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Abstract. Using the theory ∞-categories we construct derived (dg-)categories of reg-

ular, holonomic D-modules and algebraically constructible sheaves on a complex smooth

algebraic stack. We construct a natural ∞-categorical equivalence between these two

categories generalising the classical Riemann-Hilbert correspondence.

1. Introduction

To any Weil cohomology theory there is an associated theory of triangulated coefficient

categories. More precisely, given any Weil cohomology theory, one can canonically con-

struct a contravariant (pullback) 2-functor from the category of schemes to the 2-category

of triangulated categories. Moreover, these triangulated categories satisfy the six functor

formalism, as originally developed in the `-adic setting by Grothendieck to prove the Weil

conjectures.

Two other well known examples are Betti and de Rham cohomology. In the case of Betti

cohomology, given X, a smooth algebraic variety over C, the associated coefficient cat-

egory is Dbc(Xan,C), the derived category of algebraically constructible sheaves on Xan.

In the case of de Rham cohomology, the associated coefficient category is Dbrh(D(X)),

the derived category of regular holonomic D-modules on X. Both categories are natu-

rally triangulated and we equip Dbrh(D(X)) with the standard t-structure and Dbc(Xan,C)

with the (middle) perverse t-structure. The theory of D-modules gives rise to a natural

triangulated functor

DRX : Dbrh(D(X))→ Dbc(Xan,C),

known as the de Rham functor. The Riemann-Hilbert correspondence states that DRX

is a t-exact equivalence of triangulated categories. Thus the Riemann-Hilbert correspon-

dence may naturally be interpreted as a type of cohomological comparison theorem. In

recent years the need to extend such a theory to algebraic stacks has become clear. For ex-

ample, the theory of D-modules on algebraic stacks is central to the geometric Langlands

program. In this paper we generalise the Riemann-Hilbert correspondence to smooth

algebraic stacks over C using higher categorical techniques.
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The first challenge in generalising this result is finding the appropriate concepts of

derived categories of D-modules and constructible sheaves on smooth algebraic stacks.

The primary reason for this is that the category of triangulated categories is too crude

for our purposes: we cannot glue triangulated categories is a natural way. In essence, this

is because localising by quasi-isomorphisms discards too much information.

Various enhancements to the classical theory of triangulated categories have been pro-

posed to correct such defects. Perhaps the most straightforward of these is the theory

of triangulated differential graded (dg-)categories ([5]). A dg-category C is a category

enriched over the category of complexes of C-vector spaces. To such a category we may

naturally associate its homotopy category, denoted h(C). A dg-category C is triangu-

lated if, roughly speaking, h(C) is triangulated. Thus triangulated categories provide an

enhancement of the category of triangulated categories.

Another proposed enhancement is the theory of stable ∞-categories, as developed by

Lurie (§1 [3]). An ∞-category is, very roughly speaking, a higher category with the

property that for n > 1, all n-morphisms are invertible. As in the case of dg-categories, an

∞-category C has a homotopy category h(C). If C is stable and then h(C) is a triangulated

category.

There is a close relationship between these two approaches. Given any triangulated

dg-category C we may take its differential graded nerve, Ndg(C), to get a C-linear stable

∞-category. In fact this construction gives an equivalence (in an ∞-categorical sense)

between both theories. We remark that this is only true because we have fixed the

ground field C; in positive characteristic they are not equivalent.

The collection of all (small) triangulated dg-categories can naturally be arranged into

an ∞-category, denoted dg-Cattri∞ . This ∞-category admits limits (in an ∞-categorical

sense), allowing us to suitably glue triangulated categories. This will be at the heart of

our constructions. This approach closely follows that of Gaitsgory in his development of

the categorical geometric Langlands correspondence.

We remark that these methods can be applied to construct triangulated coefficient cat-

egories on algebraic stacks for any Weil cohomology theory. Even more generally, they

can be used to construct triangulated categories of mixed motives on algebraic stacks,

something which will be central to the extension of the geometric Langlands program to

the motivic setting. We will address these issues in future work.

We now describe in detail the contents of this paper.

In §2 we review the theory of ∞-categories and dg-categories, giving a detailed con-

struction of dg-Cattri∞ .

In §3 we review the theory of D-modules on smooth algebraic varieties, making suitable

dg-enhancements of various classical triangulated categories. Using this we construct

the derived, triangulated dg-category of regular, holonomic D-modules on X , a smooth
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algebraic stack over C, denoted Db
rh(X ). The essence of our construction is to define

Db
rh(X ) as the ∞-categorical limit in dg-Cattri∞ of classical dg-categories of D-modules

over a suitable simplicial Cech cover of X . This category is equipped with a standard

t-structure coming from the standard t-structure of classical derived categories of D-

modules.

In §4 we review the theory of construcible sheaves on complex analytic spaces. As for

the theory of D-modules, we construct a derived, triangulated dg-category of algebraically

constructible sheaves on X an, denoted dg-Modbc(X an,C). This category comes equipped

with a perverse t-structure, coming from the classical (middle) perverse t-structure on

derived categories of construcible sheaves on complex analytic spaces.

