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On lattices of convex sets in Rn

George M. Bergman
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Abstract. Properties of several sorts of lattices of convex subsets of Rn are examined.
The lattice of convex sets containing the origin turns out, for n > 1, to satisfy a set of
identities strictly between those of the lattice of all convex subsets of Rn and the lattice
of all convex subsets of Rn−1. The lattices of arbitrary, of open bounded, and of compact
convex sets in Rn all satisfy the same identities, but the last of these is join-semidistributive,
while for n > 1 the first two are not. The lattice of relatively convex subsets of a fixed set
S ⊆ Rn satisfies some, but in general not all of the identities of the lattice of “genuine”
convex subsets of Rn.

1. Notation, conventions, remarks

For S a subset of Rn, the convex hull of S will be denoted

c.h.(S) = {Σm
i=1 λi pi | m ≥ 1, pi ∈ S, λi ∈ [0, 1], Σλi = 1}. (1)

When S is written as a list of elements “{ ··· },” we generally simplify “c.h.({ ··· })”

to “c.h.( ··· )”.

Conv(Rn) will denote the lattice of all convex subsets of Rn; its lattice opera-

tions are

x ∧ y = x ∩ y, x ∨ y = c.h.(x ∪ y). (2)

In any lattice, if a finite family of elements yi has been specified, then an expression

such as
∧

i yi will denote the meet over the full range of the index i, and similarly

for joins. Likewise, if we write something like
∧

j 6=i yj where i has been quantified

outside this expression, then the meet will be over all values of j in the indexing

family other than i. If L is any lattice and x an element of L, or, more generally,

of an overlattice of L, we define the sublattice

L≥x = {y ∈ L | y ≥ x}. (3)

Presented by N. Zaguia.
Received April 22, 2003; accepted in final form February 16, 2005.
2000 Mathematics Subject Classification: 06B20, 52A20; 06E10, 54H12.
Key words and phrases: Lattices of convex subsets of Rn, n -distributive lattice, meet- and

join-semidistributive lattice, relatively convex set, topologies on power sets of topological spaces.
A preprint of this paper is available at arXiv:math.MG/0409288.

1



Algebra Universalis March 16, 2005 13:32 1934u F03058 (1934u), pages 1–39 Page 2 Sheet 2 of 39

2 G. M. Bergman Algebra univers.

In particular, Conv(Rn)≥{0} is the lattice of those convex subsets of Rn that

contain the origin.

If A is a class of lattices, V(A) will denote the variety of lattices generated

by A, that is, the class of lattices satisfying all identities (in the binary operations

∧ and ∨) that hold in all lattices in A. Again, for A given as a list, we will

abbreviate V({ ··· }) to V( ··· ). (Most often A will be a singleton {L}, so that

we will write V(L).)

Given sets x and y, we will write x − y for their set-theoretic difference, {p |

p ∈ x, p /∈ y}.

Though I am not an expert either in lattice theory or in convex sets, I know

more about the former subject than the latter; hence, I may more often state

explicitly facts known to every worker in convex sets than those known to every

lattice-theorist. I hope this note will nevertheless be of interest to people in both

fields. I have no present plans of carrying these investigations further; others are

welcome to do so.

Since obtaining the main results of this paper, I have learned that many of

them were already in the literature, and have added references; thus, this is now

a hybrid research/survey paper. I am grateful to Kira Adaricheva, J. B. Nation,

Marina Semenova, Fred Wehrung, and the referee, for corrections, information on

the literature, and many other helpful comments.

Whereas this note looks at conditions satisfied universally in various lattices of

convex sets, the papers [1], [19], and others cited there study sufficient conditions

for lattices to be embeddable in such lattices, in other words, existential properties

of such lattices. (This note includes one result of that type, in §13.)

2. n-Distributivity

The varieties of lattices we will be examining in the first few sections are those

listed in

Lemma 1. Each lattice in the sequence

Conv(R0)≥{0}, Conv(R0), Conv(R1)≥{0}, . . . , Conv(Rn)≥{0}, Conv(Rn), . . .

is embeddable in the next. Hence

V(Conv(R0)≥{0}) ⊆ V(Conv(R0)) ⊆ V(Conv(R1)≥{0}) ⊆ V(Conv(R1)) (4)

⊆ · · · ⊆ V(Conv(Rn)≥{0}) ⊆ V(Conv(Rn)) ⊆ · · · .

Proof. On the one hand, Conv(Rn)≥{0} is a sublattice of Conv(Rn); on the other,

one can embed Conv(Rn) in Conv(Rn+1)≥{0} by sending each x ∈ Conv(Rn) to

the cone c.h.({0} ∪ {(p1, . . . , pn, 1) | (p1, . . . , pn) ∈ x}). The inclusions (4) follow

from these embeddings. �
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Clearly Conv(R0)≥{0} is a trivial lattice with unique element {0}; on the other

hand, Conv(R0) is a two-element lattice, so V(Conv(R0)) is the variety of dis-

tributive lattices. Hence the first inclusion of (4) is strict. We shall see below that

the next inclusion is an equality, while all subsequent inclusions are again strict.

Let us set up notation for some relations among elements of a lattice.

Definition 2 (after Huhn [11]). For each positive integer n, we shall denote by

Dn(x, y1, . . . , yn+1) (for “n-distributivity”) the lattice-relation in n+2 arguments

x, y1, . . . , yn+1,

x ∧ (
∨

i yi) =
∨

i (x ∧
∨

j 6=i yj). (5)

We shall say that a lattice L satisfies “the identity Dn” if (5) holds for all x, y1,

. . . , yn+1 ∈ L.

Thus, D1 is the ordinary distributivity identity.

The use of the subscript n for an identity in n+2 variables which is symmetric

in n+1 of these may seem confusing; a useful mnemonic is that Dn is the identity

that allows one to “reduce meets of x with larger joins to meets of x with n-fold

joins”. An additional occasion for confusion will arise when we see that the first of

these identities to be satisfied by Conv(Rn) is not Dn, but Dn+1. This will be a

consequence of the fact that an n-dimensional simplex has n+1 vertices.

Note that the left-hand side of (5) is ≥ the right-hand side for any family of

elements of any lattice, since each of the n+1 terms in the outer join on the right

is majorized by the left-hand side. So to verify any instance of (5) it suffices to

prove “≤”.

The pioneering work on identities satisfied by lattices of convex sets was done

by A. P.Huhn [10], [11]. The results in this and the next three sections will extend

Huhn’s by approximately doubling both the family of lattices and the family of

identities considered, and formalizing some general techniques. Huhn’s results will

be recovered along with our new ones.

The key to Huhn’s and our results on Dn (and some related identities) is the

following standard result in the theory of convex sets. Strictly speaking, it is the

first sentence below that is Carathéodory’s theorem, while the second is a well-

known refinement thereof [6, p. 431, line 4]. Intuitively, that second sentence says

that from an arbitrary point p0 ∈ S ⊆ Rn, we can “see” any other point of c.h.(S)

against a background of (or embedded in) some (n−1)-simplex with vertices in S.

Carathéodory’s Theorem. If S is a subset of Rn, then each element q ∈ c.h.(S)

belongs to c.h.(p0, . . . , pn) for some n+1 points p0, . . . , pn ∈ S. Moreover, p0 can

be taken to be any pre-specified element of S.

In each paragraph of the next lemma, it is the first assertion that is due to Huhn.
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Lemma 3 (cf. Huhn [11]). For every natural number n and (n+3)-tuple of convex

sets x, y1, . . . , yn+2 ∈ Conv(Rn), the relation Dn+1(x, y1, . . . , yn+2) holds. More-

over, if n> 0 and (at least) some two of the sets y1, . . . , yn+1 have nonempty

intersection, then Dn(x, y1, . . . , yn+1) holds.

Hence Conv(Rn) satisfies the identity Dn+1, and for n > 0, Conv(Rn)≥{0}

satisfies the identity Dn.

Proof. We shall prove the assertions of the first paragraph, which clearly imply

those of the second.

To get the first assertion, let x, y1, . . . , yn+2 ∈ Conv(Rn), and let p be a point

of the convex set described by the left-hand side of (5). Then p belongs to both x

and
∨

i yi = c.h.(
⋃

i yi). Carathéodory’s Theorem now says that p belongs to the

convex hull of n+1 points of
⋃

i yi, hence to the join of at most n+1 of the yi,

so it belongs to one of the terms on the right-hand side of (5), hence to their join,

as required.

To prove the second assertion, let x, y1, . . . , yn+1 ∈ Conv(Rn), and suppose

that two of y1, . . . , yn+1 have a point p0 in common. Given p in the left-hand

side of the desired instance of (5), we see from the last sentence of our statement of

Carathéodory’s Theorem that p will belong to the convex hull of p0 and some n

other points of
⋃

i yi. The latter points will lie in the union of some n of the y ’s,

and since those n of our n+1 sets leave out only one, they do not leave out both

of the sets known to contain p0. So that family of n y ’s contains the n+1 points

whose convex hull is known to contain p, and the conclusion follows as before. �

Note that for all p ∈ Rn, we have Conv(Rn)≥{p}
∼= Conv(Rn)≥{0}; moreover, if

p ∈ S ⊆ Rn, then Conv(Rn)≥S ⊆ Conv(Rn)≥{p}. Thus, any identities proved for

the lattice Conv(Rn)≥{0} will hold in Conv(Rn)≥S for every nonempty set S.

One may ask whether, in the first assertion of the above lemma, we have failed

to use the full strength of Carathéodory’s Theorem. That theorem says that the

convex hull of any family of N > n+1 points is the union of the hulls of its (n+1)-

element subfamilies, hence for each such N, we may deduce an identity like Dn+1,

but with the join of N rather than n+2 convex sets yi on the left, and expressions

involving all the (n+1)-fold subjoins thereof on the right. Our Dn+1 is the case

N = n+2.

But in fact, the identities so obtained are all equivalent to Dn+1. To derive them

from it, note first that if in Dn+1 we substitute for yn+2 the expression yn+2∨yn+3,

then the left-hand side becomes x∧ (
∨n+3

i=1 yi), while on the right, some of the joins

involve n+1 of the y ’s and others involve n+2. If we again apply Dn+1 to the

latter joins, we get precisely the N = n+3 case of the class of identities discussed

above. The identities with still larger N are gotten by repeating this argument.

Conversely, one can get Dn+1 from any of these identities by substituting for the
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yi with i > n+2 repetitions of yn+2, and discarding from the outer join on the

right-hand side joinands majorized by others.

Let us also note that Dn+1⇒Dn+2. Indeed, the identity with n+3 y ’s that we

just showed equivalent to Dn+1 has the same left-hand side as Dn+2, while the

right-hand side of Dn+2 can be seen to lie, in an arbitrary lattice, between the

two sides of that identity. In particular, the identities obtained in Lemma 3 are

successively weaker for larger n, as is reasonable in view of (4).

The argument proving Lemma 3 (for simplicity let us limit ourselves to the first

assertion thereof) can be formulated in a more general context, and the above

observations on identities allow us to obtain a converse in that context, which we

record below, though we shall not use it. Recall that a closure operator on a set

X is called “finitary” (or “algebraic”) if the closure of every subset S ⊆ X is the

union of the closures of the finite subsets of S.

Lemma 4 (cf. [16]). Let cl be a finitary closure operator on a set X, such that

every singleton subset of X is closed, or more generally, such that the closure of

every singleton is finitely join-irreducible; and let n be a positive integer. Then

the lattice of closed subsets of X under cl satisfies Dn if and only if cl has the

“n-Carathéodory property” that the closure of every set is the union of the closures

of its ≤n-element subsets.

Proof. “If” is shown exactly as in the proof of Lemma 3.

Conversely, suppose the lattice of cl-closed subsets of X satisfies Dn, and let

p ∈ cl(S) for some S ⊆ X. By the assumption that cl is finitary, p ∈ cl(q1, . . . , qN )

for some q1, . . . , qN ∈ S. If N ≤ n, we are done; if not, let us rewrite the condition

p ∈ cl(q1, . . . , qN ) as a lattice relation, cl(p) = cl(p)∧ (
∨

i cl(qi)). By the preceding

discussion, Dn implies the identity in N variables which, when applied to the

right-hand side of the above relation, turns the relation into

cl(p) =
∨

|I|=n (cl(p) ∧ (
∨

i∈I cl(qi))),

where the subscript to the outer join means that I ranges over all n-element subsets

of {1, . . . , N}. Now by assumption cl(p) is finitely join-irreducible, hence it equals

one of the joinands on the right, showing p to be in the closure of some set of n

q ’s, as required. �

3. Tools for studying related identities

We also appear to have used less than the full force of the middle sentence of

Lemma 3 (the stronger relation holding when at least two of the y ’s have nonempty

intersection) in getting the second assertion of the last sentence of that lemma (the

stronger identity for Conv(Rn)≥{0}), since the latter assertion concerns the case
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where not just two, but all the yi (and also x) have a point in common. There is

no evident way to take advantage of the weaker hypothesis of said middle sentence

when working in the lattice Conv(Rn)≥{0}; but might we be able to use it to prove

some new identity for Conv(Rn); for example, some relation that we can show

holds, on the one hand, whenever a family of elements x, y1, . . . , yn+1 satisfies Dn,

and also, for some trivial reason, whenever y1 ∧ y2 = ∅ ?

