be-

have like direct sums of d(X) copies of an object.  (Indeed, F"(X) is a direct

sum of d(X) copies of k in  P-M od k.)   Hence, let us modify our categories

A' and  8'  by first adjoining for each X an object X to  A'  and  G'(X)

to  8', such that X and  G'(X) become d(X)-fold direct sums of X and

G'(X), then delete the original objects X and G(X).  (We omit the tedious

description of exactly how this is done.  The idea is:  look at the sets Horn (X, Y)

etc. as right md(^)(*)-modules, and apply the functor ^d(x)  t0 Set tne ^-module

Horn (X, Y).) We do this for all X G A[ry then do the same thing for all

reAfo.



COPRODUCTS AND SOME UNIVERSAL RING CONSTRUCTIONS 67

The result is a third pair of categories,  A"  and  8",  and functors F":

A" —*■ P-Mod k,  G":  A" —* 8", yielding the same universal fc-algebra R, and

satisfying the original hypotheses of our theorem and also:  For all X G A'A.),

Ye A¡d,
F(X) = F(Y) = k G Ob P-Mod k;

F is an isomorphism on Uom(X, X), Horn (Y, Y) and  Hom(X, Y);

G is an isomorphism on Horn (X, X) and Horn (Y, Y), and is faithful on

all of A".

Note that for such X and   Y, HomA (X, Y) will be 1-dimensional as a

fc-vector space, with a distinguished generator, F~x(\k). The image of the gen-

erator under  G will be a nonzero element of Homg (G(X), G(Y)), which we

shall also call   1.

We now complete the proof as before:  for each X, YEA, we choose a

basis S(X, Y) of Homg (G(X), G(Y)).  If X = Y or if X G A(,)(   Y G A(/),

we take S(X, Y) to have the form  T(X, Y)U {1}; otherwise we define

T(X, Y) = S(X, Y). We set up generators and relations for R,  and apply [15,

Theorem 3.1] exactly as before.   D

In particular, we recover the result that the ring  Um n  satisfies (m - 1)-

term weak algorithm.

The above theorem is also applicable to the rings constructed by A. A. Klein

[23] and A. J. Bowtell [10] to answer Malcev's question of whether an integral

domain whose multiplicative semigroup of nonzero elements is embeddable in a

group is itself embeddable in a sfield.  Klein's example was, in effect, n>„(fc[f ] ¡tr),

where  2 < « < r.  The n x «  matrix  T over this ring corresponding to t G

k[t]/tr is nilpotent (P''=0), but  T" =£ 0, which is impossible for an «x«

matrix over a sfield.  Bowtell's example is generated by the entries of an r x «

matrix X and an « x r matrix  Y with relations making XY diagonal (but

not necessarily with equal diagonal values), «  and r as above.  The diagonal

values will all be nonzero, hence if the ring lay in a sfield, we would have a non-

singular r x r matrix over a sfield which was a product of matrices of smaller

size, which is again impossible.

Bowtell's proof that his ring has multiplicative semigroup embeddable in a

group is based on showing that it is a graded ring with 2-term (in fact, (« - 1)-

term) weak algorithm.  This is easily seen to be a case of Theorem 9.1 above.

Klein gives a different proof of embeddability, but Bowtell's argument can also be

applied to his ring:  it has (n - l)-term weak algorithm by Theorem 9.2.

(Cohn [14, Theorem 5.2, Corollary 1] has more recently proved that any

atomic 2-fir R can be embedded in a ring in which all nonzero elements of R

become invertible (cf. next section).  In particular, any ring with 2-term weak

algorithm, graded or not, has multiplicative semigroup embeddable in a group, so
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the rings  Un r, Vn r give further counterexamples to Malcev's question. It seems

likely that Cohn's result should extend to arbitrary 2-firs.)

With the help of the full form of Theorem 9.1, one would like to extend

Theorem 9.3 to get «-term weak algorithm for rings associated with a larger class

of semigroups A.  Since the rings constructed are semihereditary, they will be «-

firs if and only if the only representations of ni as a sum of two elements in A

are as ml + nil, where m + m' = n.  For such a semigroup A  it would be

nice to conclude that R  can also be taken to have «-term weak algorithm. (Of

course, whether R  has «-term weak algorithm can depend on the presentation of

A  from which it was constructed.  For A = the nonnegative integers, with one

generator I and no relations, we get R = k which trivially has full weak algorithm.

But presenting A  by the generator / and the relation ni = ni, we get  Vn „,

which is still a fir but can be shown to have (« - l)-term but not «-term weak

algorithm.) The result that  Umn  has (m - l)-term weak algorithm is of this

form, but there are many cases for which I do not see how to get such a result.

E.g., if A  has generators I, p and relations:

(n + 1)1 = ni + p,      p = 2p,

then any R  with the properties stated in Theorem 6.2 will be an «-fir, but I

do not know whether such R  can be constructed to have «-term weak algorithm.

10.  Localization.  If R is a fc-algebra and /: P—>Q a homomorphism

of R-modules, we would like to study the constructions S = R(f~1) and S =

Rtg'ygf =1-).   I have not been able to prove any good general results like

those we got for the constructions studied in § §5, 7, and 9; but in this section

we shall examine the good and bad properties of some classes of examples, and

also indicate the equivalence of the general construction to certain special cases.

Consider first the construction R<f~l), when the fc-algebra 7?  is com-

mutative.  The map R —> R<f~x) is an epimorphism (in the category-theoretic

sense-not a surjective map!) because 2-sided inverses are unique.  But an epimorph

of a commutative ring is commutative [29], hence R<f-1) is again commutative,

and, can be identified with the corresponding construction on commutative rings,

R \f~ ' ].  In particular, taking P = ß = the free module of rank  1, we see that

the adjunction of an inverse to an element of a commutative ring is a case of the

construction we are considering.

(In the case of arbitrary P, ß  and /, S can be obtained from R  by in-

verting a certain ideal which is locally principal on Spec R:  the "generator" is

taken to be  0  over those connected components of Spec R on which P and

ß have different ranks, and constructed locally as a determinant elsewhere. Thus

Spec S is Spec R  minus a closed subvariety.  For R  an integral domain, S
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is either 0, or the localization obtained by inverting an invertible integral ideal

of R.)