In §5 we review the classical Riemann-Hilbert correspondence in the dg-setting. Using

the classical de Rham functor we construct a morphism

D̂RX∞ : Db
rh(X )→ dg-Modbc(X an,C)

in dg-Cattri∞ . Our main theorem is the following:

The Riemann-Hilbert Correspondence for Stacks. Let X be a smooth complex al-

gebraic stack which admits an algebraic variety as a smooth atlas. Then the∞-categorical

de Rham functor D̂RX∞ is an equivalence in dg-Cattri∞ . Moreover it is t-exact and thus

induces a canonical equivalence between the category of regular, holonomic D-modules

on X and the category of perverse sheaves on X .

I would like to thank Dennis Gaitsgory for various useful conversations in the writing

of this paper.

2. Simplicial Sets and simplicial Categories

In this paper we develop the theory of the Riemann-Hilbert correspondence on alge-

braic stacks using Joyal and Lurie’s theory of ∞-categories. The main reference is the

foundational treatise [2]. Following the terminology of [2], by an ∞-category we mean

an (∞, 1)-category. Loosely speaking this is a higher category such that for n > 1, all

n-morphisms are invertible. For the convenience of the reader we will review the aspects

of the theory relevant to this paper.

Let Cat be the category of (small) categories. By convention, morphisms in Cat are

given by covariant functors. For n ∈ Z, a non-negative integer, we define [n] ∈ Cat to be

the category with objects {0, · · · , n} and morphisms:

Hom[n](a, b) =

∅ if a > b

∗ if a ≤ b
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where ∗ denotes a unique morphism. We define the simplex category, denoted ∆, to be

the full subcategory of Cat with objects [n], for n a non-negative integer. Note that this

category is a skeleton for the category whose objects are non-empty, finite, totally ordered

sets and whose morphisms are non-decreasing functions between them.

Definition 1. Let Set denote the category of sets. A simplicial set is a functor

K : ∆op → Set.

A morphism between simplicial sets is a natural transformation of the underlying functors.

We denote the category of simplicial sets by Set∆.

For n ∈ Z, a non-negative integer, and K ∈ Set∆, we define the set of n-cells of K to

be Kn := K([n]). We call the 0-cells the vertices of K and the 1-cells the edges of K.

We define the n-simplex to be the simplicial set ∆n := HomCat(−, [n]). The vertices and

edges of ∆n are just the objects and morphisms of [n] respectively. We say that an m-cell

of ∆n is non-degenerated if it corresponds to a monomorphism [m]→ [n]. By the Yoneda

lemma there is a natural bijection Kn
∼= HomSet∆

(∆n, K). The boundary of ∆n, denoted

∂∆n, is the simplicial set generated by ∆n minus its unique non-degenerate n-cell. For

0 ≤ m ≤ n we define the mth horn Λn
m ⊂ ∆n to be the simplicial set generated by ∂∆n

minus the unique non-degenerate (n-1)-cell not containing m. We call Λn
m an inner horn

if m ∈ {1, · · · , n− 1}.

Let Top denote the category of compactly generated, Hausdorff topological spaces. As

outlined in §1... of [2], there is a natural adjunction

| |: Set∆ � Top :Sing,

where |.| is the geometric realisation functor and Sing is the singular complex functor.

The geometric realisation of ∆n in the usual topological n-simplex. Using this adjunction

we define the Quillen model structure (§A... [2]) on Set∆ as follows:

(1) A morphism of simplicial sets f : X → Y is a weak equivalence if the morphism

|f | : |X| → |Y | is a weak homotopy equivalence.

(2) The fibrations are the Kan fibrations, i.e. those maps which have the right-lifting

property with respect to all horn inclusions Λn
m ⊂ ∆n

(3) The cofibrations are the monomorphisms.

This gives Set∆ the structure of a combinatorial model category such that every simplicial

set is cofibrant.

Definition 2. A simplicial set which is fibrant with respect to the Quillen model structure

is called an ∞-groupoid (or Kan complex). More precisely, a simplicial set K is an ∞-

groupoid if and only if it satisfies the following property: Given m ∈ {0, · · · , n}, any

morphism Λn
m → K, admits an extension to a morphism ∆n → K.
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If X ∈ Top then Sing(X) is an ∞-groupoid.

Giving Top its classical model structure (fibrations are Serre fibrations), the above ad-

junction becomes a Quillen equivalence. We define the homotopy category of spaces,

denoted H, as the homotopy category of Set∆ with respect to the Quillen model struc-

ture. By the above, this is canonically equivalent to the classical homotopy category of

spaces.

The cartesian product gives Set the structure of a symmetric monoidal category. This

induces a symmetric monoidal structure on Set∆ in the obvious way.

Definition 3. For K,L ∈ Set∆ we define the simplicial set of maps from K to L, denoted

Map(K,L) ∈ Set∆ as follows:

Map(K,L)n := HomSet∆
(K ×∆n, L).

This gives Set∆ the structure of a closed symmetric monoidal simplicial model category

(§A.... [2]). This in turn gives H the structure of a symmetric monoidal category such

that the localisation functor Set∆ → H is symmetric monoidal.