One relation with these properties can be obtained by taking the meet of each

side of Dn with y1 ∧ y2. Unfortunately, this turns out to be the trivial identity:

both sides simplify to x ∧ y1 ∧ y2 in any lattice. However, we can circumvent this

by first taking the join of both sides of Dn with a new indeterminate z, and only

then taking meets with y1 ∧ y2.

We shall in fact see that this provides what Lemma 3 failed to: an identity

holding in Conv(Rn) but not in Conv(Rn+1)≥{0}. However, the verification of an

example showing the failure of this identity in the larger lattice (and of a similar

example we will need later) is messy if done entirely “by hand”; so we shall establish

in this section some general criteria for certain sorts of inequalities in lattices of

convex sets to be strict.

The last assertions of the next two lemmas clearly imply, for Conv(Rn) and

Conv(Rn+1)≥{0} respectively, that if we are given expressions u, v and w in

some lattice indeterminates such that the inequality u ≥ v is known to hold iden-

tically in our lattice, then we can write down another inequality holding identically

among expressions in a slightly larger set of indeterminates, for which equality will

hold whenever either u equals v, or w equals the least lattice-element (i.e., ∅,

respectively {0}), but which will fail in all other cases. This is what is logically

called for by the program sketched above. However the earlier parts of these lem-

mas give some simpler inequalities for which the same is true if the hypotheses hold

“in a sufficiently strong way”, and it will turn out that in the applications where

we need to show failure of an identity, we will be able to use these simpler formulas.

In the statements of these lemmas, for p, q ∈ Rn, “the ray drawn from q

through p” will mean {λp + (1 − λ)q | 0 ≤ λ < ∞}, even in the degenerate

case p = q, where this set is the singleton {p}.

Lemma 5. Let n be any natural number, and let u ≥ v and w be three elements

of Conv(Rn). Then

(i) The following conditions are equivalent:

(a) There exists z ∈ Conv(Rn) such that (u ∨ z) ∧ w > (v ∨ z) ∧ w.

(b) There exist a point p ∈ u and a point q ∈ w such that the ray drawn from

q through p contains no point of v.

(ii) The following conditions are equivalent:

(a) There exist z, z′ ∈ Conv(Rn) such that ((u∧z′)∨z)∧w > ((v∧z′)∨z)∧w.
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(b) u > v, and w is nonempty.

Proof. In view of the hypothesis u ≥ v, the relation “≥” always holds in the

inequalities of (i)(a) and (ii)(a), so in each case, strict inequality is equivalent to

the existence of a point q belonging to the left-hand side but not to the right-hand

side.

Suppose, first, that (i)(a) holds for some z; thus we get a point q belonging to

u∨z and to w but not to v∨z. Note that the latter condition implies that q does

not lie in z. If q lies in u, then (i)(b) is satisfied with p = q, so assume q /∈ u.

Hence, being in the convex hull of u and z but in neither set, q must lie on the

line-segment c.h.(p, r) for some p ∈ u, r ∈ z :

b b b

p

∈ u

q

∈ (u ∨ z) ∧ w
/∈ v ∨ z

r

∈ z

Now if a point s ∈ v lay on the ray drawn from q through p, we would have

q ∈ c.h.(s, r) ⊆ v∨z, contradicting our assumption that q /∈ v∨z. This proves (b).

Conversely, if we are given p and q as in (i)(b), take z = {2q − p} :

b b b

p

∈ u

q

∈ w

2q − p

∈ z

Thus q ∈ (u ∨ z) ∧ w, but we claim that q /∈ v ∨ z. Indeed, if q belonged to this

set, then v would have to meet the ray from the unique point 2q− p of z through

q on the other side of q; i.e., it would meet the ray drawn from q through p,

contradicting our choice of p and q as in (b). Hence q belongs to the left-hand

but not the right-hand side of the inequality of (a), as required.

Note that (i)(b), and hence (i)(a), holds whenever u and w are nonempty and

v is empty.

Now in the situation of (ii)(b), if we take any p ∈ u− v and let z ′ = {p}, then

u∧ z′ and v ∧ z′ are respectively nonempty and empty, so applying the preceding

observation with these two sets in the roles of u and v, we get (ii)(a). The reverse

implication is trivial. �

The result we shall prove for Conv(Rn)≥{0} is similar. Indeed, in the lemma

below, part (i) is exactly as in the preceding lemma; but (ii) becomes two state-

ments, (ii) and (iii), the former having the same “(a)” as in (ii) above but a stronger

“(b)”, the latter a weaker “(a)” but essentially the same “(b)” as above. Note also

the restriction on n (only needed for (iii)).
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Lemma 6. Let n > 1, and let u ≥ v and w be three elements of Conv(Rn)≥{0}.

Then

(i) The following conditions are equivalent:

(a) There exists z ∈ Conv(Rn)≥{0} such that (u ∨ z) ∧ w > (v ∨ z) ∧ w.

(b) There exist a point p ∈ u and a point q ∈ w such that the ray drawn from

q through p contains no point of v.

(ii) The following conditions are equivalent:

(a) There exist z, z′ ∈ Conv(Rn)≥{0} such that

((u ∧ z′) ∨ z) ∧ w > ((v ∧ z′) ∨ z) ∧ w.

(b) There exist a point p ∈ u and a point q ∈ w such that the ray drawn from

q through p contains no point of v ∧ c.h.(0, p).

(iii) The following conditions are equivalent:

(a) There exist z, z′, z′′, z′′′ ∈ Conv(Rn)≥{0} such that

((((u ∧ z′′′) ∨ z′′) ∧ z′) ∨ z) ∧ w > ((((v ∧ z′′′) ∨ z′′) ∧ z′) ∨ z) ∧ w.

(b) u > v, and w 6= {0}.

Proof. (i)(a)⇒ (i)(b) holds by the preceding lemma. In proving the reverse impli-

cation, we cannot set z = {2q − p} as we did there, so let z = c.h.(0, 2q − p).

As before, we have q ∈ (u ∨ z) ∧ w and need to show q /∈ v ∨ z. If the contrary

were true, then q would be a convex linear combination of 0, 2q− p, and a point

r ∈ v. This can be rewritten as a convex linear combination of 2q−p with a convex

linear combination of 0 and r; but the latter combination would also be a point

of v, and, as in the previous proof, would lie on the ray drawn from q through p,

contradicting our choice of p and q as in (b).

Turning to (ii), if (ii)(a) holds then we can apply (i)(a)⇒ (i)(b) with u ∧ z ′

and v ∧ z′ in place of u and v, and the resulting p and q will satisfy (ii)(b)

(since v ∧ c.h.(0, p) ⊆ v ∧ z′). Inversely, if (ii)(b) holds, take z′ = c.h.(0, p), and

apply (i)(b)⇒ (i)(a) with u ∧ z′ and v ∧ z′ in place of u and v.

In statement (iii), it is clear that (a) implies (b). To prove the converse, let us

assume (iii)(b), and consider two cases, according to whether the stronger state-

ment (ii)(b) holds. If it does, we get the inequality of (ii)(a), from which we can

immediately get that of (iii)(a) by choosing z′′′ and z′′ to “have no effect” (e.g.,

by taking them to be u and v respectively). On the other hand, if (ii)(b) fails

while (iii)(b) holds, it is easy to see that all elements of w and u− v must lie on a

common line x through 0. In that case, we want to use z′′′ and z′′ to “perturb”

u and v, so that the modified u has points off the line x, while being careful to

preserve the property that u is strictly larger than v. To do this, we begin by tak-

ing any point p ∈ u− v, letting z′′′ = c.h.(0, p), and noting that the intersections
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of u and v with this segment are still distinct. Now taking any point r not on

the line x (it is for this that we need n > 1), and letting z′′ = c.h.(0, r), we see

that (u∧ z′′′)∨ z′′ and (v∧ z′′′)∨ z′′ remain distinct, and that their difference now

has points off x. Hence (ii)(b) holds with these sets in the roles of u and v, and

the implication (ii)(b)⇒ (ii)(a) gives the z and z′ needed for (iii)(a). �

Digression: One can get criteria similar to those of the preceding lemmas for other

conditions. At the trivial end, given u ∈ Conv(Rn), a condition for u to be

nonempty is that there exist a z such that u ∨ z > z, and likewise the condition

for at least one of two elements u and v to be nonempty is that their join have

this property. The exercise below offers, for the diversion of the interested reader,

some less trivial cases.

Exercise 7. (i) Find an inequality in elements u, v and one or more additional

lattice variables z, . . . , which holds identically in lattices, and which, for any

u, v ∈ Conv(Rn), is strict for some values of the additional variables if and only if

both u and v are nonempty.

(ii) Find an inequality in elements u, v, w, x and additional variables which holds

in any lattice when u ≥ v, w ≥ x, and which, for any such u, v, w, x ∈ Conv(Rn),

is strict for some values of the additional variables if and only if u > v and w > x.

(iii) Same as (ii), but with “u > v and w > x” replaced by “u > v or w > x”.

(iv)–(vi) Like (i)–(iii), but for Conv(Rn)≥{0}, and with “nonzero” in place of

“nonempty” in (i).

(vii) In Lemma 6, conditions (i)(a), (ii)(a) and (iii)(a) involved 1, 2 and 4 z’s re-

spectively; so the condition that there exist three elements z, z ′, z′′ ∈ Conv(Rn)≥{0}

such that

(((u ∨ z′′) ∧ z′) ∨ z) ∧ w > (((v ∨ z′′) ∧ z′) ∨ z) ∧ w

was skipped. Show by example that this condition is not equivalent to (iii)(b).

(viii) Suppose u ≥ v and w are elements of Conv(Rn), and consider the conditions

dual to (i)(a)–(iii)(a) of Lemma 6, and to the “skipped” condition:

(a) There exists z ∈ Conv(Rn) such that (u ∧ z) ∨ w > (v ∧ z) ∨ w.

(a′ ) There exist z, z′ ∈ Conv(Rn) such that ((u∨z′)∧z)∨w > ((v∨z′)∧z)∨w.

(a′′ ) There exist z, z′, z′′ ∈ Conv(Rn) such that

(((u ∧ z′′) ∨ z′) ∧ z) ∨ w > (((v ∧ z′′) ∨ z′) ∧ z) ∨ w.

(a′′′ ) There exist z, z′, z′′, z′′′ ∈ Conv(Rn) such that

((((u ∨ z′′′) ∧ z′′) ∨ z′) ∧ z) ∨ w > ((((v ∨ z′′′) ∧ z′′) ∨ z′) ∧ z) ∨ w.

Which of these, if any, are equivalent, for all such u, v and w, to the condition

(b) u > v, and w 6= Rn ?
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Now, back to business.

4. Identities distinguishing our chain of lattices

Given n > 0, let us write ((Dn)∨ z)∧y1 ∧y2 for the equation in n+3 variables

x, y1, . . . , yn+1, z obtained by applying the operator ((−) ∨ z) ∧ y1 ∧ y2 to both

sides of the relation Dn(x, y1, . . . , yn+1). We can now prove

Theorem 8. For each positive integer n, Conv(Rn) satisfies ((Dn)∨z)∧y1∧y2 but

not Dn, while Conv(Rn)≥{0} satisfies Dn but, if n > 1, not ((Dn−1)∨z)∧y1∧y2.

Hence every inclusion in (4) is strict except the second. Equality holds at that

step.

Proof. To see that equality holds at the second inclusion of (4), note that both

Conv(R0) and Conv(R1)≥{0} are nontrivial lattices, which by Lemma 3 satisfy

D1, the distributive identity, and that the variety of distributive lattices is known

to have no proper nontrivial subvarieties.

The positive assertions of the theorem’s first paragraph follow from Lemma 3,

combined, in the case of the first of these results, with the observations of the first

two paragraphs of §3. (Those observations are equivalent to the contrapositive

of the easy implications (i)(a)⇒ (ii)(a)⇒ (ii)(b) of Lemma 5.) It remains to give

examples showing the negative assertions.