The process of localization on commutative rings is well known to have

extremely good properties!  If S = R \f~ * ], then every S-module N can be

written M for some R-module M; in fact, we can take M = N (under restric-

tion of scalars), but alternatively, we can take M finitely generated or finitely

presented as an .R-module if N is so as an S-module, by using the original gen-

erators and relations, and "clearing denominators". Any submodule of M is in-

duced by a submodule of M.

S will be flat as an R-module, hence for any R-module M, h.àsM<

hàR M. But this /«equality can be embarrassing, for it may not be possible to

lift an S-module N to an R-module of the same homological dimension.  In

particular, S may have projective modules not induced by any projective R-module.

As a simple example, let R  be the commutative fc-algebra defined by two gener-

ators jc and y, and one relation xy = 0; the ring of polynomial functions on

the union of the x- and jy-axes. Then in S = R [(x + y)~1], the point at

which these axes are joined is deleted, and S splits into a direct product,

R[x,.x~1 ] x R\y, y~1]. In particular, the projective S-modules generated by

(1, 0)  and (0, 1) do not lift to projective R-modules.

A more subtle case, not based on zero-divisors, was pointed out to me by

D. Eisenbud.  Let R = R[x, y, z], where  R is the field of real numbers, and

let M denote the submodule of R3  given by   {(a, b, c)\ax + by + cz = 0}.

M may be thought of as the module of polynomial vector-fields on 3-space that

are everywhere perpendicular to the radius vector.  It is easy to show that if / G

R is a polynomial with value zero at the origin, and we take S = R \f~l ],  then

M®S is a projective S-module.  But if / is also chosen so that its zero-set has

no intersection with the unit sphere x2 + y2 + z2 = 1  (e.g., f = x2 + y2 +

z2), then this projective module is not induced by any projective R-module

because the induced vector-bundle on the sphere cannot be extended to R3.

Note, however, that if R is hereditary, "projective R-module" is equivalent

to "R-module embeddable in a free R-module", and one can deduce using the

flatness of S that the map  Se(P-Mod R)~* Sm(P-Uod S) is indeed then sur-

jective. Even then it is not generally injective—one of the uses of localization in

commutative ring theory is to "cure" rings of nonfree projective modules!

In the case of noncommutative localization even hereditary rings may acquire

new projectives.  Let R = k[x], a polynomial ring in one indeterminate, and

let S = R<y; xy = 1>, the ring obtained by adjoining a right inverse to x.

This ring is k(x, y, xy = 1> = Ux x, which we know has semigroup of finitely

generated projectives defined by generators I and p, and the relation I + p =

/. The projective module represented by p is the image of the idempotent ele-
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ment  \ - yx of S.  It is not induced by a member of S$(P-Mod R)-in fact,

not by any member of Se(ModR), though curiously, the dual projective left

R-module P* = S(yx - 1) is isomorphic to S ®R (R/Rx).

This would appear to be a pathology characteristic of one-sided inverses,

but a slight modification of this example shows two-sided inverses behaving in

the same spirit.  Let R be the free associative algebra on two indeterminates,

k<x, y), and let S = R((xy)~*) = k<x, y, z; (xy)z = z(xy) = 1>. If x and y

commuted, this construction would be equivalent to adjoining inverses to x and

y, but here x acquires only a right inverse, yz, and y only a left inverse,

zx; and S has an idempotent that gives a projective not induced by R:   1 -

yzx. In fact, this ring is an example of the construction discussed on pp. 47—48

We have adjoined a cycle of module-homomorphisms:

k--->k

x\_iS y

k

and relations saying that some, but not all of their cyclic products are identity

maps.  It is easy to verify from the discussion on those pages that  Sa¿(P-Mod S)

is again determined by generators I and p, and one relation I + p = /.(6)

(The one thing which is better in this example than in the one-sided case is that

the right and left projective modules P and P*  are both induced by R-modules

R/yR  and R/Rx respectively.)

Finally, note that even in very nice cases, localization of noncommutative

rings does not generally give flat extensions. (Localization by right or left Ore

denominator sets, like commutative localization, does give right or left flat ex-

tensions.  But it is not generally equivalent to universal localization—cf. [16,

Exercise 7.2.11, p. 258].) E.g., let R  be the free associative algebra k<x, y),

and S = R(x~l).  (Or more generally, let S be any R-ring in which x becomes

invertible.) In R, the equation ax = by has no nonzero solution, but it does

in S: a = yx~l, b = \. Hence S cannot be right flat over R, for S ®R _

does not preserve exactness of the sequence of left modules:

(x)

o-*r2-Hr.

There remain a few statements of the sort we proved for the constructions

of §§5 and 7 that might be true for these localization operations; namely:

(")   Perhaps this observation that adjoining a two-sided inverse to an element is not,

without special hypotheses, "nicer" than adjoining a one-sided inverse can illuminate the

fact that Malcev found it convenient to study the embedding problem for groups in semi-

groups in terms of separate adjunctions of right and left inverses    127], [12, VII. 3].
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(a) for the constructions of left and two-sided inverses, that every submodule

of a fundamental right S-module M= M ®R S be isomorphic to a fundamental

module; and fora// the constructions:

(ß) that h diiny M < h dimÄ M for R-modules M (despite nonflatness

of S), and

(7) that r gl dim S < r gl dim R (or < 1   if r gl dim R = 0).

As with the constructions of § § 5 and 7, the study of localization can be

reduced to the study of a very simple type of coproduct—but in this case, one to

which the results of [7] do not apply:

If R  is a fc-algebra and /: P —*■ Q a nonzero homomorphism of finitely

generated projective R-modules, we can, in considering any questions about the

category of R-modules, assume that R = P ®Q ® U as modules, and make R

a faithful (t2(k) x fc)-ringfc  via (Q   °), S) -* aep + ßf + yeQ + Sey. Now

the universal extension of t2(k) in which e21, as a map exxt2(k) —► e22t2(Ä:)

is inverted is m2(k). The universal ring in which it is left inverted is tn2(fc) x k

under the map Q    °) —► (Q   ¡J), y), and the universal ring in which it is right

inverted is likewise k x m2(k). Hence questions about the general constructions

R<f_1), R<g;gf = l->, R<g;fg = l-> are reduced to questions about co-

products over t2(k) x k of a fc-algebra R with m2(k) x k,  respectively,

m2(k) x k x k, respectively k x m2(k) x k via the above mappings.

In the case of 2-sided inverses, one can make a neater reduction, which gets

rid of the summand  "£/" and thus the final factors  "_ x k" above. Namely,

over the original R, choose  U as before such that P ® Q ® U is free, then

put P = P ®P ® U and  ß' = Q®Q®U; and note that to invert / is the

same as to invert

ß'.