The category Set provides the foundation for classical category theory. More precisely,

the definition of a category relies on both Set and its natural symmetric monoidal struc-

ture coming from the cartesian product. If S is any symmetric monoidal category, we can

replace Set with S in the definition to give the theory of S-enriched categories. For a de-

tailed discussion of enriched category theory we refer the reader to §A.1.4 of [2]. Roughly

speaking, an S-enriched category C is a class of objects such that for any two objects

a, b ∈ C there is a mapping object MapC(a, b) ∈ S, with the usual extra structure. We

reserve the term hom exclusively for the classical case. For this perspective, an ordinary

category is just a Set-enriched category. Many categories we naturally encounter are in

some way enriched. For example, if k is a field, categories enriched over k-vector spaces

are called k-linear. The category of k-vector spaces is itself k-linear.

One approach to higher category theory is to replace Set with a suitable symmetric

monoidal model category S (§1.1[2]). The most natural category to consider is Top.

In this case, the concept of a 2-morphism would be a path between 1-morphisms, a 3-

morphism a homotopy between paths, and so on. This is a perfectly valid approach but

given the fact that Top and Set∆ are Quillen equivalence model categories we are free to

use the latter category.

Definition 4. A simplicial category is a category which is enriched over the category Set∆

of simplicial sets (with respect to the natural symmetric monoidal structure). The cate-

gory of (small) simplicial categories (where morphisms are given by simplicially enriched

functors) will be denoted by Cat∆.



6 ALEXANDER G. M. PAULIN

For a general symmetric monoidal category S we denote by CatS , the category of (small)

S-enriched categories. If T is a second symmetric monoidal category and f : S → T is

a symmetric monoidal functor then f induces a functor CatS → CatT . The constant

functor Set → Set∆ is symmetric monoidal, hence we may regard an ordinary category

as a simplicial category by identifying hom-sets with their constant simplicial sets.

Definition 5. For S, a symmetric monoidal category, and C an S-enriched category, the

(ordinary) category underlying C, denoted C0, is defined as follows:

(1) The objects of C0 are the same as the objects of C.
(2) For a, b ∈ C0, HomC0(a, b) := HomS(1S ,MapC(a, b)),

where MapC(a, b) ∈ S is the mapping object from a to b and 1S is the unit object in S.

In the case when S = Set∆, and C is a simplicial category, the hom-sets in C0 are the 0-

cells of the mapping simplicial sets. The symmetric monoidal functor Set∆ → H allows us

to consider C as an H-enriched category, denoted h̃(C). We define the homotopy category

of C, denoted h(C), to be the category underlying h̃(C). There is a canonical functor from

C0 to h(C). The formation of the homotopy category is functorial.

A morphism f : C → D, between two simplicial categories is called a weak equivalence

if h̃(f) : h̃(C) → h̃(D) is an equivalence of H-enriched categories (§A 3.2.1 [2]). The

category Cat∆ admits a natural model structure (called the Bergner model structure, see

§A 3.2.4 of [2]) with the above weak equivalences.

The principal weakness of simplicial categories as a model for higher category theory

is that the correct notion of functor (in a higher sense) should be a homotopy coherent

diagram, a more general notion that a simplicially enriched functor. Roughly speaking, a

homotopy coherent diagram is a weakened functor where the associativity conditions only

hold up to specified collection of higher homotopies. In the next section we introduce an

alternate, but closely related, model for higher category theory where this issue is neatly

resolved.

The Nerve Functor and ∞-categories

For a detailed treatment of the material in this section we refer the reader to §1.1 of [2].

Let C be an ordinary category. The nerve of C, denoted N(C), is the simplicial set

defined as follows: for n ∈ Z, a non-negative integer, N(C)n := HomCat([n], C). More

concretely N(C)n is the set of all composable strings of morphisms:

C0 → · · · → Cn.

Thus the 0-cells of N(C) may be identified with the objects of C and 1-cells with mor-

phisms of C. The reader cautious of set theoretic issues is referred to §1.1.15 of [2]. As

explained in §1.1.2 of [2], we can canonically recover C from N(C). Moreover the nerve
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defines a fully-faithful functor from Cat to Set∆. By §1.2.2.2 of [2], if C is an ordinary

category, then N(C) has the following important property:

For n a positive integer greater than 1 and m ∈ {1, · · · , n−1}, any morphism Λn
m → N(C)

admits a unique extension to a morphism ∆n → N(C).

This gives a complete description of the essential image of the nerve functor. Notice that

this extension property is only guaranteed to hold for the inner horns; the ∞-groupoid

condition involved all horns but drops the uniqueness. These two examples motivate the

following fundamental definition:

Definition 6. An∞-category is a simplicial set K which satisfies the following property:

For n a positive integer greater than 1 and m ∈ {1, · · · , n− 1}, any morphism Λn
m → K

admits a not necessarily unique extension to a morphism ∆n → K.

It is immediately clear that the nerve of an ordinary category is an∞-category. Similarly

an ∞-groupoid is an ∞-category. Thus the theory of ∞-categories simultaneously gener-

alises (ordinary) category theory and topology.