To see that Conv(Rn) does not satisfy Dn, let q1, . . . , qn+1 be the vertices of

an n-simplex in Rn and p an interior point of this simplex, and take for the yi

and x the singletons {qi} and {p} respectively. Then we see that the left-hand

side of Dn(x, y1, . . . , yn+1) gives x, while all the joinands on the right are empty,

hence so is the right-hand side itself.

To show that Conv(Rn)≥{0} does not satisfy ((Dn−1)∨z)∧y1∧y2 when n > 1,

let P ⊆ Rn be a hyperplane not passing through 0. The idea will be to mimic

the preceding example within P, then replace the resulting singleton sets with the

line-segments connecting them with 0, slightly enlarge y1, so that it has nonzero

intersection with y2, and finally apply part (i) of Lemma 6.

So let q1, . . . , qn be the vertices of an (n−1)-simplex in P, and p a point in the

relative interior of that simplex, and let x and the yi be the line segments c.h.(0, p)

and c.h.(0, qi) respectively, except for y1, which we take to be c.h.(0, q1, q2/2).

Note that all of these convex sets lie in the closed half-space H bounded by P

and containing 0; hence the intersection with P of any lattice expression in these

convex sets can be computed as the corresponding lattice expression in their in-

tersections with P. We see that these intersections are a configuration of the form

given in the preceding example, except that the dimension is lower by 1. (Note that
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the point “ q2/2” in our definition of y1, not lying in P, does not affect the inter-

section y1 ∩P.) Hence when we evaluate the two sides of Dn−1 at these elements,

the left-hand side intersects P in the point p, and is thus the whole line-segment

x, while the right-hand side does not meet P, hence is a proper subsegment of x.

We can now deduce the failure of ((Dn−1) ∨ z) ∧ y1 ∧ y2 from the implication

(i)(b)⇒ (i)(a) of Lemma 6, using for u and v respectively the left and right sides

of Dn−1, and for w the set y1∧y2. To see that (i)(b) holds for these sets, note that

w is the line-segment c.h.(0, q2/2). Since this lies in a different line through the

origin from p, the ray drawn from any nonzero point q of that segment through

p does not meet the line-segment x in any point other than p, so in particular, it

does not contain any point of v, the right-hand side of Dn−1, which we saw was

a proper subset of x. �

We remark that by alternately inserting joins and meets with more and more

variables z(m) into “((Dn) · · · )∧(y1∧y2)” one can get identities that, formally, are

successively stronger (though still all implied by Dn), so that the statements that

a lattice does not satisfy these identities become successively weaker. Thus, as a

stronger version of the above theorem, we could have stated that Conv(Rn) satisfies

such identities with arbitrarily long strings of inserted terms, while Conv(Rn)≥{0}

fails to satisfy the particular one given above. But for simplicity, I used just one

identity to distinguish the properties of these lattices.

The argument at the beginning of the preceding section showing that Conv(Rn)

satisfies ((Dn)∨z)∧y1∧y2 also clearly shows that it satisfies the formally stronger

identity

((Dn) ∨ z) ∧ (
∨

i,j; i 6= j yi ∧ yj). (6)

With a little additional work one can get the still stronger identity:

((Dn) ∨ z) ∧
∧

i (
∨

j 6=i yj). (7)

(Idea: If
∧

i (
∨

j 6=i yj) is nonempty, use a point thereof as the p0 in the second

sentence of Carathéodory’s Theorem.)

We remark that the fact that Conv(Rn) satisfies the identity Dn+1 says that

for any n+2 convex sets yi, the union of the (n+1)-fold joins
∨

j 6=i yj (i =

1, . . . , n+2) is itself convex, while (7) says essentially that the same holds for the

union of the n-fold joins of n+1 convex sets, if those joins have at least one point

in common.

5. Dual n-distributivity

Huhn showed not only that Conv(Rn) satisfies Dn+1, but also that it satisfies

the dual of that identity. Let us write the dual of the relation Dn(x, y1, . . . , yn+1)
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as

Dop
n (x, y1, . . . , yn+1) : x ∨ (

∧

i yi) =
∧

i (x ∨
∧

j 6=i yj). (8)

Just as in Dn the direction ≥ is automatic, so ≤ is automatic in Dop
n .

Below, we will strengthen Huhn’s result that Dop
n+1 holds identically in Conv(Rn)

by showing that it holds in the larger lattice Conv(Rn+1)≥{0}, and will again use

the method of §3 to manufacture a related identity which holds in Conv(Rn) but

not in Conv(Rn+1)≥{0}. Like Huhn, we start with

Helly’s Theorem ([6], p. 391). Let n ≥ 0. If a finite family of convex subsets of

Rn has the property that every n+1 of them have nonempty intersection, then the

whole family has nonempty intersection.

We will also use the following observation.

Lemma 9. Let V be any real vector space. Given a convex set x and a point p

in V, there exists a convex set w in V such that for every nonempty convex set

y, one has p ∈ x ∨ y if and only if y has nonempty intersection with w.

Proof. It is straightforward to check that a set w with the required property (in

fact, the unique such set) is the cone consisting of the union of all rays from p

which meet the central reflection of x through p. (If p ∈ x then w = V ; in

visualizing the contrary case, it is convenient to assume without loss of generality

that p = 0.) �

We can now show that certain sorts of families of convex sets satisfy the relation

Dop
n , from which we will deduce our identities.

Lemma 10. Let n be a natural number, and x, y1, . . . , yn+1 be n+2 elements of

Conv(Rn) such that y1 ∧ · · · ∧ yn+1 6= ∅. Then Dop
n (x, y1, . . . , yn+1) holds.

Proof. Given

p ∈
∧

i (x ∨
∧

j 6=i yj) (9)

we need to show that

p ∈ x ∨ (
∧

i yi). (10)

Let w be the set determined by x and p as in Lemma 9. Since by (9), p lies in

each of the sets x∨
∧

j 6=i yj , our choice of w shows that for each i, (
∧

j 6=i yj)∧w is

nonempty. These conditions together with the nonemptiness of y1∧· · ·∧yn+1 allow

us to apply Helly’s Theorem to the n+2 convex sets y1, . . . , yn+1, w, and conclude

that (
∧

i yi) ∧ w is nonempty, which by choice of w is equivalent to (10). �

Now for each positive integer n, let (((Dop
n ) ∧ z′) ∨ z) ∧ (

∧

i yi) denote the

relation in variables x, y1, . . . , yn+1, z, z
′ obtained by applying the operation

(((−) ∧ z′) ∨ z) ∧ (
∧

i yi) to both sides of (8). Then we have
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Theorem 11 (cf. Huhn [10]). For each positive integer n, Conv(Rn) satisfies the

identity (((Dop
n )∧z′)∨z)∧ (

∧

i yi) but not Dop
n , while Conv(Rn)≥{0} satisfies the

identity Dop
n but, if n > 1, not (((Dop

n−1) ∧ z
′) ∨ z) ∧ (

∧

i yi).

Proof. The positive assertions follow from Lemma 10. (Again, the reasoning that

obtains the first identity from that lemma can be considered, formally, an applica-

tion of the contrapositive of an easy direction in of one of our lemmas, in this case

the implication (ii)(a)⇒ (iii)(b) of Lemma 6.)

To get a counterexample to Dop
n in Conv(Rn), take for x an n-simplex in Rn,

let p be a point outside x, let x′ be the central reflection of x through p, and

let y1, . . . , yn+1 be the (n−1)-faces of x′. Then
∧

i yi is empty, so the left-hand

side of (8) is just x, while each of the intersections
∧

j 6=i yj is a nonempty subset

of x′, so the right-hand side of (8) contains p.

As in the proof of Theorem 8, we begin the counterexample to our more elaborate

identity in Conv(Rn)≥{0} by taking a copy of our preceding example, for the next

lower dimension, in a hyperplane P ⊆ Rn not containing 0. Let us write p0 and

x0, x
′
0, y10, . . . , yn0 for the point and family of convex subsets of P so obtained.

Let us also write q0 for the vertex of x′0 opposite to the face y10.

To beef these sets up to the desired members of Conv(Rn)≥{0}, we now take

x = c.h.(x0 ∪ {0}), yi = c.h.(yi0 ∪ {0}) for i 6= 1, y1 = c.h.(y10 ∪ {0, q0/2}).

For the same reason as in the proof of Theorem 8, the operation of intersecting

with P commutes with lattice operations on these convex sets; hence when Dop
n−1

is evaluated at the above arguments, the left-hand side meets the plane P only in

the set x0, while the right-hand side will also contain the point p0. Now observe

that
∧

i yi will be the line-segment c.h.(0, q0/2). Letting p = p0, q = q0/2, we

see that these lie on different lines through 0, and deduce from the implication

(ii)(b)⇒ (ii)(a) of Lemma 6 that z and z′ can be chosen so that the required

inequality holds. �

6. Encore!

Carathéodory’s and Helly’s Theorems are two members of a well-known triad of

results on convex sets in Rn. The third result is

Radon’s Theorem ([6], p. 391). Given a natural number n, and n+2 points

p1, . . . , pn+2 in Rn, there exists a partition of {1, . . . , n+2} into subsets I1 and

I2 such that c.h.({pi | i ∈ I1}) ∩ c.h.({pi | i ∈ I2}) 6= ∅.

Can we turn this, too, into an identity for lattices of convex sets?
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Yes. First let’s get rid of reference to points: Clearly an equivalent statement

is “Given nonempty convex sets y1, . . . , yn+2 in Rn, there exists a partition of

{1, . . . , n+2} into subsets I1 and I2 such that (
∨

i∈I1
yi) ∧ (

∨

i∈I2
yi) 6= ∅.” Next,

the conclusion that such a partition exists can be condensed into the single inequal-

ity
∨

I1,I2
((

∨

i∈I1
yi) ∧ (

∨

i∈I2
yi)) 6= ∅, where the outer join is over the 2n+2 − 2

partitions of {1, . . . , n+2} into two nonempty subsets. In the proof of the theorem

below, Lemma 9 will be used to turn the above implication between nonemptiness

statements into a lattice relation.

In that theorem, I call an inequality a ≤ b that always holds an “identity”, since

it can be rewritten as an equation a = a ∧ b.

Theorem 12. For every natural number n, the identity in n+3 variables x,

y1, . . . , yn+2,
∧

i (x ∨ yi) ≤ x ∨
∨

I1,I2
((

∨

i∈I1
yi) ∧ (

∨

i∈I2
yi)), (11)

where “
∨

I1,I2
” denotes the join over all partitions of {1, . . . , n+2} into two non-

empty subsets I1 and I2, holds in Conv(Rn), and indeed in Conv(Rn+1)≥{0}, but

not in Conv(Rn+1).

Proof. We shall first prove (11) in the simpler case of Conv(Rn), then show how

to adapt the proof to Conv(Rn+1)≥{0}, and finally, give the counterexample in

Conv(Rn+1).

Given x, y1, . . . , yn+2 ∈ Conv(Rn) and a point p belonging to the left-hand

side of (11), we must show that p also belongs to the right-hand side. Let us

choose w as in Lemma 9 for the given x and p. The assumption that p belongs

to the left-hand side of (11) says that it belongs to each of the meetands of that

expression, which by choice of w means that w ∧ yi is nonempty for all i. Hence

Radon’s Theorem applied to those n+2 sets says that for some I1, I2 partitioning

{1, . . . , n+2}, we have ∅ 6= (
∨

I1
w ∧ yi) ∧ (

∨

I2
w ∧ yi). The latter set is contained

in w ∧ (
∨

I1
yi)∧ (

∨

I2
yi), and the statement that this is nonempty now translates

back to say that x ∨ ((
∨

I1
yi) ∧ (

∨

I2
yi)) contains p, whence p belongs to the

right-hand side of (11), as required.

If we are given x, y1, . . . , yn+2 ∈ Conv(Rn+1)≥{0}, and a point p on the left-

hand side of (11), we begin in the same way, translating the hypothesis and desired

conclusion to the same statements about the sets w ∧ yi (though the convex set

w will not in general belong to Conv(Rn+1)≥{0}, and so neither will these inter-

sections). This time we apply Radon’s Theorem in n+1 dimensions to the sets

w ∧ yi together with {0}. In the partition given by that theorem, let us assume

without loss of generality that {0} goes into the second join; thus we get a rela-

tion ∅ 6= (
∨

I1
w ∧ yi) ∧ ({0} ∨

∨

I2
w ∧ yi). Here the first join is contained in w,

hence so is the whole set, so that set is contained in the meet of w with the larger



Algebra Universalis March 16, 2005 13:32 1934u F03058 (1934u), pages 1–39 Page 15 Sheet 15 of 39

Vol. 00, 0000 On lattices of convex sets in R
n 15

set (
∨

I1
yi) ∧ ({0} ∨

∨

I2
yi). Since all the y ’s belong to Conv(Rn+1)≥{0}, the

joinand {0} is now redundant, so we have again shown that w∧ (
∨

I1
yi)∧ (

∨

I2
yi)

is nonempty for some partition {1, . . . , n+2} = I1 ∨ I2, which, as before, yields the

desired conclusion by choice of w.