But P ®Q' is free, so we can reduce by matrices to the case R = P ®Q'',

and then only have to take a coproduct over t2(k) with m2(k).

For many questions, such as that of homological dimension, one can use

the results of §5 to make a more drastic reduction, for all three kinds of inverses.

The key observation is that the adjunction to R  of universal isomorphisms P ®

Q = R and/or P= ß = R commutes with the universal inversion of / and

exactly preserves global dimension (except when gl dim R = 0).  The first such

adjunction allows us to reduce, as above, to the case of a coproduct over t2(k),

but without restriction on the type of inverse we are adjoining. In the second case,
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the left, right or two-sided inversion of /: P —► ß becomes the left, right or

two-sided inversion of an element of R. Let us record this result in the nicest

case, that of 2-sided inversion:

Lemma 10.1.   If any of the following statements are true, all are:

(i)  Given any k-algebra R and any nonzero homomorphism f. P —► ß

of finitely generated projective R-modules,  r gl dim R<f _1X r gl dim R.

(ii) Given any k-algebra   R   and any nonzero element   x G R,

i gl dim RCc_1> < r gl dim R.

(iii)  Given any faithful i2(k)-ringk, R, one has r gl dim R-u.t (fc)tn2(fc)

< r gl dim R.    D

The one outstanding recent positive result about universal localization of

which we are aware is the following.  (Recall that Cohn [18] calls an « x n

matrix full if it cannot be factored as an « x (n — 1) times an (n - 1) x n

matrix; and a class 2  of square matrices factor-closed if AB G 2 => A G 2,

RG2.)

Theorem (Cohn [18]). Let R be a semifir, and 2 a factor-closed set

of full square matrices over R.   Then the map R —► R<2-1> is an embedding

and R{~L~l) is a semifir.    D

Note that the example k(x, y, (xy)~l) showed "bad" behavior precisely

because of the failure of the set of elements being inverted to be factor-closed.

We wonder whether a version of the above theorem could be proved with

R  assumed an A'-fir, all matrices in 2  assumed of size < m x m, and the

conclusion saying that .R(2-1) is an «-fir, for some appropriate relation among

the integers N, n and m.

An example is given in [5, §5] in which R  is a domain with polynomial

identity, and x a nonzero element of R, but the universal localization R<x-1>

cannot be a prime ring satisfying the same polynomial identities. Whether it

fails to be prime, or fails to satisfy the same identities, or both, is an open

question!  More general kinds of localization definitely fail to preserve poly-

nomial identities:

Example 10.2  (after Isbell, [22, p. 268] ). A finite-dimensional k-algebra

R satisfying the identities of 2 x 2 matrices over commutative rings, having a

map f. P—+Q of finitely-generated projective modules such that R<f~l) is

infinite-dimensional, and satisfies no polynomial identities.

Construction.   First note that it will suffice to find such an R with

some infinite-dimensional extension S without polynomial identity, which is

generated by (the coordinates of) an inverse to /, for such an S will be a
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homomorphic image of R<f -1>, which will thus also have these properties.  (In

fact, the reader will not find it hard to show that the S we shall display actually

is R<f-1).)

Let S denote m2(k<x, y)), where k<x, y) is the free associative algebra

in 2 indeterminates over the field k, and let R  be the 5-dimensional sub-

algebra (*    k+kxk+ky)CS.  In R, let P = exxR,  Q = e22R, f = e2X: P-+

Q. In S, / = e21: P—► ß has the 2-sided inverse ex2:  Q—>P. It is

straightforward to verify that R  and e2 x   together generate S.  R  satisfies the

identities of 2 x 2 matrices over commutative rings because it is isomorphic to

the corresponding subalgebra of m2(k[x, y]). S contains the subalgebra k<x, y),

and hence is infinite-dimensional and satisfies no polynomial identities.   D

(For an application of the same trick to Lie algebras, see [32], discussion

following Proposition 4.1, and also §9 thereof.)

We end this section by examining the behavior of universal right, left and

two-sided inversion under some special hypotheses on the map /: P —> Q of

finitely generated projective .R-modules to be inverted.

Suppose that / is already left invertible.  This means that up to isomorphism

/ is the inclusion of the summand P in a direct sum  Q = P ®Q'; a left in-

verse will be the projection /: P ®Q' —* P. Now suppose that we universally

adjoin to R another left inverse, getting S = Rig:  Q—>P\ gf = l->. Then

g:  Q = P ®Q' —> P  must have the form (1 -, h) where «  is a map of ß'

to P, and in fact, it is easy to see that S will be isomorphic to the universal

mapping ring RQi:  Q' —► P>, which has all desirable properties, by Theorem 5.3.

Suppose, on the other hand, that we universally adjoin a right inverse to

this left-invertible map /; equivalently, that we adjoin a 2-sided inverse; equivalently,

that we set fj = 1 -  (where / is a left inverse to /, as above). Note that

1-fj-  Q—* Q is the projection onto the summand  ß'; we conclude that

R<f _1> = R{Q' = 0) = R/ TQ. (Tq> = the trace ideal of ß'. For definition and

basic properties of Tq,   cf. [4, Proposition 3.4].)  Conversely, every case of the

construction R/Tp can be described as such an inversion.

One more case:  suppose /: P —► P is an idempotent endomorphism of

a single module P, inducing a decomposition P = P ®P'. Then it is easily

seen that to right, left, or two-sidedly invert / all come to the same construc-

tion: R<P' = 0> = R/Tp«.

(A common generalization of a 1-sided invertible map and an idempotent

map is a map /: P —► ß having a quasi-inverse—z. j:  Q —> P such that fjf =

/ and jfj = /.(7) The above observations can be generalized to this case.  Con-

(7)  Such an / is sometimes called a regular map (cf. [26, p. 21, Exercise 7], and the

term "(von Neumann) regular ring").   Unfortunately the terms quasi-invertible and regular

both have other conflicting uses.
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ceivably, the adjunction of universal quasi-inverses might also show interesting

properties.)

It follows that any general results holding for the construction R</-1>

without restriction on / will also hold for the construction R<P = 0>.

11.  The construction R<P = 0>.  Aside from being a special case of local-

ization, note that this is also the case of the construction RQ, i~ : P = Q)

where  ß is the zero module.  (We were able to get good results for this construc-

tion only assuming P and  ß both nonzero.)