The nerve functor admits a natural extension to all simplicial categories as explained

in §1.1.5 of [2]. This new functor, again denoted by N , is sometimes called the simplicial

(or homotopy coherent) nerve. It is part of an adjunction:

C: Set∆ � Cat∆ :N.

As explained in §2.2.5.1 of [2], there is an alternate model structure on Set∆ (called the

Joyal model structure) where the weak equivalence are defined as follows:

Definition 7. Let S, T ∈ Set∆ and f : S → T be a morphism. We say that f is a

categorical equivalence if the induced functor C(f) : C(S) → C(T ), is a weak equivalence

with respect to the Bergner model structure on Cat∆.

Putting the Joyal model structure on Set∆, the above adjunction becomes a Quillen

equivalence. The fibrant-cofibrant objects with respect to the Joyal model structure on

Set∆ are precisely the∞-categories. We say that two∞-categories are equivalent if they

are categorically equivalent as simplicial sets.

It is not true that the nerve of any simplicial category is an ∞-category. If, however,

the mapping spaces between all objects in a simplicial category are ∞-groupoids then its

nerve is an ∞-category. We call any simplicial category with this property fibrant. Thus

we can in some senses think about an∞-category as a category enriched over∞-groupoids.

Let K be an ∞-category. The objects of K are defined to be the vertices of the un-

derlying simplicial set. Thus an object in K is a map of simplicial sets ∆0 → K. We
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write a ∈ K to denote an object. Similarly, morphisms of K are defined to be the edges

of the underlying simplicial set. More precisely a morphism is a map of simplicial sets

f : ∆1 → K. The simplex ∆1 has two vertices {0} and {1}. Thus any morphism has a

source object f({0}) = a and target object f({1}) = b. In the usual way, we express this

information as f : a→ b. For a ∈ K we define identity morphisms ida : a→ a to be the

unique extension of a to an edge.

The inner horn condition guarantees that in an ∞-category there is a way to compose

two morphisms with the same source and target. Note however, that a choice of compo-

sition is only unique up to a contractible space. This is perhaps the most conceptually

challenging aspect of working with ∞-categories as a model for higher category theory.

Let K be an ∞-category and a, b ∈ K. We define the space of maps from a to b to

be the simplicial set MapRK(a, b), whose n-cells are those morphisms z : ∆n+1 → C, such

that z|∆{n+1} = b and z|∆{0,··· ,n} is the constant n-cell at the vertex a. By §1.2.2.3 of

[2], this simplicial set is an ∞-groupoid. It can be shown that if C is a fibrant simplicial

category and a, b ∈ C, then the MapC(a, b) is weakly equivalent (for the Quillen model

structure on Set∆) to MapRN(C)(a, b). An object b ∈ K is said to be final if for any a ∈ K
the ∞-groupoid MapRK(a, b) is weakly contractible.

An ∞-functor between two ∞-categories is a natural transformation of the underlying

simplicial sets. This is one of the principal reasons for using ∞-categories: we do not

need to introduce coherent homotopy diagrams as they are encoded by the underlying

simplicial set of an ∞-category.

As explained in §1.2.3 of [2], the nerve functor N : Cat → Set∆ admits a left ad-

joint h : Set∆ → Cat. If K ∈ Set∆ then h(K) is called the homotopy category of K.

If C is a fibrant simplicial category then there is a natural equivalence h(N(C)) ∼= h(C),
where h(C) is the homotopy category introduced in the previous section. Similarly, if K

is an ∞-category then there is an equivalence h(C(K)) ∼= h(K). In the case when K is

an ∞-category, h(K) admits a more concrete description:

(1) The objects of h(K) are the objects of K.

(2) For X, Y ∈ h(K) the set of morphism from X to Y is the set of homotopy classes

of morphisms (in K) f : X → Y , denoted [f ].

Two morphisms f, g : X → Y are said to be homotopic, if there exists a 2-cell in K whose

boundary is given by:

Y
idY

��

X

f
>>

g
// Y
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As proven in §1.2.3 of [2], this is an equivalence relation when K is an ∞-category. If

we have two morphisms f : X → Y and g : Y → Z in K then these defines a morphism

Λ2
1 → K, which we represent by the diagram:

Y
g

��

X

f
>>

Z

By the defining property of ∞-categories, we may extend this to a 2-simplex ∆2 → K.

We may then take its boundary:

Y
g

��

X

f
>>

g◦f
// Z

Note that the morphism g ◦f is not necessarily unique determined by f and g: it depends

on the choice of 2-simplex. What is true though, is that it is unique up to homotopy.

Thus we define composition in h(K) to be

[g] ◦ [f ] := [g ◦ f ].

This is independent of all choices. If C is an ordinary category then h(N(C)) is canonically

isomorphic to C. It can be shown that an ∞-category K is an ∞-groupoid if and only if

h(K) is a groupoid in the usual sense.

If K is an ∞-category (or a simplicial category), we say a morphism, f : X → Y in K,

is an equivalence if it becomes an isomorphism in h(K). Thus we see that an∞-groupoid

is an ∞-category in which every morphism is an equivalence.