To show that (11) does not hold in Conv(Rn+1), we begin essentially as in the

first counterexample in the proof of Theorem 11, letting x be an (n+1)-simplex in

Rn+1, p a point outside that simplex, and x′ the central reflection of x through p.

This time, however, we let y1, . . . , yn+2 be singletons, whose unique elements are

the vertices of x′. As in the earlier example we find that one side of the identity

in question (in this case the left-hand side of (11)) contains p, while the other

is simply x, since all joinands in the “big join” on that side are empty; so the

right-hand side does not majorize the left-hand side. �

I have not tried to fill in this picture, as I did with the Dn and Dop
n , by looking

for related identities that would distinguish all terms of (4); but I expect that these

exist.

Another observation, relevant to the whole development up to this point, which

I have not followed up on because it occurred to me late in the preparation of this

paper, is that if one defines Conv(Rn, cone) ⊆ Conv(Rn)≥0 to be the sublattice

consisting of those elements which are unions of rays through 0, then Conv(Rn−1)

embeds naturally in Conv(Rn, cone), yielding a refinement of the chain of varieties

of Lemma 1. It would be interesting to know whether for n> 1 the varieties so

interpolated are distinct from those that precede and follow them.

7. The sublattice of compact convex sets

From Carathéodory’s Theorem, we see that

For any compact subset S ⊆ Rn, c.h.(S) is also compact. (12)

Hence the join in Conv(Rn) of two compact subsets is compact, hence the set of

compact convex subsets of Rn (often called “convex bodies” in the literature, e.g.,

[9], [1, §3.1], [19, §12]) is a sublattice Conv(Rn, cpct) ⊆ Conv(Rn). An obvious

question is how the identities of this sublattice compare with those of Conv(Rn);

i.e., whether it satisfies any identities that the larger lattice does not. Huhn [11,

proof of Lemma 3.1] answered this question in the negative, by showing that the

still smaller lattice of polytopes (convex hulls of finite sets) does not. Let me give a

slightly different proof of the same result. Huhn used the fact that an intersection

of polytopes is a polytope, but the next result is applicable to a finitary closure

operator that need not have the property that an intersection of closures of finite sets
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is again one. (The meaning of “finitary” was recalled in the paragraph preceding

Lemma 4; the notation V( ··· ) used below was defined in §1.)

Proposition 13. Let cl be a finitary closure operator on a set X, and let L be

the lattice of subsets of X closed under cl. Then every lattice relation satisfied by

all families of elements of L that are closures of finite subsets of X is an identity

of L. In particular, if L′ is any sublattice of L which contains all closures of

singleton subsets of X, then V(L′) = V(L).

Proof. Let us topologize the power set 2X by taking as a basis of open sets the

sets

U(A,B) = {Y ∈ 2X | A ⊆ Y ⊆ B},

where A ranges over the finite subsets of X, and B over arbitrary subsets. This

is stronger than the usual power-set topology, which only uses the sets of the above

form with B cofinite. Thus, our topology is Hausdorff, though not in general

compact; hence its restriction to L is also Hausdorff, with basis of open sets given

by the sets UL(A,B) = U(A,B)∩L. (Of course, UL(A,B) is nonempty only when

cl(A) ⊆ B.)

We claim that under this topology, the lattice operations of L are continuous

and the closures of finite subsets of X are dense in L. This will imply that any

lattice identity holding on that dense subset must hold on all of L, from which the

final conclusion will clearly follow.

To see that closures of finite sets are dense, note that every nonempty basic set

UL(A,B) contains the element cl(A), which is such a set.

The continuity of the meet operation is also straightforward: If x, y ∈ L are such

that x∧ y, i.e., x∩ y, lies in UL(A,B), then UL(A, x∪B) and UL(A, y ∪B) are

neighborhoods of x and y respectively such that the intersection of any member

of the first neighborhood and any member of the second lies in UL(A,B).

Finally, suppose x, y ∈ L are such that x ∨ y, i.e., cl(x ∪ y), lies in UL(A,B).

Then the finite set A is contained in cl(x ∪ y), so by finitariness of cl, there is a

finite subset of x ∪ y whose closure contains all elements of A; let us write this

subset as Ax ∪ Ay, where Ax ⊆ x and Ay ⊆ y. Then UL(Ax, x) and UL(Ay , y)

will be neighborhoods of x and y respectively such that the join of any member

of the first neighborhood and any member of the second is a member of UL(A,B).

(In the power-set topology, ∨ is generally discontinuous; this is why we needed a

different topology.) �

For X = Rn and cl = c.h., the L of the above proposition is Conv(Rn).

Since the convex hull of a finite set is compact, we can apply the last sentence of

the proposition with L′ = Conv(Rn, cpct), getting the first statement of the next

theorem. Taking cl = c.h.({0} ∪ −) we similarly get the second.
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Theorem 14 (Huhn). For every natural number n,

V(Conv(Rn)) = V(Conv(Rn, cpct)),

and

V(Conv(Rn)≥{0}) = V(Conv(Rn, cpct)≥{0}).

�

However, Conv(Rn, cpct) is known also to have interesting elementary proper-

ties not possessed by Conv(Rn). Let us recall that an extremal point of a convex

set means a point which is not in the convex hull of any two other points of the set,

and the following result ([9, p. 276]).

Theorem (Minkowski) Every compact convex subset of Rn is the convex hull of

its set of extremal points.

Recall also that a lattice L is called join semidistributive if for all x, y1, y2 ∈ L

one has

x ∨ y1 = x ∨ y2 ⇒ x ∨ y1 = x ∨ (y1 ∧ y2). (13)

Lemma 15 ([1, Theorem 3.4], generalizing [5, Theorem 15]). For every positive

integer n, Conv(Rn, cpct) is join semidistributive.

Proof. Every extremal point of a join x ∨ y must belong to x or to y, since by

definition it cannot arise as a convex combination of other points of x∨ y, hence if

x∨ y1 = x∨ y2 as in the hypothesis of (13), extremal points of this set that do not

belong to x must belong to y1, and likewise to y2. Thus every extremal point of

x∨y1 = x∨y2 belongs to x∪ (y1 ∩y2); hence by Minkowski’s Theorem the convex

hull of the latter set, x ∨ (y1 ∧ y2), contains the former set. The reverse inclusion

is trivial. �

On the other hand, for n ≥ 2, Conv(Rn) is not join semidistributive; indeed,

the next result will show the failure of successively weaker properties, beginning

with join-semidistributivity, as n increases. Following Geyer [8], let us say that a

lattice L is n-join semidistributive for a positive integer n if for all x, y1, . . . , yn+1 ∈

L one has

x ∨ y1 = · · · = x ∨ yn+1 ⇒ x ∨ y1 = x ∨ (
∨

i,j; i 6= j yi ∧ yj). (14)

Thus, join semidistributivity is the n = 1 case. One defines n-meet semidistribu-

tivity dually.

The (n+4)-element lattice of height 2, Mn+2, with least element 0, greatest

element 1, and n+2 incomparable elements y1, . . . , yn+2, is neither n-join semidis-

tributive nor n-meet semidistributive, as may be seen by putting yn+2 in the role

of x in (14), and in the dual statement. We shall now see that there are several
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sorts of sublattices with that structure within the lattices Conv(Rn). The “open

bounded” case of the next result was shown to me by D. Wasserman.

Lemma 16 (Wasserman and Bergman). For every n> 1, Conv(Rn) contains

copies of Mn+1 consisting of open bounded sets and copies consisting of closed un-

bounded sets, in both cases with least element ∅; and Conv(Rn)≥{0} contains copies

of Mn+1 consisting of bounded sets, with least element {0}. Also, Conv(R2)≥{0}

(and hence Conv(Rn)≥{0} for all n> 1) contains copies of Mc, the height- 2 lat-

tice of continuum cardinality (and hence contains copies of its sublattices Mm for

all natural numbers m) consisting of vector subspaces, with least element {0}.

In particular, for n > 1 neither Conv(Rn) nor Conv(Rn)≥{0} is N-join or

N-meet semidistributive for any N, and the sublattices of open bounded sets in

Conv(Rn) and of bounded sets in Conv(Rn)≥{0} are not (n−1)-join or (n−1)-meet

semidistributive.

Proof. To get a copy of Mn+1 consisting of open bounded sets, start with any

n-simplex x, let its faces be x1, . . . , xn+1, choose an interior point p of x, and for

each i let yi be the interior of the n-simplex {p} ∨ xi (or any open convex subset

of that n-simplex which has the whole face xi in its closure). We see that the join

of any two of the y ’s will have in its closure two faces of x, hence all vertices of

x, hence its closure must be x, hence being itself open and convex, it must be the

interior of x. On the other hand, the pairwise intersections of the yi are all empty.

Hence the lattice generated by these sets is isomorphic to Mn+1.

For the closed unbounded example with least element again ∅, extend each of

the sets in the preceding example to an infinite cone with apex p, displace each

of these cones away from p (say by translating it by the vector from the opposite

vertex of x to p), and take their closures. Then every pairwise join is seen to be

the whole of Rn, while every pairwise meet is again empty.

For the bounded example in Conv(Rn)≥{0}, take the first example above, as-

suming p = 0, and use as our new yi the union of the yi of that example with

{0}. (Thus, 0 will be the unique boundary-point belonging to each of these sets.)

Finally, an Mc in Conv(R2)≥{0} is given by the set of all lines through 0. �

There are also cases where we can show the failure of m-join semidistributivity

in a natural lattice of convex sets, but where that lattice probably does not contain

a copy of Mm+2. To get such an example (for any m > 1) in the lattice of convex

open subsets of R2 containing 0, take m+2 distinct lines through 0 and “thicken”

these to open sets x, y1, . . . , ym+1 of width 1. The lattice that these generate will

not be Mm+2, but clearly fails to satisfy (14). We can get such examples for

bounded open sets in R2, though in this case they fail to have a common point:

Fix a triangle T, and let x be the interior of any triangle lying inside T and sharing



Algebra Universalis March 16, 2005 13:32 1934u F03058 (1934u), pages 1–39 Page 19 Sheet 19 of 39

Vol. 00, 0000 On lattices of convex sets in R
n 19

one edge with T, but not the opposite vertex p. Then take m+1 “small narrow”

triangles inside T that have p as a common vertex but no other point in common,

and the convex hull of whose union is disjoint from x, and let y1, . . . , ym+1 be

their interiors.

The parenthetical comment in the first sentence of the proof of the Lemma 16

shows that the shapes of the convex sets forming a copy of Mn+1 in the lattice

of open bounded convex sets are not unique; but I don’t know an example where

the top element of such a sublattice is not an open n-simplex. It would also be of

interest to know whether this lattice contains copies of Mn+2, and if not, whether

it is n-join or n-meet semidistributive. We shall obtain a few related results in

subsequent sections.

Jónsson and Rival [13, Lemma 2.1] show that a lattice is join and meet semidis-

tributive if and only if two auxiliary overlattices contain no isomorphic copies of

any member of a certain list of 6 lattices, beginning with M3. The above “small

narrow triangle” construction gives, when m = 2, a copy of the lattice L4 of their

list.

Incidentally, Geyer’s concept of n-join semidistributivity, which we have been us-

ing, does not have any obvious relationship with Huhn’s n-distributivity. Although

for n=1 they give the conditions of join-semidistributivity and distributivity re-

spectively, of which the latter implies the former, no such implication holds for

larger n. For instance, the lattice Mc is 2-distributive in Huhn’s sense, but it is

not N-join semidistributive for any natural number N in Geyer’s sense.

8. Open bounded sets do not satisfy additional identities

Let us denote by Conv(Rn, o.bdd.) the lattice of open bounded convex subsets

of Rn. We shall show that this lattice, like Conv(Rn, cpct), satisfies the same

identities as Conv(Rn). The idea is that compact sets can be approximated by

open bounded sets containing them, from which we shall deduce that any identities

of Conv(Rn, o.bdd.) are also identities of Conv(Rn, cpct), and so by Theorem 14

are identities of Conv(Rn).

To approximate compact sets by open sets, we need a different topology on 2R
n

from the one used earlier; let us again describe this in a general context. If X is

any topological space, we may topologize 2X using a basis of open sets with the

same form as before,

U(A,B) = {Y ∈ 2X | A ⊆ Y ⊆ B}, (15)

but where, this time, A ranges over all subsets of X, while B is restricted to open

subsets. If X is Hausdorff (or even T1), we see that this family of open sets again

includes those defining the power-set topology, so our topology is again Hausdorff.
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Note that for each A ∈ 2X , the sets (15) with A as first argument and with second

argument containing A form a neighborhood basis of A in 2X . Thus in proving

the next lemma, we shall take it as understood that to be “sufficiently close to” a

set A means to contain A and be contained in some specified open neighborhood

B of A in X.