The trace ideal of a finitely generated projective R-module P is finitely

generated, and idempotent:   TPTP = Tp.  Hence when R  is commutative, it is

generated by an idempotent element of R.  (The characteristic function of the

open-closed subscheme of Spec R  where rank P > 0.) Thus given P we get

a decomposition R = S x T as rings, and the map R —► R/Tp = R(P = 0> is

just the projection of R  onto the factor S.  This map has all the good properties

one could hope for:  Clearly,  Mod R ** Mod S x Mod T; S is projective over

R,  and every S-module N can be lifted to an R-module M of the same homo-

logical dimension.

Many of these properties are lost in the noncommutative case.  Of course,

since S = R/Tp is a homomorphic image of R, one can lift all S-modules to

R-modules; but one cannot, in general, preserve their homological dimensions:

[6, §111] gives an example in which R/Tp has finitely generated projective

modules not finable to finitely generated projective R-modules. However, I know

of no such example where R  is hereditary!  Also, R/Tp need not be flat over

R:  Let R = k<x, y;y2 —y), which is hereditary by the results of §5, and let

P be the image of the idempotent map  1-y: R—>-R. Then  Tp is the ideal

generated by  1 -y, and R/Tp = k[x], via y i-» 1. Now R has for fc-basis

the set of words in   {x, y} having no subwords yy. It is easy to deduce from

this and the defining relation for R  that the equation a • x = b • xy has no

nonzero solution in R. Yet in R/Tp it has the solution a = b = 1, proving

nonflatness as in the preceding section.

Again, we give as test-problems the questions of comparing homological and

global dimensions over R  and S.

The technique of §5 gives, with no special trickery needed this time:

Lemma 11.1. If one of the following statements is true, all are:

(i) If R isa k-algebra and P any finitely generated projective R-module,

then  r gl dim R<P = 0) < r gl dim R.

(ii) If R is a k-algebra and e any idempotent element of R, then

r gl dim R/ReR < r gl dim R.
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(iii) Let k' denote the field k, made a (k x k)-ring via the second pro-

jection map, k xk —*■ k. If R is a (k x k)-ringk, then r gl dim R ^-kxkk'

< r gl dim R.    D

Here (i) and hence also (ii), (iii) are true when r gl dim R < 1, by results

of Eilenberg, Nakayama and Nagao on r gl dim R/I, where R  is any hereditary

ring and / any eventually idempotent ideal [19] (generalized by Fields [20]).

Note that if R  is a fc-algebra, the constructions R<P = 0) and R(f _1>

(but not the one-sided inverse constructions) will give the same results whether

performed in the category of fc-algebras or of rings.  (This is basically because

they yield epimorphisms R —► S,  and if x is central in a ring R,  ¿c   will be

central in any epimorph S of R   [29].) I would guess that these two construc-

tions will behave as well or badly for arbitrary rings, i.e., Z-algebras R, as for

algebras over a field.

12.  A unifying viewpoint, and ideas for a generalization.  In this section,

if R  is a ring   Md£R  will denote the category of all right R-modules (not

necessarily finitely generated).  The commutative ring k will not be assumed a

field except when we so specify, or when we refer to the constructions of preceding

sections.

Note that the construction considered in § 7 was a particularly simple case

of the general construction S = R<8>:  The fc-linear category  8 we used had

only a single object X, and was thus determined by the fc-algebra Homß (X, X),

which we called B.  The fc-linear category  A  was given the minimum compatible

structure:  one object (call it X also) with HomA (X, X) — k.  Writing F(X) =

PeP-ModR, we got a ring S = R<B> = R<B —> End P>, whose homological

properties were closely linked to those of R  and R.  In particular, for R = k

and P = k"  the result was a ring ro„(R) whose module theory was close to

that of R.

To try to generalize these results to fc-linear categories  8 with more than

one object, we want to associate to such a  8  a "module theory", as in the one-

object case.  Now it is a familiar observation that (right or left) modules over a

fc-algebra B can be described as (covariant or contravariant) additive functors from

B, as a one-object category, into the category Alb of abelian groups; equivalently,

as (covariant or contravariant) ^-linear functors of this category into Mdik.

So given any small fc-linear category   B,   let us define   Md£ 8   (respec-

tively  Mdt B^) to be the fc-linear category of linear covariant (respectively

contravariant) functors M:   B—* Ab; equivalently, of ^-linear functors M:

B-+Mdtk.
For an extensive development of this idea and its consequences, the reader
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is referred to Mitchell [28].  In the next few paragraphs, I shall mention some

key points that will be of importance to us.

When the category  8 has only finitely many objects, one can in fact con-

struct from it a ¿-algebra R such that  Md£ 8  is equivalent as ¿-linear category

to  MdtB  [28, Theorem 7.1].  Namely, take R to consist of all formal

Ob(8) x Ob (8) matrices, with a member of Homß (Y, X) in the  (X, Y)

position for each (X, Y) G Ob(B) x Ob(B). To any M G Mdt B we now

associate ©ob(8) M(X% made a R-module in the obvious fashion (matrices

acting on rows!); the argument showing this is an equivalence of categories is

straightforward.

This equivalence can also be deduced from two general observations.  Sup-

pose   8 is a full subcategory of B', ¿-linear categories with arbitrarily many

objects, and that either (i) every object of  B'  is a direct sum of objects in the

subcategory   B 0-C-> its identity map is a sum of orthogonal idempotents //

such that ij = \x with X G Ob (8)) or that (ii) every object of 8' is a

direct summand (retract) of an object of the subcategory   8.  In either case the

restriction functor  MdLB'—*MdtB is easily seen to be an equivalence. Now

if 8 is a ¿-linear category with only finitely many objects, we can throw in one

new object W, behaving as a direct sum of the rest, then delete all the old

objects since they are retracts of W. In the resulting one-object category, which

has the same module-theory as  B, the associated ring Hom(H', W) is the  "R"

just described.

(This trick can also be used to get from a one-object category  Bx   to an-

other one-object category  B2  whenever the associated ¿-algebras Bx   and R2

are Morita equivalent!  Namely, if R2 = End B   P, where P is a direct sum-

mand in B", and Bx   a direct summand in P", consider the chain of full sub-

categories of ModBx, with objects:

{BÛÇiB^B^ÇlB^B^P}   D {Bx,P}Ç{Bx,Pm,P}D{Pm,P}2{Pl

The rings associated with the first and last step are Bx   and R2  respectively.)