In §1.2.5 of [2], it is shown that given K, an ∞-category, there exists a largest ∞-

groupoid K ′ ⊂ K. Moreover the functor K → K ′ from ∞-categories to ∞-groupoids is

right adjoint to the natural inclusion of ∞-groupoids in ∞-categories.

Differential Graded Categories

For a detailed treatment of the material in this section we refer the reader to [5] and §1.3.1

of [3].

The symmetric monoidal (Quillen) model category Set∆ provides the foundation for the

theory of simplicial categories. We now introduce another important, and closely related,

class of enriched categories which give a good model for higher category theory.

Let k be a field and let Ch(k) denote the category of chain complexes of k-vector spaces.

Recall that Ch(k) has a natural closed monoidal model structure, where the product is
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given by the usual tensor product of chain complexes and the model structure is defined

as follows:

(1) Weak equivalences are quasi-isomorphisms.

(2) Fibrations are epimorphisms.

(3) Cofibrations are monomorphisms.

The homotopy category of Ch(k) is the derived category of k, denoted by D(k). Because

k is a field, D(k) is equivalent to the category of Z-graded k-vector spaces. There is a

symmetric monoidal structure onD(k), defined in the obvious way, making the localisation

functor Ch(k)→ D(k) symmetric monoidal.

Definition 8. A differential graded category (dg-category for short) over k, is a category

enriched over Ch(k). The collection of all (small) dg-categories may be arranged into a

category whose objects are (small) dg-categories and whose morphisms are Ch(k)-enriched

functors. As above, we denote this category by CatCh(k).

For the rest of this paper, by a dg-category we mean a dg-category over k. Let C be a

dg-category. For X, Y ∈ C we denote the mapping complex by MapC(X, Y ):

· · · // MapC(X, Y )−1
d
// MapC(X, Y )0

d
// MapC(X, Y )1

// · · ·

The category underlying C (as a Ch(k)-enriched category) has hom-sets given by:

HomC0(X, Y ) := HomCh(k)(1Ch(k),MapC(X, Y )) = {f ∈MapC(X, Y )0|df = 0}.

This makes it clear that the category underlying a dg-category is k-linear.

Because Ch(k) is a symmetric monoidal model category, any dg-category C naturally

gives rise to a D(k)-enriched category h̃(C). As for simplicial category theory we have the

following definition:

Definition 9. Let C be a dg-category. The homotopy category of C, denoted h(C), is the

category underlying h̃(C).

Concretely, forX, Y ∈ h(C), we have a natural bijectionHomh(C)(X, Y ) ∼= H0(MapC(X, Y )).

Note that this implies that the homotopy category of a dg-category is canonically k-linear.

As in the simplicial case, the formation of the homotopy category is functorial.

There is a natural model structure on CatCh(k) (§A.3.2.4 [2]) which has the following

class of weak equivalences:

Definition 10. Let C,D ∈ CatCh(k). We say that a morphism f : C → D is a weak

equivalence if h̃(f) is an equivalence of D(k)-enriched categories. More precisely, when

the following conditions are satisfied:
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(1) For any two objects X, Y ∈ C the morphism

fXY : MapC(X, Y )→MapD(f(X), f(Y ))

is a quasi-isomorphism of chain complexes over k.

(2) The induces functor h(f) : h(C)→ h(D) is an equivalence of categories.

As explained in §1.3.1 of [3], the Dold-Kan correspondence allows us to transform a dg-

category into a fibrant simplicial category. Applying the (simplicial) nerve functor we can

further transform a dg-category into an ∞-category. This process is simplified in §1.3.1.6

of [3], where Lurie directly constructs a differential graded nerve functor:

Ndg : dg-Cat→ Set∆.

If C is a dg-category then it is straightforward to describe the low dimensional cells of

Ndg(C):
(1) The 0-cells of Ndg(C) are the objects of C.
(2) The 1-cells of Ndg(C) are the morphisms in the underlying category of C.
(3) The 2-cells of Ndg(C) are given by the following data: objects X, Y, Z ∈ C; mor-

phisms f ∈ HomC0(X, Y ), g ∈ HomC0(Y, Z), h ∈ HomC0(X,Z) and an element

z ∈MapC(X,Z)−1 such that dz = h− (g ◦ f).

As proven in §1.3.1.17 of [3], given a dg-category C, the differential graded nerve Ndg(C)
is an ∞-category which is categorically equivalent to the ∞-category given by the con-

struction utilising the Dold-Kan correspondence and the simplicial nerve functor. There

is also a canonical equivalence of homotopy categories:

h(C) ∼= h(Ndg(C)).

Just as for simplicial categories, the correct notion of (higher) functors between dg-

categories should be given by homotopy coherent diagrams, appropriately generalising

Ch(k)-enriched functors. Thankfully, the differential graded nerve gives us a straightfor-

ward way to make this precise.

Definition 11. An ∞-functor between two differential graded categories C and D is a

k-linear ∞-functor of the underlying ∞-categories, Ndg(C) and Ndg(D). An ∞-functor

f : Ndg(C) → Ndg(D) is k-linear if the induced functor h(f) : h(C) → h(D) is enriched

over k-vector spaces.