In the formulation of that lemma, note that the statement that a function is

continuous at arguments with a given property does not simply mean that the

restriction of the function to the set of such arguments is continuous, but, more,

that such arguments are points of continuity of the whole function.

Lemma 17. If X is any topological space, then the binary operation ∪ : 2X×2X →

2X is continuous in the topology described above; if X is normal (i.e., if disjoint

closed subsets of X have disjoint open neighborhoods) then the binary operation ∩

is continuous at arguments given by pairs of closed sets, and if X = Rn with the

usual topology, then the unary convex-hull operation c.h. : 2X → 2X is continuous

at compact sets.

Proof. To show continuity of ∪, consider sets A1, A2, and an open neighborhood

B of A1 ∪A2 in X. Then we see that the union of any member of U(A1, B) and

any member of U(A2, B) contains A1 ∪ A2 and is contained in B, as required.

For the case of ∩, let A1 and A2 be closed sets, and B any open neighborhood

of A1 ∩ A2 in X. Then A1 − B and A2 − B are disjoint closed sets, hence they

have disjoint open neighborhoods C1 and C2. We see that B∪C1 and B∪C2 will

be open neighborhoods of A1 and A2 which intersect in B (by distributivity of

the lattice 2X), and it follows that the intersection of a member of U(A1, B ∪C1)

and a member of U(A2, B ∪ C2) will belong to U(A1 ∩ A2, B), as required.

For the final assertion, let A be a compact subset of Rn, and B any open

neighborhood of c.h.(A). By compactness of c.h.(A), there is some ε > 0 such

that the set C of all points having distance < ε from c.h.(A) is contained in B.

This set C is a convex open neighborhood of c.h.(A), hence c.h. carries U(A,C)

into U(c.h.(A), C) ⊆ U(c.h.(A), B), as required. �

(I played with several topologies before getting the one that made the above

result — in particular, continuity of intersection — easy to prove. Some of these

might be preferable for other considerations of the same sort. Under the above

topology, every open set A is an isolated point, since U(A,A) is a singleton. If

one wants to approximate open sets by larger open sets, one might prefer a weaker

topology in which the conditions on Y in (15) are, say, strengthened to A ⊆ Y,

cl(Y ) ⊆ B.)

It follows from Lemma 17 that in the topology we have defined, the lattice

operations of Conv(Rn) are continuous at arguments belonging to Conv(Rn, cpct).
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Moreover, Conv(Rn, cpct) lies in the closure of Conv(Rn, o.bdd.), since every

compact convex set A is the limit in this topology, as ε → 0, of the open convex

set of points at distance < ε from A. Hence any lattice identities holding in

Conv(Rn, o.bdd.) also hold in Conv(Rn, cpct). The same considerations apply

to the pair of lattices Conv(Rn, o.bdd.)≥{0} and Conv(Rn, cpct)≥{0}. In view of

Theorem 14, these observations give us

Theorem 18. For every natural number n,V(Conv(Rn)) = V(Conv(Rn, o.bdd.)),

and V(Conv(Rn)≥{0}) = V(Conv(Rn, o.bdd.)≥{0}). �

Let us note that there is an order-preserving bijection between the elements of

Conv(Rn, o.bdd.) and those compact convex subsets of Rn which, if nonempty,

have nonempty interior, given by the operation of topological closure, with in-

verse given by topological interior. This is not, however, an isomorphism between

sublattices of Conv(Rn), because the second of these sets is not closed under in-

tersection. (E.g., consider two adjacent closed polygons in R2. Nor can we get

around this problem by going to a homomorphic image of Conv(Rn, cpct) where

sets with empty interior are identified with ∅, since the join of two such sets can

have nonempty interior.)

On the other hand, the set of compact convex sets which are neighbor-

hoods of 0 is a sublattice of Conv(Rn, cpct)≥{0}, and the above correspon-

dence gives us an isomorphism between it and Conv(Rn, o.bdd.)≥{0}; so prop-

erties of Conv(Rn, cpct)≥{0} which carry over to sublattices also hold for

Conv(Rn, o.bdd.)≥{0}. (More generally, any sublattice of Conv(Rn, o.bdd.) whose

members have a common point p is contained in Conv(Rn, o.bdd.)≥{p}
∼=

Conv(Rn, o.bdd.)≥{0}, and so can be studied in the same fashion.) Thus, despite

the examples of Lemma 16, we have

Corollary 19 (to Lemma 15). Conv(Rn, o.bdd.)≥{0} is join semidistributive.

Hence, every counterexample to join semidistributivity in Conv(Rn, o.bdd.) has

the property that the intersection of the three sets involved is empty. �

Since we are considering elementary properties in which the lattices Conv(Rn)

and Conv(Rn, o.bdd.) agree or differ, we should note the obvious difference, that

the former is atomistic (every element is a possibly infinite join of atoms), while

the latter has no atoms. Cf. [2] and papers referred to there, in which lattices of

convex sets and related structures are characterized in terms of properties of their

atoms, and also [1].

We noted earlier that lattices Conv(Rn)≥S for nonempty S satisfy all identities

holding in Conv(Rn)≥{0}. Let us end this section by using Theorem 18 to show

that for bounded S, the converse is also true.
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Corollary 20 (to Theorem 18 and proof of Theorem 14). For every natural number

n and every bounded set S ⊆ Rn,

V(Conv(Rn)≥S) = V(Conv(Rn, cpct)≥S)

= V(Conv(Rn, o.bdd.)≥S) = V(Conv(Rn)≥{0}).

Proof. By a translation, we can assume without loss of generality that 0 ∈ S; thus

the last of the above lattices contains all the others, so letting f(x1, . . . , xm) =

g(x1, . . . , xm) be any identity not satisfied there, it suffices to prove that it is not

satisfied in any of the other lattices.

Now Theorem 18 shows that f = g is not an identity of Conv(Rn, o.bdd.)≥{0},

hence we can choose open bounded convex sets x1, . . . , xm containing 0 which do

not satisfy it. The intersection of these sets is a neighborhood of the origin, and

dilating the xi by a large enough real constant, we can assume without loss of

generality that this neighborhood contains S. Hence f = g is also not an identity

of Conv(Rn, o.bdd.)≥S , hence not an identity of Conv(Rn)≥S either.

The case of Conv(Rn, cpct)≥S is similar. Again let us take x1, . . . , xm ∈

Conv(Rn, o.bdd.)≥{0} not satisfying f = g. We saw in the proof of Theorem 14

that if we approximate x1, . . . , xm closely enough from below in the topology of

that proof by compact convex subsets y1, . . . , ym, these approximating sets also

fail to satisfy that identity. Since the intersection of the xi is a neighborhood of

0, it contains an n-simplex with 0 in its interior; so we can take all the yi to

contain the finitely many vertices of that simplex, hence to be neighborhoods of 0.

As before, we may now dilate them so that they all contain S, getting the required

result. �

9. The possibility of surface phenomena

The technique by which we just proved Corollary 20 can be inverted to show

that if T ⊆ Rn is any convex set with nonempty interior, then the lattice of convex

sets contained in T, and its sublattices of compact convex subsets of T and open

bounded convex subsets of T, satisfy the same identities as Conv(Rn). Namely,

given any identity not holding in Conv(Rn), we already know that we can find

elements x1, . . . , xm not satisfying it in Conv(Rn, cpct). Assuming without loss of

generality that 0 lies in the interior of T, we can shrink x1, . . . , xm by a constant,

so that they are all contained in T ; likewise we can, as before, approximate compact

convex sets by open bounded convex sets. A similar argument shows that the lattice

of convex subsets of T which contain a specified point of the interior of T satisfies

the same identities as Conv(Rn)≥{0}.

However, if we specify two convex sets S ⊆ T, say with S compact and T open,

and look at the interval [S, T ] = {x ∈ Conv(Rn) | S ⊆ x ⊆ T}, it is not clear



Algebra Universalis March 16, 2005 13:32 1934u F03058 (1934u), pages 1–39 Page 23 Sheet 23 of 39

Vol. 00, 0000 On lattices of convex sets in R
n 23

whether, for some choices of S and T, this may satisfy more identities than hold in

Conv(Rn)≥{0}. (Picturing S and T as “very close”, e.g., the closed ball of radius

1 and the open ball of radius 1 + ε, explains, I hope, the title of this section.)

Let us relax our assumptions on S and T for a moment and look at a more

extreme example. If we take for S the open unit ball and for T the closed unit

ball in Rn, then every set x with S ⊆ x ⊆ T is convex, so in this case [S, T ] may

be identified with the lattice of all subsets of the unit sphere, which is distributive,

though we have seen that Conv(Rn)≥{0} is not even (n−1)-distributive.

In the case where S is compact and T open and nonempty, however, things

cannot go that far:

Lemma 21. Let S ⊆ T be convex subsets of Rn. If S is compact and T is open

and nonempty, or more generally, if some hyperplane P ⊆ Rn disjoint from S

intersects T in a set with nonempty relative interior (i.e., is such that P ∩ T is

(n−1)-dimensional), then V([S, T ]) ⊇ V(Conv(Rn−1)).

Proof. Clearly, a pair S ⊆ T satisfying the first hypothesis satisfies the second,

so let us assume the latter. Let H be the closed half-space of Rn bounded by P

that contains S (or if S is empty, either of the closed half-spaces bounded by P ),

and consider the sublattice [S, H ∩ T ] ⊆ [S, T ]. The operation of intersecting with

P can be seen to give a lattice homomorphism [S, H ∩ T ] → [∅, P ∩ T ], and this

is surjective, since it has the set-theoretic section x 7→ S ∨ x. Since P ∩ T has

nonempty interior in P, the observation in the first paragraph of this section shows

that [∅, P ∩ T ] satisfies precisely the identities of Conv(Rn−1). Hence [S, H ∩ T ],

since it maps homomorphically onto [∅, P ∩ T ], cannot satisfy any identities not

satisfied by Conv(Rn−1), so neither can the larger lattice [S, T ]. �

It is not evident whether, for S compact and T open, V([S, T ]) can ever

be strictly smaller than V(Conv(Rn)≥{0}); nor, for that matter, whether it can

ever fail to be strictly smaller, if S has nonempty interior and T is bounded.

Another interval [S, T ] ⊆ Conv(Rn) whose identities it would be interesting to

investigate is given by letting S = {0} and T be a closed half-space with 0 on its

boundary. Again these identities must lie somewhere between those of Conv(Rn−1)

and Conv(Rn)≥{0}.

In this and preceding sections we have used from time to time the fact that

translations and dilations preserve convexity. More generally, if φ is any projective

transformation on n-dimensional projective space Pn ⊇ Rn, then convex subsets

of Rn which do not meet the hyperplane that φ sends to infinity are taken by

φ to convex sets. Hence if S ⊆ T are such convex sets, φ induces a lattice

isomorphism [S, T ] ∼= [φ(S), φ(T )]. This observation might be useful in classifying

varieties generated by such intervals.
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Another sort of sublattice of Conv(Rn) that it might be interesting to investigate

is that of all convex sets that are carried into themselves by a given affine map;

e.g., the orthogonal projection onto a specified subspace. (If that subspace is {0},

we get Conv(Rn)≥{0} with one additional element ∅ thrown in.)

10. Dualities

Let us recall the definition of a concept we have referred to a couple of times in

passing. A closed half-space in Rn means a set of the form

{p ∈ Rn | f(p) ≤ λ}, (16)

for some nonzero linear functional f on Rn and some real number λ. It is a

standard result that every closed convex subset of Rn is an intersection of closed

half-spaces.

The half-space (16) contains the point 0 if and only if λ is nonnegative, hence

closed convex sets containing 0 can be characterized as intersections of half-spaces

(16) having λ ≥ 0. Such sets can, in fact, be expressed as intersections of such

half-spaces with λ > 0, since a half-space (16) with λ = 0 is the intersection of

all the half-spaces with the same f and positive λ. But a half-space (16) with

λ positive can be written as {p ∈ Rn | λ−1f(p) ≤ 1}, or, expressing the linear

functional λ−1f as the dot product with some q ∈ Rn, as

{p ∈ Rn | q ·p ≤ 1}. (17)

Thus, for any subset S ⊆ Rn, if we define

S∗ = {q ∈ Rn | (∀p ∈ S) q ·p ≤ 1}, (18)

then S∗∗ will be the least closed convex set containing S ∪ {0}. Moreover, we see

that S∗ will also be a closed convex subset containing 0, which uniquely determines

and is determined by S∗∗. Thus, the operator ∗ gives a bijection of the family of

all closed convex sets containing 0 with itself, which is easily seen to be inclusion-

reversing. (This is an example of a Galois connection; cf. [3, §5.5] for a general

development of the concept, with many examples.) Let us call two closed convex

sets containing 0 that are related in this way dual to one another. (The dual of

a convex set is sometimes called its polar set, e.g., in [15].) Examples in R3 are a

cube and an octahedron of appropriate radii centered at the origin, and similarly a

dodecahedron and an icosahedron. The unit sphere is self-dual.