(One can also "embed" the structure of any ¿-linear category  B in a ¿-

algebra B, by using infinite matrices differing at only finitely many places from

"scalar" matrices.  Then Md£. 8 turns out to be equivalent to a certain full

subcategory of MdtB. Thus the homological properties of B  do not coincide

with those of R,  though they can presumably be studied with the help of the

latter.)

Now let k be a field and 8 a ¿-linear category with r<°° objects,

all nonzero. Let A be the category with the same objects as 8, but with

HomA (X, Y) defined to be k if X = Y, 0 otherwise.  Let G:   A —* 8 be
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the unique ¿-linear functor which is the identity on objects.  For each X G

Ob (A),  choose any nonzero object F(X) in Ob(P-Mod¿) and let F:   A—►

P-Mod k be the unique ¿-linear functor taking each X to F(X).  By Theorem

3.3 we have a ¿-algebra S = ¿<8>  universal for the diagram:

A-£L-+P-Mod¿
i
! _®5
\

B—---->P-ModS

We can now show how to generalize the method of §7 and study the module-

theory of S in terms of the module-theory of  B.  As a first step, we replace  A

and  8  by one-object categories  A' and  8' having the same module-theories,

as described above, and call the endomorphism rings of their unique objects A

= rk and B. The functor G: A—*■ 8 induces a functor G': A'—► 8', i.e., a

homomorphism A—*B of ¿-algebras. The functor F: A —► P-Mod k induces

a functor F': A' —► P-Modk   taking  the  unique  object  of    A' to ¿" G

P-Mod ¿, where « = 20b^Aj dimfc F(X); i.e., a ¿-algebra homomorphism A =

¿r-»mn(¿). One now finds that ¿<B> = ¿<B') s^l~l(B m.a tn„(¿)).  (This is

not a case of the construction ro„  except when A  has only one object, so that

A = ¿.)  Hence using the theory of coproducts [7] as in preceding sections, one

can relate the theory of ¿<8>-modules to that of 8-modules; for example

r gl dim ¿<8> < max(l, r gl dim B).

Suppose we generalize the above construction by letting F map A into PModR for

some ¿-algebra R, rather than into P-Mod k. A complication arises: @F(X) may not be a free

R-module R". To cure this, we choose a nonzero Í/G PMod R which, when added to the

above sum, makes it free.  (Sound familiar?)  Then add to each of A  and   B

one additional object,  U0, with endomorphism-algebra k in both categories,

and otherwise only zero homomorphisms in and out.  Extend F to send the

new object of A  to  U. The universal ¿-algebra for the extended diagram will

be the same as for the old one, since we are adjoining no new maps or relations.

We can now complete the construction as above. This construction includes all

those studied in §5 as well as §7!  The algebras k x k x k, nt2(¿) x ¿, t2(¿)

x k etc. used as tools in §5 are now seen to be the algebras A  and R assoc-

iated with appropriate categories  A  and  8.

Consider finally the situation where   B  consists of a family of objects

Xx, • ' •, Xr,  with no homomorphisms between distinct objects, so that   B is

determined by the endomorphism algebras B{ = Homß (X¡, X¡).  Let  A,  as

above, have the same objects as  8 but minimal structure of ¿-linear category;

and map  A  into   P-Mod¿ by sending all objects to the free module of rank  1.

One finds that the universal ¿-algebra ¿<8> is then the coproduct Bx -u.fc • • •
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\ Bn. Note that a 8-module corresponds to an «-tupie (M¡) of modules over

the B¡, which becomes one module Mx x • • •  x Mn  over the "Morita equiv-

alent" ring  Rj x ' • ' x Bn, which induces a "standard module" @M¡ ®S

over S.  The formula for the global dimension of a coproduct [7, Corollary 2.5]

is seen to be related to the fact that the global dimension of a ¿-linear category

B (i.e., max h dimAÍ MG MdZB) is the supremum of the dimensions of its con-

nected components; and similarly for other results.

It is now time to ask, what about categories  8 with infinitely many objects?

For instance, suppose   B  is any small ¿-linear category, let G:  A —* B  be con-

structed as before, let F:   A —► P-Mod ¿ be any faithful ¿-linear functor, and

S = ¿<B> as in Theorem 3.3.  Given any 8-module M:   8—*■ Md£¿, we can

define an S-module M. (The idea is: just as for a ring homomorphism R —► S,

the restriction-of-scalars functor MdtS —► MdtR has a left adjoint  _®S:

MdtR—* MdtS, so for a functor among small ¿-linear categories, F:   B —►

B',  the functor composition-with-R, taking Mdt 8' to MdtB has a left ad-

joint _ ®R B'. One also needs the observation that  Md¿(P-Mod S)  is equiv-

alent to   MdL (S).) If we call the S-modules that so arise "fundamental", can

we again show that every submodule of a fundamental S-module is isomorphic to

a fundamental S-module?  describe  Se(¥undS) in terms of S®(Mod 8)?

bound r gl dim S by max(r gl dim 8, 1)?

In the special case where   B is totally disconnected and F takes all objects

of A  to the free ¿-module of rank  1,  the answer is yes, by the results of [7].

(We can even replace the former hypothesis by "the connected components of 8

have finitely many objects", and drop the latter, by appropriate arguments.)

I believe that in fact such results are true for  8 and F arbitrary, but

that they cannot be obtained from the results of [7] as given, but rather, by

further extension of the method of that paper.  In particular, the process of

obtaining canonical forms for elements of S and M would mix the ideas of

[7, §4] and the proof of Theorem 8.1 of this paper.  I can see no obstruction

to carrying out the whole analysis of [7] when F takes all objects of A  to

¿-modules of dimension  1.  The details in the general case are less clear.

This generalization is still not as good as we would like, since taking  B

totally disconnected, we get a general coproduct of k-algebras over a field k,

while results of [7]  apply to coproducts of R0-rings over any ring R0  of

global dimension zero.  I shall sketch below some ideas of what I think the proper

generalization should be like, but not try to formulate it precisely.

First, let us free the construction of ¿.  Following [28] we understand an

additive category to mean a Z-linear category (called by some a preadditive category,

in [26] an Ab-category.)