Using this, we may naturally arrange (small) dg-categories into an∞-category as follows:

Definition 12. Let dg-Cat∆ be the fibrant simplicial category defined as follows:

(1) The objects of dg-Cat∆ are (small) dg-categories over k.

(2) Given C,D ∈ dg-Cat∆, the mapping space Mapdg-Cat∆
(C,D) is the largest ∞-

groupoid contained in the restriction of MapSet∆
(Ndg(C), Ndg(D)) to k-linear ∞-

functors.
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We define the ∞-category of (small) dg-categories to be dg-Cat∞ = N(dg-Cat∆). We

denote the category underlying dg-Cat∆ by dg-Cat.

Following §4.4 of [5] there is a subclass of dg-categories called triangulated. We refer

the reader to §4.4.7 for a precise definition. Being triangulated implies that the homotopy

category is a triangulated category in the classical sense. Thus the theory of triangulated

dg-categories is an enhancement of the theory of triangulated categories.

Definition 13. Let C and D be triangulated dg-categories. We say that an ∞-functor

f from C to D is exact if the induced (ordinary) functor h(f) : h(C) → h(D) is an exact

functor of triangulated categories.

Definition 14. Let dg-Cattri∆ be the fibrant simplicial category defined as follows:

(1) The objects of dg-Cattri∆ are (small) triangulated dg-categories over k.

(2) Given C,D ∈ dg-Cattri∆ , the mapping space Mapdg-Cat∆
(C,D) is the largest ∞-

groupoid contained in the restriction of MapSet∆
(Ndg(C), Ndg(D)) to exact k-linear

∞-functors.

We define the∞-category of (small) triangulated dg-categories to be dg-Cattri∞ = N(dg-Cattri∆ ).

We denote the category underlying dg-Cattri∆ by dg-Cattri.

The differential graded nerve functor preserves weak equivalences, with respect to the

Joyal model structure on Set∆. Thus if C and D are dg-categories and f : C → D is a

weak equivalence, the ∞-functor Ndg(f) is an equivalence in the ∞-category dg-Cat∞.

By a t-structure on a triangulated dg-category C we we mean a t-structure on the trian-

gulated category h(C). We define the heart of a t-structure on C, denoted C♥, to be heart

of the t-structure on the underlying homotopy category. Given an ∞-functor between

triangulated dg-categories f : C → D, each equipped with a t-structure, we say that f is

left t-exact (respectively right t-exact) if h(f) : h(C) → h(D) is left t-exact (respectively

right t-exact) in the classical sense.

The homotopy functor from from dg-Cattri to Cat induces a functor h(dg-Cattri∞ )→
h(Cat), where h(Cat) is the localisation of Cat by equivalences. This latter category

is equivalent to the category [Cat], whose objects are (small) categories and whose mor-

phisms are isomorphism classes of functors. If we take a morphism in h(dg-Cattri∞ ) then

it makes sense to talk about it being t-exact because being t-exact is an invariant of the

isomorphism class of a functor.

Homotopy Limits and Limits in ∞-Categories

For a detailed treatment of the material in this section we refer the reader to §1.2.13 of [2].

There is a natural notion of limits in ∞-categories generalising the classical case. Let
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C and D be ∞-categories and p : C → D be an ∞-functor. As explained in §1.2.9 of [2],

mimicking the classical construction, we may form the ∞-category of objects of D over p,

denoted D/p. The n-cells of D/p are the morphisms of simplicial sets

∆n ? C → D,

whose restriction to C is p. Here ? denotes the join of two ∞-categories, as constructed

in §1.2.8 of [2]. Note that because ∆0 ? C, denoted C/, has a privileged object {0} (the

cone point), any object X ∈ D/p gives a canonical object X({0}) ∈ D.

Definition 15. A limit of the ∞-functor p : C → D is a final object in the ∞-category

D/p. If a limit exists we denote it by lim←− p.

By definition limits are unique up to a weakly contractible space. By an abuse of notation

we will often refer to the limit of p as the object

lim(p) := lim←− p({0}) ∈ D.

Let us now relate ∞-categorical limits to more classical homotopy limits. Let S be a

combinatorial model category. For example, Set∆ equipped with either the Quillen or

Joyal model structures. Let I be a small (ordinary) category. By definition, S admits

small limits, thus the constant functor

S → SI := Fun(I,S),

admits a right adjoint, denoted lim : SI → S. On objects this sends a functor F : I → S
to lim(F) in the usual sense. The model structure on S induces a natural model structure

on the functor category SI , making lim a right Quillen functor. Thus we may form the

right derived functor

Rlim : h(SI)→ h(S),

by composing lim with a fibrant replacement functor. As usual, h denotes the homotopy

category of the underlying model category.

Definition 16. If F ∈ SI then we define the homotopy limit of F to be holim(F) :=

Rlim(F), after identifying F with its image under the localisation functor SI → h(SI).

From now on let S be Set∆ equipped with the Quillen model structure and let C be a

simplicial category. As above, let C0 denote the ordinary category underlying C, and let I
denote an ordinary small category. We denote by I∆, the simplicial category associated to

I. Let F : I → C0 be a functor and choose B ∈ C0 together with a compatible collection

of morphisms

ηI := {B → F(i)}i∈I .