The class of closed convex subsets of Rn forms a lattice (by general properties

of Galois connections), which, like Conv(Rn)≥{0}, has intersection as its meet

operation; but the join operations do not everywhere coincide — a consequence

of the fact that, given closed sets u, v ∈ Conv(Rn)≥{0}, their join in that lattice,
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c.h.(u ∪ v), may not be closed, so that to get their join as closed convex sets, one

must take its topological closure. For example, let n = 2, and let u be the closed

strip {(x, y) | −1≤y≤ 1} and v the line segment c.h.(0, (0, 2)). Then the join of

u and v in Conv(Rn)≥0 is

{(x, y) | −1 ≤ y < 2} ∪ {(0, 2)},

while their join in the corresponding lattice of closed convex sets is { (x, y) |

−1≤ y≤ 2 }. In view of this difference in operations, care is needed when using our

duality on closed convex sets to deduce results about the lattice Conv(Rn)≥{0}.

If x and y are mutually dual closed convex sets containing 0 in Rn, it is not

hard to see that one of them is bounded (i.e., compact) if and only if 0 is an interior

point of the other. It follows that the class of closed bounded convex sets having 0

in their interior is self-dual; moreover, we saw at the beginning of §7 that the join in

Conv(Rn) of two compact sets is again compact, from which it follows that unlike

the lattice of all closed convex sets containing 0, this is a sublattice of Conv(Rn).

It is easy to see from the equality of the second and fourth varieties in Corollary 20

that this sublattice satisfies the same identities as Conv(Rn). Hence the existence

of the anti-automorphism just noted gives us

Theorem 22. The class of lattice identities satisfied by Conv(Rn)≥{0} is self-dual,

i.e., closed under interchanging all instances of ∨ and ∧. Equivalently, the variety

V(Conv(Rn)≥{0}) is closed under taking dual lattices. �

And indeed, the identities proved for Conv(Rn)≥{0} in Theorems 8 and 11 re-

spectively are dual to one another. This is not true of the identities proved for

Conv(Rn) in those theorems. In fact, it is easy to verify:

Exercise 23. (i) For every positive integer n, show by example that Conv(Rn)

does not satisfy either of the identities

((Dop
n ) ∧ z) ∨ y1 ∨ y2 and (((Dn) ∨ z′) ∧ z) ∨ (

∨

i yi),

dual to the identities proved for that lattice in Theorems 8 and 11 respectively.

(ii) Show that these observations together with Theorem 22 yield an alterna-

tive way of verifying that in each of Theorems 8 and 11, the identities proved for

Conv(Rn) are not satisfied by Conv(Rn+1)≥{0}.

Theorem 22 also implies that Conv(Rn+1)≥{0}, and hence also Conv(Rn), sat-

isfies the dual of the identity of Theorem 12, which we had not previously obtained.

Just as every closed convex set is an intersection of closed half-spaces (16), so

every open convex set is an intersection of open half-spaces,

{p ∈ Rn | f(p) < λ}.
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But here the converse is not true. Indeed, every closed half-space is also an inter-

section of open half-spaces, so the class of intersections of open half-spaces includes

both the open and the closed convex sets. If for every subset S ⊆ Rn one defines

S� = {q ∈ Rn | (∀p ∈ S) q ·p < 1}, (19)

one gets a duality theory for the class of ��-invariant sets, i.e., sets satisfying

x�� = x, a larger class than that covered by the preceding duality. It is not hard

to see that a necessary and sufficient condition for a set x ∈ Conv(Rn)≥{0} to

be ��-invariant is that for every point p of the boundary of x which does not

belong to x, there exist a supporting hyperplane of x through p containing no

point of x. From this we can see that the union of the open unit ball B in Rn

with any subset of its boundary is ��-invariant; its �-dual is the union of B with

the complementary subset of the boundary. On the other hand, we find that the

union of an open polygonal neighborhood P of 0 in the plane with a nonempty

finite (or countable) subset S of its boundary is never ��-invariant, since by the

above characterization of ��-invariant sets, each point q ∈ S forces the ��-closure

of P ∪ S to contain all points p of the open edge(s) of our polygon containing or

adjacent to q.

Like the ∗∗-invariant sets (closed convex sets containing 0), the ��-invariant

subsets of Rn form a lattice by general properties of Galois connections, which

has the same meet operation as Conv(Rn)≥{0}, but different join operation. For

instance, if P is, as above, an open polygonal neighborhood of 0 in R2, q a

point of its boundary, and Q = c.h.(0, q), then writing ∨ for the join operation of

Conv(R2)≥{0}, we find that P ∨Q = P ∪Q = P ∪ {q}, but as we saw above, this

set is not ��-invariant. Rather, (P ∪ Q)��, the join of P and Q in the lattice of
��-invariant sets, is obtained by attaching to P ∪{q} the open edge(s) containing or

adjacent to q. Further, the ∗∗-invariant subsets of Rn do not even form a sublattice

of the the ��-invariant sets. To see this in R2, let

u =
{

(x, y)
∣

∣ |x| < 1, y ≥ 1/(1− x2) − 2
}

,

v =
{

(x, y)
∣

∣ |x| < 1, y ≤ −1/(1− x2) + 2
}

.

We see that the join of u and v in Conv(R2)≥{0} is {(x, y) | |x| < 1}, which is

open, hence is ��-invariant, hence is their join in the lattice of ��-invariant sets;

but it is not closed, hence is not their join in the lattice of ∗∗-invariant sets.

But again, one can apply ��-duality to sublattices of Conv(Rn)≥{0} which con-

sist of ��-invariant elements, since for these the two lattice structures in question

must agree. In particular, one can verify that �-duality interchanges compact and

open sets, giving an anti-isomorphism between the sublattices Conv(Rn, cpct)≥{0}

and Conv(Rn, open)≥{0}. (This anti-isomorphism can also be obtained by com-

posing the anti-isomorphism “ ∗” between Conv(Rn, cpct)≥{0} and the lattice of
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closed convex sets that are neighborhoods of the origin, with the isomorphism noted

earlier between that lattice and Conv(Rn, open)≥{0}.) The existence of this anti-

isomorphism gives

Corollary 24 (to Lemma 15). For every positive integer n, Conv(Rn, open)≥{0}

is meet semidistributive, that is, satisfies the dual of (13). �

This explains the fact that in Lemma 16 and the discussion that followed, though

we saw that Conv(Rn, open)≥{0} was not join semidistributive, we found no copies

of M3 in it.

Meet-semidistributivity does not hold in any of the lattices of convex sets we

have considered that are not defined so as to make those sets all have some point

(such as 0) in common; for in each of these lattices, it is easy to get examples of a

set x having empty intersection with each of two sets y1 and y2, but nonempty

intersection with their join. It also does not hold in Conv(Rn, cpct)≥{0} for n > 1,

since that lattice contains an embedded copy of Conv(Rn−1, cpct) (cf. proof of

Lemma 1), to which the above observation applies.

While on the topic of join- and meet-semidistributivity, I will note some questions

and examples which are easier to state now that we have named several sublattices of

Conv(Rn). Kira Adaricheva (personal communication) has posed several questions

of the following form: If we take one of the sublattices of Conv(Rn) that we know

to be join- or meet-semidistributive, and extend it by adjoining, within Conv(Rn),

a single “nice” outside element, is the property in question already lost, and if so,

does the resulting lattice in fact contain copies of M3?

In many cases this does happen. For instance, the sublattice L ⊆ Conv(R2)

generated by the join-semidistributive sublattice Conv(R2, cpct), and the open

disk, which we shall denote B, contains a copy of M3. To describe it, let p0, p1, p2

be any three distinct points on the unit circle, and for i = 0, 1, 2 define the point

qi = 1/5 pi + 2/5 pi+1 + 2/5 pi+2 (subscripts evaluated mod 3; I suggest making

a sketch). Let xi = (c.h.(qi, pi+1) ∧ B) ∨ (c.h.(qi, pi+2) ∧ B). Then x1, x2, x3 can

be seen to generate a copy of M3 in Conv(R2), resembling, though not identical

to, the n=2 case of the first example described in Lemma 16. An analogous

construction gives a family of elements of L resembling the example described

immediately following that lemma, showing that L is not m-join semidistributive

for any m.

As another example let L be the sublattice of Conv(R3)≥{0} generated by

Conv(R3, o.bdd.)≥{0} and the cube C = [−1,+1]3. Letting B denote the inte-

rior of C, I claim that for any triangle T drawn on a face F of C, L con-

tains the union of B with the interior of T relative to F. Indeed, we can find in

Conv(R3, o.bdd.)≥{0} an open pyramid P (with apex near 0) meeting no face of C

except F, and meeting F in precisely the relative interior of T. Then (P ∧C)∨B
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will be the desired set. If we construct three sets of this sort using as our T ’s

three triangles in a common face F of C, whose relative interiors form a copy of

the n=2 case of the first example of Lemma 16, then the sublattice generated by

the three resulting sets (P ∧ C) ∨ B will have the form M3 (with B as its least

element; cf. the last sentence of Corollary 19). The same trick can be used to get

examples like those of the paragraph following Lemma 16, showing that L is not

m-join semidistributive for any positive m.

On the other hand, I do not know what can be said about the lattices gotten

by adjoining to Conv(Rn, o.bdd.)≥{0} a closed ball D about 0, respectively an

open ball B not containing 0, except that the second of these lattices is not meet-

semidistributive, since we can find three “fingers” in Conv(Rn, o.bdd.)≥{0} which

meet B in disjoint subsets x, y1, y2, such that x ∧ (y1 ∨ y2) is nonempty.

11. Relatively convex sets

Let S be a subset of Rn, in general non-convex. We shall call a subset x ⊆ S

convex relative to S if x = c.h.(x) ∩ S; equivalently, if x is the intersection of S

with some convex subset of Rn. Such sets x will form a lattice RelConv(S), with

meet operation given, as in (2), by intersection, but join now given by

x ∨ y = c.h.(x ∪ y) ∩ S. (20)

Note that the map x 7→ c.h.(x) gives a bijection between the relatively convex

subsets of S, and the subsets of Rn which are convex hulls of subsets of S, the

inverse map being given by −∩S. Convex sets of the latter sort form a lattice with

join as in (2), but with meet operation

x ∧ y = c.h.(x ∩ y ∩ S). (21)

We observe that Carathéodory’s Theorem (with the “refinement” given in the final

sentence), regarded as a statement about the closure operator c.h.(−) on Rn,

entails the same properties for the closure operator c.h.(−) ∩ S on S. Hence the

proofs of Lemma 3 and of the positive assertions of Theorem 8 immediately yield

Proposition 25 (cf. Huhn [11, Lemma 3.2]). If n is a natural number and S a

subset of Rn, then RelConv(S) satisfies the identity ((Dn) ∨ z) ∧ y1 ∧ y2, and if

p is a point of S, RelConv(S)≥{p} satisfies the identity Dn. �

However, the next lemma shows that the corresponding results fail badly for

the identities involving Dop
n obtained in Theorem 11. In this lemma, the second

assertion embraces the first (plus two obvious intermediate results not stated);

however I include the first assertion because both its statement and the example

proving it are more transparent than for the second.
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Lemma 26. For S a subset of R2, RelConv(S) need not satisfy the identity Dop
n

for any positive integer n. In fact, for p an element of such an S, RelConv(S)≥{p}

need not satisfy the identity (((Dop
n ) ∧ z′) ∨ z) ∧ (

∧

i yi).

Proof. To get the first assertion, let S be the set consisting of the unit circle and

its center, 0. Given n, let q1, . . . , q2n+2 be the successive vertices of a regular

(2n+2)-gon on that circle; for i = 1, . . . , n+1, let yi = {q1, . . . , qn+1} − {qi}, and

let x = {qn+2, . . . , q2n+2}. Observe that each intersection of n of the y ’s consists

of one of the points qi, and that x contains the antipodal point; hence the join of

x with each intersection of n y ’s contains 0. On the other hand, the intersection

of all the y ’s is empty, hence its join with x is x, which does not contain 0. So

Dop
n fails for this choice of arguments.