In place of the ring R0  of global dimension 0  of [7], we should take
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A  to be an additive category of zero global dimension (meaning, as for rings, the

global dimension of its module category  Mdt A).  It is not hard to show for an

additive category  A  that r gl dim A = 0 if and only if A  can be reduced via

the method of putting in and throwing out direct sums and direct summands

("Morita equivalence of linear categories") to a disjoint union  A'  of one-object

categories whose endomorphism rings are skew fields (possibly infinitely many, in

constrast to the corresponding result of ordinary ring theory!).  Further, if F:

A —*■ B is an additive functor, these changes in  A  can be "paralleled" in  B,

giving a functor F\  A' —*■ 8'; so without loss of generality, we should be able

to restrict attention to the case where  A  is a category of just that sort.

What should be the result of the construction?  Up to now we have been

constructing rings S.  But if it is desirable to generalize our hypotheses to allow

additive categories in place of rings, we should likewise generalize the construction

to yield an additive category which may have more than one object.

Let us observe, as an example, how the coproduct over a skew field R0

of a family (R^)A  of R0-rings can be described as a pure additive category con-

struction.  The four categories we shall set up will each have for object-set the

given index-set A.  Define  A  by putting HomA (X, X') = R0  if X = X', 0

otherwise. Define   8  by  Homg (X, X) = Rx, with all other Hom-sets again 0.

In  C, take  Honu (X, X') = R0  for all X and X', with composition given by

multiplication in R0—in effect,  C is  A  with all objects made isomorphic in a

coherent fashion. We now form the pushout among categories with object-set A:
-

A->C
i

4-

8-► V

In  V, as in  C, all objects are isomorphic, and the endomorphism ring of

any one of them will be the desired coproduct II Rx. Alternatively, instead of

making all categories have the same objects, we might have made all objects of

A fall together into one object in  C, and hence  V, and gotten ii R^  as

the endomorphism ring of the unique object of V-

One might ask whether to be a generalization of the construction we have

been considering, the above diagram should not have   P-Mod C and  P-ModV

where we show  C and  V.  Actually, for R  a ring,   P-ModR  is, in a sense

that can be made precise, the largest additive category "Morita equivalent tp" the

one-object category determined by R. We did not really need such a large cate-

gory in our constructions; we could with a little more wordage have formulated

the results of §3 with  P-Mod R  and   P-Mod S replaced by an arbitrary full

subcategory of the former, and the induced subcategory of the latter-but to no
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particular advantage. Now for  C a general additive category one can similarly

define   P-Mod C—it will consist of all formal direct summands of all formal

direct sums of objects of C,  and have the same maximality property—but since

C was perfectly general anyway, there is now no added convenience in this move.

The schema suggested has one unsatisfying feature: there seems to be a redundancy in

that "amalgamation" comes in two ways-putting together the categories B and C, which

now play equivalent roles, and putting together the "ring" structures in each of them. Would

a better formulation be a difference-cokemel construction, A^tB—>V1 (Cf. the'gener-

alized free product groups' of [33].) Perhaps. One must aim for results that maximize formal

and conceptual simplicity yet are applicable to as wide a range of cases as possible. Sometimes

this can be done by an ingenious reduction to a simple case, other times, compromise is

required. Correct solutions are not unique.

I would be interested in hearing from anyone who does pursue these lines

of investigation!

13.  Appendix:  Why finitely generated projective modules? If P and  ß

are modules over a ¿-algebra R,  it is clear that to study the properties of univer-

sal constructions such as S = R<i, f1 : P = Q) by the methods used here

(matrix reduction to the case P = epR, so that S becomes a coproduct ring

over a direct product of copies of ¿), P and  ß must be assumed finitely gen-

erated and projective. What is not as obvious is the need for such hypotheses

in the theorems of §3 which establish the existence of these universal rings.

Suppose we try to generalize the construction of Theorem 3.1 as follows.

Let M and N be modules over a ¿-algebra R, with N finitely presented.

Write down presentations for both modules:

F,--—>F2->M->-0,

F3-—► F4-► N-> 0.

where all F¡ are free, and F3, F4  of finite rank. Note that for any R-ring  T,

we have presentations of r-modules:

F.® T->F2®T->M®T->0,
(9)

F"3 ® T-—>F, ® T-*NQ T->0.

Using Theorems 3.1 and 3.2, we can construct an extension ring S =

Rid: FX-*F3, e: F2 —► P4; bd = w):
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(10)

These d and e induce a map /: M—»A7.  However, S and / will not have

the universal property of Theorem 3.1.  Rather, it will have the property that

given any R-ringfc,  T, any homomorphism of P-modules g: M ®T —► N ®T,

and a specified lifting of g to a map of presentations (9), there exists a unique

homomorphism S —► T under which (10) induces this map of presentations.

In particular, S has the weak universal property that given  T and g as above,

there will exist a not necessarily unique homomorphism S —*■ T relative to

which g=f®T.

If we take for M the free R-module of rank  1, then a universal or weakly

universal map M® _ —► N®— simply means a universal or weakly universal

choice of element of N®—  In this case, we do not even need N finitely re-

lated to get such a weakly universal element:

Proposition 13.1.   Let k be a commutative ring, R a k-algebra, and N

an R-module.   Then the following conditions are equivalent:

(i) N is finitely generated.

(ii)  There exists an R-ringk S, and an element x EN®S, such that

for any R:ringk T and any element y EN ®T,  there exists a (not necessarily

unique) homomorphism of R-rings, S —*■ T, with respect to which y = x G

N®T.

Proof,   (i) => (ii)   Note that for modules M and N as discussed above,

if we put S = R<g: M—>F4), then the composed map M &+ F4 —*■ N will

have the weak universal property if M is a projective R-module, by the map-

lifting definition of projectivity.  So this is true in particular when M is free of

rank  1.

(ii) "* (i) The element x EN ®S will lie in a submodule induced by

some finitely generated submodule N0 Ç N.  Under any homomorphism of R-

rings, S —► R, we see that x will be taken to an element of N0.  Applying

the weak universal property with  T = R, we conclude that N = N0, so N is

finitely generated.   D

The next theorem will show that the condition for the existence of true

universal maps is more stringent. We first need:

Lemma 13.2   Let k be a field, R a k-algebra, and N an R-module.
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Then the following conditions are equivalent:

(i) N is flat; i.e., for every one-to-one map L—► l! of left R-modules,

the map of abelian groups N®L—► N ® L' is one-to-one.

(ii) For every one-to-one map B—► tí of R-bimodulesk,  the map of

right R-modules N®B—>N®B' is one-to-one.