14 ALEXANDER G. M. PAULIN

We remark that this is equivalent to choosing a cone over F with vertex B. For any

A ∈ C0, this data induces a morphism of simplicial sets

MapC(A,B)→ lim(FA),

where FA : I → Set∆ is the functor sending i ∈ I to MapC(A,F(i)). This further induces

a map of simplicial sets

MapC(A,B)→ holim(FA).

We say that η exhibits B as a homotopy limit of F if each such morphism is a weak

equivalence in Set∆ for all A ∈ C0.

We now relate this to ∞-categorical limits. The functor F induces a simplicial func-

tor:

F∆ : I∆ → C.

The nerve functor gives a morphism of simplicial sets

F∞ = N(F∆) : N(I∆)→ N(C).

Let us now make the additional assumption that C is a fibrant simplicial category. Thus

N(C) is an ∞-category. The data of ηI induces a morphism

F∞ : N(I∆)/ → N(C),

extending F∞, with cone point B. The following result of Lurie (§4.2.4.1 [2]) is funda-

mental:

Theorem 1. With the same notation as above, the following are equivalent

(1) The data ηI exhibits B as a homotopy limit of F .

(2) The functor F∞ is a limit diagram of F∞.

This shows that there is a close relationship between homotopy limits in fibrant simplicial

categories and ∞-categorical limits.

Theorem 2. Let C be a fibrant simplicial category. Let F ,G ∈ Fun(I, C0) be two

ordinary functors. Assume that ϕ : F → G is a natural transformation which becomes a

natural isomorphism after composing both F and G with the canonical functor C0 → h(C).
If lim(F∞) and lim(G∞) exist then ϕ induces a canonical (up to homotopy) equivalence

ϕ∞ : lim(F∞)→ lim(G∞).

Proof. We will show that if lim(F∞) and lim(G∞) exist, then ϕ induces an canonical

isomorphism (in h(C)) between them. To do this we show that ϕ induces a canonical

isomorphism of their respective hom-functors in h(C).
Let A ∈ C. The natural transformation ϕ induces a natural transformation ϕA : FA →
GA in SetI∆. By §1.2.4.1 of [2] we know that this is a weak equivalence for the natural
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model structure on the diagram category SetI∆. Thus ϕA induces a weak equivalence

holim(FA)→ holim(GA).

As above, let lim←−(F∞), lim←−(G∞) : N(I∆)/ → N(C) be the respective ∞-categorical

limits of F∞ and G∞. These respectively give rise to the collection of morphisms

ηI = {lim(F∞)→ F(i)}i∈I ,

γI = {lim(G∞)→ G(i)}i∈I .

As discussed above, all this data gives rise to the following diagram

MapC(A, lim(F∞)) // holim(FA)

��

MapC(A, lim(G∞)) // holim(GA)

All the arrows in this diagram are weak equivalences of simplicial sets. Thus we get a

canonical isomorphism MapC(A, lim(F∞)) ∼= MapC(A, lim(G∞)) in H. This induces a

canonical bijection Homh(C)(A, lim(F∞)) ∼= Homh(C)(A, lim(G∞)). This is natural in A

and thus induces a natural isomorphism between their respective hom-functors in h(C).
By the Yoneda lemma, this induces a canonical isomorphism lim(F∞) ∼= lim(G∞) in h(C).
We let

ϕ∞ : lim(F∞)→ lim(G∞)

be a lift of this isomorphism to a morphism in C. By construction ϕ∞ is an equivalence

in C and is canonical up to homotopy. �

We remark that the proof of theorem 2 shows that if we take any natural transformation

ϕ : F → G, then it induces a canonical (up to homotopy) morphism ϕ∞ on their respective

limits, if they exist.

By §1.3.1 of [1], the∞-category dg-Cattri∞ admits (small) limits. This fact is fundamen-

tal and justifies why the theory of triangulated dg-categories is superior to triangulated

categories, where limits do not exists.

3. D-modules on Algebraic Stacks

For a detailed treatment of the material in this section we refer the reader to §1, §3 and

§6 of [4].

For the rest of this paper set k = C. Let X be a smooth complex algebraic variety.

Let D-mod(X) denote the C-linear abelian category of algebraic (left) D-modules on X

(§1.2 [4]). Let D-modrh(X) denote the full subcategory of regular holonomic D-modules

on X (§6.1 [4]).
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The category D-mod(X) is C-linear, hence it follows from §1.3.1 of [3], that bounded

complexes of D-modules on X naturally form a dg-category, which we denote by Chb(D-

mod(X)). LetDb(X) ⊂ Chb(D-mod(X)) denote the full sub-dg-category of bounded com-

plexes of injective objects. We call Db(X) the bounded derived dg-category of D-modules

on X. This is a triangulated dg-category and the classical bounded derived category of

D-modules is canonically equivalent to its homotopy category. We define the bounded

derived dg-category of regular, holonomic D-modules to be Db
rh(X) ⊂ Db(X), the full

sub-dg-category with regular, holonomic homology. We equip Db
rh(X) with its standard

t-structure, with heart isomorphic to the category of regular holonomic D-modules on X.