To get an example where all the given sets have a common element p, and where,

moreover, the indicated weaker identity fails, let us take for S the same set as in

the above example, with the addition of one arbitrary point r outside the circle,

at distance ≥ 2 from 0. This time, let q1, . . . , q2n+6 be the successive vertices of

a regular (2n+6)-gon on S, placed so that qn+2 lies on the line connecting 0 with

the external point r. For i = 1, . . . , n+1, let yi = {q1, . . . , qn+3} − {qi}, and let

x = {qn+3, . . . , q2n+4}. We note that the set of subscripts of the q ’s occurring in

each of these sets lies in an interval of length < n+3, so the absence of the point 0

does not contradict convexity of these sets relative to S. Taking p = qn+3 we see

that all of these sets belong to RelConv(S)≥{p}.

As in the previous example, the intersection of any n of the y ’s contains one of

q1, . . . , qn+1, and x contains its antipodal point, so that the join of x with that

intersection contains 0, hence so does the intersection of all these joins, i.e., the

value of the right-hand side of Dop
n at these arguments. On the other hand, the

intersection of all the y ’s is {qn+2, qn+3}, and the union of this set with x still has

all subscripts lying in an interval of length < n+3, so the join of those two sets,

the left-hand side of Dop
n , does not contain 0. Hence if we take z′ = {qn+3, 0},

the intersection of the right-hand side of Dop
n with z′ is z′ = {qn+3, 0}, while

intersection of the left-hand side with z′ is {qn+3}. If, finally, we let z = {qn+3, r}

and take the joins of this element with those two intersections, we see that in the

first case the resulting set contains the point qn+2, since we assumed this to lie on

the line-segment from 0 to r, while in the second, it does not. Since qn+2 ∈
∧

i yi,

the two sets remain distinct on intersecting with
∧

i yi, showing the failure of

(((Dop
n ) ∧ z′) ∨ z) ∧ (

∧

i yi). �

The above example in R2 is also an example in Rn for any n ≥ 2. For com-

pleteness, we should also consider dimensions n = 0 and 1. If we look at the chain

of varieties corresponding to that of Lemma 1, but with each V(Conv(Rn)) re-

placed by the variety generated by all the lattices RelConv(S) for subsets S ⊆ Rn,
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and each V(Conv(Rn)≥{0}) by the variety generated by lattices RelConv(S)≥{p},

then we see that the first term of this chain is still the trivial variety and the next

two still satisfy the distributive identity (in the last case, by the final assertion of

Proposition 25 for n = 1). Since the distributive identity implies the identities of

every nontrivial variety, we conclude that allowing lattices of relatively convex sets

has not enlarged the varieties we get at these three steps. We have just shown the

contrary from the fifth step on; this leaves only the fourth step, i.e., the relation be-

tween V(Conv(R1)) and the variety generated by all lattices of form RelConv(S)

with S ⊆ R1. Here again, it turns out that we have equality. This follows from our

observation that RelConv(S) is isomorphic to the lattice of convex hulls of subsets

of S, together with

Lemma 27. Let S be a subset of R1. Then the convex hulls of subsets of S form

a sublattice of Conv(R1).

Proof. We have noted, for arbitrary n and S ⊆ Rn, that the convex hulls of

subsets of S are closed under the join operation of the full lattices of convex sets,

so we need only show them closed under meets, i.e., intersections, when n = 1.

This comes down to showing that if p ∈ c.h.(x) ∩ c.h.(y), where x and y are

relatively convex subsets of S, then p ∈ c.h.(x ∩ y). The fact that p ∈ c.h.(x)

means that q1 ≤ p ≤ q2 for some q1, q2 ∈ x; similarly, q3 ≤ p ≤ q4 for some

q3, q4 ∈ y. From the relative convexity of x and y and the order-relations of these

elements, we now see that max(q1, q3) ∈ x ∩ y and min(q2, q4) ∈ x ∩ y. Hence

p ∈ c.h.(max(q1, q3), min(q2, q4)) ⊆ c.h.(x ∩ y). �

For further results on V(Conv(R1)) and its subvarieties, see [17].

Incidentally, the lattice RelConv(S), for S the set used in the first part of

the proof of Lemma 26 (consisting of the unit circle and its center) shows that

none of the identities (((Dop
m ) ∧ z′) ∨ z) ∧ (

∧

i yi) implies any of the identities

Dop
n . Indeed, we showed that RelConv(S) satisfies none of the latter identities;

let us now show that (unlike the lattice considered in the second part of that

proof) it satisfies all of the former. It suffices to verify the strongest of these, the

case m = 1. Writing S = C ∪ {0}, where C is the unit circle, we see that the

map − ∩ C : RelConv(S) → RelConv(C) = 2C is a homomorphism; so if two

lattice expressions in x, y1, y2, z, z
′ are identically equal in distributive lattices,

their values in RelConv(S) will always agree except, perhaps, as to whether they

contain 0. We now consider separately the cases 0 ∈ y1 ∧ y2 and 0 /∈ y1 ∧ y2. In

the former case, the two sides of Dop
1 (x, y1, y2) agree in containing 0, hence are

equal, so a fortiori the two sides of (((Dop
1 ) ∧ z′) ∨ z) ∧ (y1 ∧ y2) are equal. In the

latter case, neither side of the latter relation can contain 0, hence again they are

equal.
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12. The snowflake

Let us look at a particularly neat example of a lattice of relatively convex subsets

of a set S.

Let p1, p2, p3,−p1,−p2,−p3 be the successive vertices of a regular hexagon in

R2 centered at 0. Let

S1 = c.h.(p1,−p1), S2 = c.h.(p2,−p2), S3 = c.h.(p3,−p3),

S = S1 ∪ S2 ∪ S3,

and let L be the sublattice of RelConv(S)≥{0} generated by the three line-segments

S1, S2 and S3. (In view of the form of S, I think of this example as “the

snowflake”.)

Every element of L will clearly be centrally symmetric and topologically closed;

hence every such element has the form

λ1 S1 ∪ λ2 S2 ∪ λ3 S3 (λ1, λ2, λ3 ∈ [0, 1]). (22)

The join of S1 and S2 in this lattice must have the form S1 ∪ S2 ∪ λS3 for

some λ ∈ (0, 1). (Elementary geometry shows that λ = 1/2; but we don’t need

to know this now, and will get it from a general formula soon.) Intersecting this

join with S3, we see that λS3 ∈ L. By symmetry we also have λS1, λ S2 ∈ L,

and we see that these together generate a proper sublattice of L isomorphic to

the whole lattice. In particular, L has infinite descending chains of elements, e.g.,

S1 > λS1 > λ2S1 > · · · .

Let’s figure out how to calculate in L. The first thing we should find are the

conditions on λ1, λ2 and λ3 for a set (22) to be relatively convex. Calculation

shows that for λ1, λ2 and λ3 nonzero, the points λ1 p1, λ2 p2 and λ3 p3 are

collinear if and only if λ−1
2 = λ−1

1 + λ−1
3 . (In verifying this, the key relation is

p2 = p1 + p3.) Hence we see that one necessary condition for the convexity of (22)

is λ−1
2 ≤ λ−1

1 + λ−1
3 ; by symmetry, the remaining conditions are λ−1

1 ≤ λ−1
2 + λ−1

3

and λ−1
3 ≤ λ−1

1 +λ−1
2 . It is easy to verify that if the λi are also allowed to be zero,

and we write 0−1 = ∞ and consider ∞ greater than all real numbers, then these

three conditions continue to be necessary and sufficient for convexity.

Let us therefore index elements (22) by the three parameters λ−1
1 , λ−1

2 , λ−1
3 ,

defining

[a1, a2, a3] = a−1
1 S1 ∪ a−1

2 S2 ∪ a−1
3 S3 (a1, a2, a3 ∈ [1,∞]), (23)

so that the lattice of topologically closed centrally symmetric elements of

RelConv(S)≥{0} consists of the sets [a1, a2, a3] with

a1 ≤ a2 + a3, a2 ≤ a1 + a3, a3 ≤ a1 + a2. (24)
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Note that the ordering of this lattice is by reverse componentwise comparison of ex-

pressions [a1, a2, a3], and that S1, S2, S3 are the elements [1,∞,∞], [∞, 1,∞],

[∞,∞, 1]. Lattice-theoretic meet is clearly given by componentwise supremum,

while the lattice-theoretic join of two elements is gotten by first taking their com-

ponentwise infimum, which represents their set-theoretic union, then getting its

relative convex hull by reducing the largest entry to the sum of the other two if it

exceeds this. So, for instance, S1∨S2 = [1,∞,∞] ∨ [∞, 1,∞] is gotten by forming

the componentwise infimum, [1, 1,∞], and then decreasing the last component to

the sum of the first two, getting [1, 1, 2] (confirming the value λ = 1/2 in our

earlier description of this element). We can now calculate, e.g., the meet (com-

ponentwise supremum) of this with S3 = [∞,∞, 1], namely [∞,∞, 2]; and take

the join of this meet with S2 = [∞, 1,∞] by forming the componentwise infimum

[∞, 1, 2], and adjusting the first component as above, getting [3, 1, 2].

Note that the only way these lattice operations yield components in their values

that did not occur as components in their arguments is by addition; hence, as L

was defined to be generated by S1, S2 and S3, all finite components ai that occur

in the expressions (23) for elements of L are positive integers. It is not hard to

verify that all positive integers indeed occur, and that the elements of L are all the

elements (23) satisfying (24) with a1, a2, a3 ∈ {1, 2, 3, . . . ,∞}. So we have a very

arithmetic description of this lattice.

Though we have seen that L contains an infinite descending chain, it is in-

teresting to note that the sublattice generated by any finite set of elements (23),

none of which have any infinite components, is finite; for the lattice operations will

not produce, in any position, entries larger than the corresponding entries of their

arguments.

It would be of interest to examine lattices of the form RelConv(S)≥{0} for more

general sets S which are unions of finitely many line-segments (or rays) through

the origin in Rn. In this situation, the conditions for convexity are always given

by linear inequalities in the “λ−1
i ”; let me sketch why.

First, some general observations. Suppose p1, . . . , pm (m ≥ 3) are a minimal

linearly dependent family of vectors in Rn; thus they satisfy a nontrivial linear

relation
∑

ci pi = 0, unique up to scalars. For which families of positive real

numbers λ1, . . . , λm will the points λ1p1, . . . , λmpm lie in an (m−1)-dimensional

affine subspace of their m-dimensional span? This will hold if and only if the linear

relation satisfied by these modified elements is an affine relation; i.e., has coefficients

summing to 0. Those coefficients are ciλ
−1
i , so the condition is

∑

ciλ
−1
i = 0.

In this situation, can the affine relation among the λipi be written as an expression

for one of them, say λj pj , as a convex linear combination of the others? One sees
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that this is so if and only if the coefficient cj is opposite in sign to all the other ci;

in that situation, let us rewrite the expression satisfied by the λ−1
i as

λ−1
j = −c−1

j

∑

i6=j ciλ
−1
i .

Note that the abovementioned condition on signs can be satisfied by at most one

j, and can be looked at as saying that the ray determined by the corresponding

vector pj is in the convex hull of the rays determined by the other pi. When it

is satisfied, one finds that a union of intervals
⋃

i [0, λipi] is relatively convex in

the union of the rays determined by the pi if and only if λj has at least the value

given by the above formula, i.e., if and only if

λ−1
j ≤ −c−1

j

∑

i6=j ciλ
−1
i . (25)

If the ci do not consist of one of one sign and the rest of the opposite sign, then

none of the rays determined by the pi is in the convex hull of the rest, and every set
⋃

i [0, λipi] (λ1, . . . , λm > 0) is relatively convex. (An example of this situation is

given for n = 3 by letting p1, . . . , p4 be the vertices of a convex quadrilateral lying

in a plane not containing 0.)

Let us now drop the condition that the pi are minimal among linearly dependent

families, assuming only that none of them is a nonnegative multiple of another (i.e.,

that they determine distinct rays), and let S denote the union of the rays through

0 that they determine. Then one can show that a union of intervals
⋃

i [0, λipi]

is relatively convex in S if and only if (25) holds for each linearly dependent

family of ≥ 3 of the pi which is minimal among linearly independent families,

and which has the property that the unique linear relation that it satisfies has

exactly one coefficient cj of different sign from the rest. (The reduction to the

minimal-linearly-independent-family case can be gotten by a recursive application

of Carathéodory’s Theorem, with p0 =0, within subspaces spanned by successively

smaller subsets of {p1, . . . , pn}.)