(iii) For every one-to-one map  T —► t of R-ringsk,  the induced map

of extended modules N ®T —► N ® f is one-to-one.

Proof, (i) •» (ii) => (iii) is clear.  To see (i) *■ (ii) <= (iii), note that if

L —*■ L' is a one-to-one map of left R-modules, then the map of R-bimodules,

L ®kR —> L' ®k R is, as a map of left modules, a nonvacuous "direct sum of

copies" of the given map since R  is free as a ¿-module, and that condition (ii)

applied to this map gives (i) for the first map.  Likewise, if B —► ti is as in (ii),

then one can get a map of P.-ringsfc, R ® B —► R ®B'  (B and tí  being

given zero internal multiplication), and applying (iii) to this map gives (ii) for

the map of R's.   D

(The assumption that k was a field was used to see that R  was free

as a ¿-module, so that L ®kR —> L' ®k R would have the desired relation to

L —► P. There are many other conditions under which left R-modules can be

embedded as summands in bimodules, e.g., if R is commutative. It would

be nice if one could prove Lemma 13.2 without restriction on ¿).

We can now prove:

Theorem 13.3. Let k be a field, R a k-algebra, and N an R-module.

Then the following conditions are equivalent:

(i) N is finitely generated and projective as an R-module.

(ii) For every R-module M,  there exists an R-ringk S = R<f: M—► N)

with a universal map f: M—*N (as in Theorem 3.1. More generally, for every

R-ringk,  T, and T-module M,  there exists a  T-ringk,  T<f: M—+N) with the

corresponding universal property over  T).

(iii)  There exists an R-ringk S = R<x EN) with an element x EN ®S

such that for any R-ringk  T, and any element y EN ®T, there exists a

unique homomorphism of R-rings S —* T with respect to which y = x.

Proof,   (i) => (ii) by Proposition 3.1, and (ii) ■* (iii) by taking M = R.

Assuming (iii) we see by Lemma 13.1 that N is finitely generated. We

claim that it is in fact finitely presented.  Let P3 —► F4 —► N —► 0 be a free

presentation of N, with F4  finitely generated.  Construct by Theorem 3.1,

with R  for M and F4  for P, a ring R' = Riz E F4), and let y denote

the image in N ®R' of z EF4® R'. Now taking S as in (iii), one can

construct, first, a unique map S—>R' with respect to which x=yEN®R',
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and secondly, a unique map S —► R'  with respect to which x = 0 EN®R'.

Form their difference-cokernel:  S^$ R' -->U   Then it is immediate  that the

image of z EF4 ®R' will be an element w E F4 ® U which goes to zero in

N ® U, and that the pair  U, w is universal for this property.  From our pre-

sentation of N, we see that w will lie in the image of F3 ® U. Hence it will

in fact lie in the image of P3 ® U, where P3 Ç F3  is the submodule spanned

by a finite subset of the basis. It is easy to deduce from the universal property

of w that P3 —* F4 —>N is a finite presentation of N, as desired.

Finally, note that if T—► P is a homomorphism of R-ringsfc,  then the

induced module map N ®R T —► N ®R P can, by the universal property of

S, be identified with the induced set map

HomÄ.ring(S, T)-+ Homfi_ring(S, f).

If T —* P is one-to-one, so will this map be, hence so will the module-map.

Hence by Lemma 13.2, AT is a flat R-module.

A flat finitely presented module is projective, so  A7 is finitely generated

and projective, establishing (i).   O

In particular, the equivalence of (i) and (iii) can be restated:   The functor

from R-ringsk to sets,   T t-» N ® T,  is representable (cf. [20], [26] ) if and

only if the R-module N is finitely generated and projective.

Note that we had to assume k a field only to apply Lemma 13.2.

The above result does not exclude the possibility that for some special

classes of M, R<f: M—► N) may exist for other than finitely generated pro-

jective N. (There is the trivial case M = 0, N arbitrary.)

Despite Theorem 13.3, there is a different way in which the N of the

construction R<f: M®— —► N®J) can be generalized:  the operation N®—

can be replaced by a more general sort of functor from iî-ringsfc,  T, to T-

modules N(T). E.g., let X be an infinite set; then the extension of R  by an

Z-tuple of indeterminates can clearly be described as R(R —► Rx), i.e., it is

an R-ringfc S with a universal element of the power module Sx.  Likewise,

for   a E R,   the ring   R<x; äx = 0>   has the universal property of

R(R —*■ rt ann- (a)).
R

The subject is a tricky one.  For instance, from what we have just said,

T h* Horn(T, Tx) and  T ►-» Horn(T, rt annra) are representable functors,

though  T V-* Horn (7/, (Rx) ®T) and  Tv- Hom(P, (rt annÄ a) ® T) are

generally nonrepresentable functors.  On the other hand, one finds that  T H»

HomiJT* 7) and  P H» Hom(rt annr¿", T) are not functors at all!

Let me outline one general positive result.

Functors of the form M®— can be described as associating to an .R-ring

T the cokernel M of the map:
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(11) ®A aT—¿->0B bT--*M

where c is a column-finite B x A matrix over R, and © aR -^»©¿>R—>M

is a presentation of the R-module M. Now dually, consider a functor associating

to an R-ring  T the kernel K(T) of the map:

(12) tf(7)-► 7*-> ry

where z is a row-finite  Y x X matrix over R.  (The two functors we just in-

troduced are of this form.)  These can be looked at another way. A general

left R-module L will be given by the cokernel of the map:

L <-©^ Rx <-2--0y Ryy

with z as in (12).  The kernel K(T) of (12) can now be described as L*,

where L   denotes the left P-module  T ® L, and  *  denotes the duality func-

tor Hom(_, T), taking left P-modules to right P-modules. One can now show:

Proposition 13.4.   Let k be a commutative ring, R a k-algebra, M any

right R-module, and L any left R-module.   Then the following universal rings

exist, and may be identified with one another.  (I.e., the functors R-fiÁjigk —►

5 ot that they represent are isomorphic.)

(i) S = R<f: M—* L*), an R-ringk with a universal map of right S-

modules, M ® S —*■ (S ® L)*.

(i*) S = R(f*:  L—+M*), an R-ringk with a universal map of left S-

modules, S®L-^(M®S)*.