As an example of the sort of lattice one gets, let us drop the central-symmetry

and length ≤ 1 conditions from our snowflake construction, writing −p1, −p2, −p3

as p4, p5, p6, and considering general sets

λ1 c.h.(0, p1) ∪ · · · ∪ λ6 c.h.(0, p6) (λ1, . . . , λ6 ∈ [0,∞]).

Then setting ai = λ−1
i , we get six conditions for relative convexity, namely

a2 ≤ a1 + a3, a3 ≤ a2 + a4, . . . , a1 ≤ a6 + a2,

each corresponding to the fact that one of our six rays lies in the cone spanned by

its two immediate neighbors.

Our snowflake example showed that a lattice RelConv(S)≥{0} could contain a

3-generator sublattice with an infinite descending chain. Let me sketch an example
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with an infinite ascending chain. In R2, let

p1 = (0, 3), p2 = (1, 2), p3 = (2, 1), p4 = (3, 0).

(Or for a more abstract description, take any four points of Rn in arithmetic

progression on a line not passing through the origin.) Define

Si = c.h.(0, pi) and S = S1 ∪ S2 ∪ S3 ∪ S4.

Now let L be the sublattice of RelConv(S)≥{0} generated by

x1 = S1 ∪ (S2/2), y = S2 ∪ S3, x2 = (S3/2) ∪ S4.

It is easy to see from a sketch that, starting with x1 ∧ y, if we alternately apply

(− ∨ x2) ∧ y and (− ∨ x1) ∧ y, we obtain an infinite ascending chain of subsets.

Is the existence of infinite chains in sublattices of lattices RelConv(S) generated

by few elements limited to cases where S 6= Rn, or does it also occur in lattices

Conv(Rn)? To get a large part of the answer without any computation, recall that

RelConv(S) is isomorphic to the lattice of convex hulls in Rn of subsets of S.

This lattice, which we shall here denote LS , is a subset but not a sublattice of

Conv(Rn); however, in cases like those considered above, where S is a finite union

of convex sets, S = S1 ∪ · · · ∪ Sm, we can write the operations of this lattice as

“polynomial operations” in those of Conv(Rn). Namely, temporarily writing ∧S

and ∨S for the operations of LS, and ∧ and ∨ for those of Conv(Rn), we get,

for x, y ∈ LS ,

x ∨S y = x ∨ y, x ∧S y =
∨

i (x ∧ y ∧ Si). (26)

Hence if the sublattice of LS generated by elements y1, . . . , yk has an infinite

ascending or descending chain (or any other specified join-sublattice), so will the

sublattice of Conv(Rn) generated by y1, . . . , yk, S1, . . . , Sm. In the case of our

“snowflake lattice”, the y ’s and the S ’s happen to be the same, so we immediately

conclude that the sublattice of Conv(R2)≥{0} generated by those three elements

has an infinite descending chain. From our example with an ascending chain, the

best conclusion this general argument gives is that the sublattice of Conv(R2)≥{0}

generated by the six elements S1, S2, S3, S4, S2/2 and S3/2 has an infinite

ascending chain. Nevertheless, a little diagram-drawing shows that in this case,

the sublattice of Conv(R2)≥{0} generated by the three elements c.h.(x1), c.h.(x2)

and c.h.(y) shows essentially the same behavior as our lattice of relatively convex

subsets.

I do not know any examples of 3-generator lattices of convex sets (relative or

absolute) that have both infinite ascending and descending chains, or that have

infinite antichains. On the other hand, it is not hard to show that the 4-generator

sublattice of Conv(R2) generated by the diameters of a regular octagon has all

three.
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13. Notes on related work on relatively convex sets, and some further

observations

The lattices RelConv(S) are examples of what are known as convex geometries;

for the definition, and results on these, see [7], [1].

Huhn [11] looked briefly at lattices of relatively convex sets determined by finite

sets S ⊆ Rn for the purpose of “approximating” Conv(Rn) by finite lattices, and

for the same purpose he considered in [10, §2] the dual construction, namely the

lattice of those subsets of Rn which can be represented as intersections of members

of a given finite set of closed half-spaces. Not surprisingly in view of the dual natures

of these two sorts of relativization, he found that lattices of the latter sort satisfied

the identities of the form Dop
n that he had obtained in the nonrelativized lattice,

but not those of the form Dn (cf. Proposition 25 and Lemma 26 above).

In [19] it is shown that for every finite lattice L which is “lower bounded”

(a strengthening of join semidistributive), there exist an n and a finite subset

S ⊆ Qn such that L is embeddable in the sublattice of Conv(Rn) generated by

{{p} | p ∈ S}. Clearly, such an embedding will send all members of L to convex

polytopes; if we let S′ denote the union of the vertex-sets of this finite set of

polytopes, it is not hard to see that we get an embedding of L in RelConv(S ′).

Whether embeddability in the lattice of relatively convex sets of a finite subset

of Rn holds not only for lower bounded lattices, but for all join-semidistributive

lattices, is an open question [19, Problem 1], cf. [1, Problem 3]. It is also shown

in [19] that every lattice can be embedded in the lattice of convex subsets of some

infinite-dimensional vector space (over an arbitrary totally ordered division ring).

Hence, in particular, lattices of the latter sort need not satisfy any nontrivial lattice

identities. In contrast, the lattice of subspaces of any vector space satisfies the

modular identity and others.

Here is another embedding result using not necessarily finite-dimensional vector

spaces, although it may be seen that the connection with convexity is somewhat

artificial, based on the fact that subspaces are in particular convex sets; it is essen-

tially a result on lattices of “relative subspaces”. (Since most of the results in this

note concerned subspaces of Rn, we only stated our general definitions for that

case, but we shall use them here without that restriction.)

Lemma 28. Let V be a real vector space and B a basis of V. For each pair of

distinct elements a, b ∈ B, let Sa,b be the subspace of V spanned by a− b. Define

the set

S =
⋃

a,b Sa,b ⊆ V.

Then the following lattices are isomorphic:
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(a) The lattice Equiv(B) of all equivalence relations on B (ordered by inclu-

sion).

(b) The lattice RelSubsp(S) consisting of all sets of the form S ∩U where U

is a subspace of V. (Here meet is given by intersection; join by taking the

subspace spanned by the union of the sets in question, and intersecting this

with S.)

(b′ ) The lattice of all subspaces of V spanned by subsets of S. (The join of two

such subspaces W1, W2 is W1+W2, the meet is the span of W1 ∩W2 ∩ S.)

(c) The sublattice of RelConv(S) consisting of all elements thereof that are

unions of subspaces Sa,b.

(c′ ) The lattice of all subsets of V which are convex hulls of unions of subspaces

Sa,b. (Join as in Conv(V ), while the meet of x1, x2 is c.h.(x1 ∩x2 ∩S)).

Proof. That the sets described in (b), (b′), (c) and (c′), ordered by inclusion, form

lattices, with meet and join as described, is immediate.

Note that the convex hull of a union of subspaces of V is the sum of those

subspaces, and that the intersection of S with a subspace is always a union of

certain of the Sa,b. From this it is easily seen that (b) and (c) are not merely, as

asserted, isomorphic, but equal, and likewise (b′) and (c′ ). It is also clear that (b)

is isomorphic to (b′ ), via the “span of” map in one direction and the operator

−∩S in the other. So these four lattices are isomorphic; to complete the proof we

shall describe an isomorphism between the lattice Equiv(B) of (a) and the lattice

of (b′ ).

Given an equivalence relation R ∈ Equiv(B), let φ(R) be the subspace of V

spanned by all elements a− b with (a, b) ∈ R, which by definition belongs to (b′ ),

while given a subspace W ⊆ V spanned by a subset of S, let ψ(W ) = {(a, b) |

a, b ∈ B, a − b ∈ W}, which it is easy to check is an equivalence relation on B.

The maps φ and ψ are clearly isotone, and from the definition of (b′ ), we see that

φψ is the identity function thereof; moreover, for any R ∈ Equiv(B) it is clear

that ψ(φ(R)) ≥ R, so it remains to prove the reverse inequality.

So suppose that (a, b) ∈ ψ(φ(R)), i.e., that a − b ∈ φ(R). From the definition

of φ(R) it is easy to see that for each R-equivalence class C ⊆ B, the sum of

the coefficients of all members of C in any element of φ(R) is zero. But the only

way this can hold for a − b is if a and b are in the same equivalence class, i.e.,

(a, b) ∈ R, as required to complete our proof. �

Pudlák and Tůma [18] have shown that every finite lattice L embeds in

Equiv(X) for some finite set X. Hence by the above lemma, for every such L one

can find an n and a subset S ⊆ Rn such that L is embeddable in RelConv(S). It

would be interesting to know whether this same conclusion can be proved without

using the deep result of [18]. So far as is known, the embedding of L in a lattice
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Equiv(X) may require a set X whose cardinality is enormous compared with that

of L (though [12] and [14] somewhat improve the bound of [18]), but it is plausible

that one could do better with embeddings in lattices of relatively convex sets.

Our final remark will concern the observations at the end of the preceding section

on the form of the lattice operations of RelConv(S) when S is a finite union of

convex sets S1 ∪ · · · ∪ Sm. Let us put these in a more general context. (Readers

allergic to category theory may ignore this discussion.)

Let Lattice denote the category of all lattices, objects of which we will here

write L = (|L|, ∨, ∧), distinguishing between the lattice L and its underlying

set |L|. For m a natural number, let Latticem-pt denote the category of lattices

with m distinguished elements, i.e., of systems (|L|,∨,∧, S1, . . . , Sm) such that

(|L|, ∨, ∧) is a lattice and S1, . . . , Sm ∈ |L|, and where a morphism between

such systems means a lattice homomorphism which respects the ordered m-tuple of

distinguished elements. Let us, finally, write Lattice
int for the category of objects

(|L|, ∨, ∧, int), where (|L|, ∨, ∧) is a lattice, and int is an “interior operator”

(the dual of a closure operator), that is, a map |L| → |L| satisfying

int(x) ≤ x, x ≤ y ⇒ int(x) ≤ int(y), int(int(x)) = int(x).

(Here by “u ≤ v” we of course mean u = u∧ v, equivalently, u∨ v = v.) The mor-

phisms of Latticeint will be the lattice homomorphisms respecting this additional

operation.

We can define a functor Latticem-pt → Latticeint taking each object (|L|,∨,∧,

S1, . . . , Sm) to the object (|L|,∨,∧, int(Si)), where the interior operator is defined

by

int(Si)(x) =
∨

i(x ∧ Si),

and another functor Latticeint → Lattice, taking each object (|L|, ∨, ∧, int) to

the object (|L|int, ∨, ∧int), where

|L|int =
{

x ∈ |L|
∣

∣ x = int(x)
}

and x ∧int y = int(x ∧ y).

(It is not hard to verify that the join operation of L carries |L|int into itself.)

We now see that if we take L = Conv(Rn), and let S1, . . . , Sm be any m

elements of this lattice, then the composite of the above two functors, applied to

(|L|, ∨, ∧, S1, . . . , Sm), gives precisely the lattice we named LS
∼= RelConv(S),

for S = S1 ∪ · · · ∪ Sm.

The constructions given by the above functor Latticeint → Lattice, and its

dual, with a closure operator replacing the interior operator, are well-known, if not

in this functorial form. I do not know whether the construction Latticem-pt →

Latticeint (and its variant with lattices replaced by complete lattices and the

specified finite family by an arbitrary family) has been considered.
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Stepping back a little further, we may observe that the lattice Conv(Rn) arises

as the fixed set of the closure operator c.h.(−) on the lattice 2R
n

of subsets of Rn,

so that the construction of the mutually isomorphic lattices LS and RelConv(S)

can be seen as arising from the interaction of the closure operator c.h.(−) and the

interior operator − ∩ S on 2R
n

. Again, this situation can be made into a general

construction.

The reader familiar with the concept of representable algebra-valued functors

([3, Chapter 9] or [4, §1, §8]) will be happy to observe that all the functors of the

above discussion are representable.

14. A question

The referee has pointed out that some properties of the lattice of convex sets are

known to change if the base field R is replaced by another ordered field (e.g., Q),

but that the arguments of §§1–6 look as though they should work over any ordered

field; perhaps even any ordered division ring. I have the same feeling, but as an

amateur in the area, I will leave this question to others. (I do not know whether the

theorems of Helly, Carathéodory and Radon hold in that context, nor how much of

what I have justified as geometrically evident may rely on properties of the reals.)

A straightforward generalization of these results could not, of course, extend

to §7, on compact convex sets, since over an ordered field which is not locally

compact, the only nonempty compact convex sets are the singletons, which do not

form a lattice. One might be able to prove results like those of that section with

“compact” replaced by “closed and bounded”, but new proofs would be needed,

since the theorem of Minkowski we used there is not true in that context. Later

sections depend to varying degrees on that one.
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