(ii) S = Rig E (I ®k M)*),   where   "*"   now means

HonV,S)-BW *(->•?)•

(ii') S = R(L ®k M),  the tensor-ring over R on the (R, R)-bimodule

B = L ®kM.  (Explicitly:  S = R®B®'-' 0 (B ®R • • • ®R B) ® • • •.) D

A special (and obvious) case of the existence-assertion of the above theorem

is the observation that a kernel-functor as in (12) is always representable. Com-

bining this with the restriction given by Theorem 13.3 on when a cokernel-func-

tor as in (11) is representable, we get conditions for when a kernel-functor and

a cokernel-functor can be isomorphic, i.e., when a certain kind of sequence can

be functorially exact:

Corollary 13.5. Let k be a field, R a k-algebra, X, Y, A, B sets,

c a column-finite B x A matrix, z a row-finite  Y x X matrix, and m an

arbitrary A x Y matrix over R.  Suppose that for all R-ringsk,   T, the se-

quence of right T-modules:
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©4 aT     F     > ©a bT-^-+ Tx-^-> TY

is exact.   Then the right R-module given by the cokernel of c and the kernel of

z is finitely generated and projective.

Equivalently, if M is a right and L a left R-module, and f: M —* L*

an isomorphism such that for all R-ringsk T,  the induced homomorphism of T-

modules M—* L* is again an isomorphism, then M and L are (dual) finitely

generated projective R-modules.    D

Note that everything we have done in this section goes over (with appropri-

ate minor restatements, e.g., symmetric algebra for tensor-ring) to the analogous

constructions in the category of commutative ¿-algebras, though this is definitely

false for results of §§5—11. Also, in the commutative case we need not assume

¿ a field—see the comment after Lemma 13.2. Since for R a commutative ¿-

algebra, a commutative i?-ringfc is just a commutative R-algebra, we can drop k

entirely in this case.

Turning back to the main idea of this section, the need for P to be finitely

generated and projective in Theorem 3.1, we ask similarly whether P in Theorem

3.2 (the construction R<f = 0) where /: M —► P) needs to be projective.

The situation is similar to the one we have considered, but more difficult

to handle. As above, one can get a weak universal construction for a larger

class of modules P.  Suppose on the other hand that P is an R-module for

which the theorem holds as stated, for all M and /. We find that this condi-

tion is not quite strong enough to give the handle we need to characterize P.

The strengthening we need is shown in condition (ii) of the next result.  Even

then, we only get a complete characterization when P is finitely generated.

Theorem 13.6.   Let k be a field, R a k-algebra, and N a finitely gen-

erated R-module, say the image of a map a: F —* N, where F is a free mod-

ule of finite rank.   Then the following conditions are equivalent:

(i) N is projective.

(ii) For every R-ringk, R\ and every homomorphism f of a right R'-

module M into N ® R.',  there exists a universal R'-ringk S = R'<f = 0>.

(ii') For every R-ringk, R', and every element xEN ®R', there exists

a universal R'-ringk, S = R'<x = 0>.

(iii) There exists an R-ringk, S = R<y G F, â~(y) = 0>, i.e., an S with

universal element of the kernel of a : F —► N.

Proof. (0 => (ii) by Theorem 3.2

(ii) o (ii'): The forward implication is trivial. On the other hand, assuming (ii') we

see that if X is any subset of N ®R', we can construct R(X = {0}> as the

pushout over R  of the rings R<x =0) (x E X), and we get (ii) by doing this

with X = f(M).
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(ii') *> (iii). To get the forward implication, let R' = R<y E F), i.e., the

extension of R  with a universal element of F®—, and apply (ii') with x =

a(y).  Conversely, assuming (iii) and given x as in (ii'), write x = a(y) for

some y G F; then the ring desired in (ii') is given by the pushout of the diagram:

_   __—-* R'   (with v G F as above)
RtyEF)-^

*■ R<y E F, a(y) = 0>   (given by (iii)).

Assuming the equivalent conditions (ii), (ii'), (iii), we shall now prove (i).

First note that it was by deriving condition (iii) (with S called U) that

in the proof of Theorem 13.3 we proved N finitely related. Hence here again,

N will be finitely related.

Now assume (we will justify this later) that N can be defined by one gen-

erator and one relation, N = R/bR  (b E R) so that, taking F = R, the map

a: F—>N becomes the quotient map R—► R/bR.  In particular, the S of

condition (iii) (for this possibly new presentation) can be characterized as an

R.-ringfc  having an element yEbS such that for any R-ringfc,  T, and any

uEbT, there is a unique homomorphism of R-rings, <j>: S —> T, taking y

to u.

Now suppose two homomorphisms of R.-ringsfc, a, ß:  T=$P  agree on

uEbT. Taking <j>: S —► T as above, and applying the uniqueness condition to

a(u) = ß(u) E P, we conclude that a<p = ß<j>, i.e., 0 takes S into the dif-

ference-kernel subring Pa=|3 = def Ker (a - )3) Ç T. Now since y EbS, we

see <p(y) = uE b<p(S) ç b P*^.

We now consider the canor",al map and the zero map of (R, R)-bimodules,

c

R®kR \ (RIM) ®fe R
0

and extend these to maps of R-ringsfc:  a, ß: R®(R®R)=$R® (R/Rb ® R).

We see that the difference-kernel of these two maps is Ta=ß = R ® (Rb ®R).

In particular, this contains the element u = (0, b ® 1) G b T.   So by our preceding

observations, u = (0, b ® 1) G b (T01^) = (bR, bRb ® 1). Thus, b ® 1 G

bRb®R, and since k is a field, this says b EbRb.  Thus, b is quasi-invertible

in R, and this makes the module N = R/bR  projective!   (Explicitly, if b =

beb, then e = be is idempotent and bR = eR, so R/bR = R/eR a (1 - e)R.)

To justify our assumption that N had the form R/bR, we observe that

we can assume N has a presentation with n  generators and «  relations for

some positive integer «.  Indeed, we can throw in trivial relations if there are too

few of these; while if there are fewer generators than relations, enlarge N by

adding a free direct summand, which will not affect properties (i) and (ii). Once

we have this, we replace R and N by the matrix-ring m„(R)  and the row-
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vector module xn(N). This again will not affect properties (i) and (ii), and will

reduce the «  generators and «  relations defining N to one generator and one

relation, as desired.  (This reduction was not essential, but just served to make the

main calculation more transparent.  If we want to prove the same result in the

category of commutative ¿-algebras, we will probably have to do without it.)   D
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