Let f : X → Y be a morphism of smooth algebraic varieties over C. Following §1.5

of [4], we have the direct and inverse image (Ch(C)-enriched) functors:

f∗ : Db(X)→ Db(Y ) f † : Db(Y )→ Db(X).

We define the shifted inverse image functor to be

f ! := f †[dimX − dimY ].

All of these functors preserve the sub-dg-category of regular holonomic D-modules.

There is also the Verdier involution

DX : Db(X)op → Db(X),

defined in the usual way, using the canonical bundle on X (§2.6 [4]). This involution

descends to an involution of the derived dg-category of regular, holomonic D modules.

We define the functors

f! : D(X)→ D(Y ) fF : D(Y )→ D(X)

f! = DY ◦ f∗ ◦ DX fF = DX ◦ f ! ◦ DY .

We have the following standard facts:

• These functors descend to functors on the sub dg-categories of regular holonomic

D-modules.

• The functors (f!, f
!) and (fF, f∗) are adjoint pairs.

• If f is proper then f∗ = f!.

• For f smooth, the non-shifted inverse image functor f †, is t-exact.

• If f is smooth of relative dimension d then there is a canonical natural isomorphism

fF ∼= f ![−2d].

• If X, Y and Z are smooth complex algebraic varieties and f : X → Y and g :

Y → Z are two morphisms, then there is a canonical isomorphism of functors

(gf)! ∼= f !g!. The same holds for F and †.
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We now address the problem of defining suitable categories of D-modules on algebraic

stacks.

Observe that dg-Cattri is a strict 2-category, where 2-morphisms are given by ∞-

natural transformations. If I is a small ordinary category and we are given η : I → SchC,

an I-diagram of smooth complex varieties (Xi)i∈I , then the pullback functor F induces

the pseudofunctor:

DrhFη : Iop → dg-Cattri.

i 7→ Db
rh(Xi).

Let D̂rhFη denote the strictification of this pseudofunctor. Recall that D̂rhFη is a strict

2-functor Iop → dg-Cattri equipped with a canonical pseudonatural equivalence DrhFη →

D̂rhFη , satisfying the usual universal property. Thus we may consider D̂rhFη as an ordinary

functor of 1-categories and apply the results of the previous paragraph.

Throughout the rest of this paper, let X be a smooth complex algebraic (Artin) stack

which admits an algebraic variety as a smooth atlas. Let π : X → X be such an atlas. We

may associate to this data the Cech smooth simplicial scheme X• → X . More precisely,

this is the simplicial scheme

π• : ∆op → Schk

[n] 7→ Xn,

where Xn is the (n+ 1)-fiber product of X with itself over X . As above, this induces the

strict 2-functor:

D̂rhFπ• : ∆→ dg-Cattri

This induces the simplicially enriched functor

D̂rhFπ•∆
: ∆→ dg-Cattri∆ ,

where we consider ∆ as a simplicial category. By taking the nerve we have the∞-functor:

D̂rhFπ•∞ : N(∆)→ dg-Cattri∞ .

Definition 17. We define the bounded derived dg-category of regular, holonomic D-

modules on X to be

Db
rh(X ) := lim(D̂rhFπ•∞).

A standard argument shows this to be independent of the choice of atlas. By applying

the ∞-categorical version of Grothendieck’s pseudofunctor/fibred-category equivalence

(§3.3.3.2 [2]) we have the following concrete description of objects of this limit: An object

M ∈ Db
rh(X ) is an assignment for every non-negative integer n, an object MXn ∈ Db

rh(Xn),

and for every morphism φ : [n]→ [m] in ∆ (inducing a morphism fφ : Xm → Xn) an iso-

morphism fFφ (MXm) ∼= MXn , where the collection of such morphisms forms a homotopy-

coherent diagram.
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This concrete description allows us to put a t-structure on Db
rh(X ). Recall that for

a smooth morphism f , of relative dimension d, we have canonical isomorphisms f † ∼=
f ![−d] ∼= fF[d]. Moreover f † is t-exact. Let dπ be the relative dimension of our fixed atlas.

Thus Db
rh(X ) inherits a canonical t-structure given by the following: M ∈ Db

rh(X )≥0 if and

only if MX0 [dπ)] ∈ Db
rh(X0)≥0 and M ∈ Db

rh(X )≤0 if and only if MX0 [dπ)] ∈ Db
rh(X0)≤0.

We define category of regular, holonomic D-modules on X to be the heart of this t-

structure.

4. Constructible Sheaves on Algebraic Stacks

let X be a smooth complex analytic space. Let Sh(X,C) be the C-linear Abelian cate-

gory of sheaves (in the analytic topology) of C-vector spaces on X. We say that a sheaf

F ∈ Sh(X,C), is locally constant constructible, abbreviated as llc, if it is locally constant

and has finite dimensional stalks. We say that F is constructible if it is llc on each piece

of some (analytic) stratification. We denote the full Abelian subcategory of constructible

sheaves on X by Shc(X,C) ⊂ Sh(X,C).

Now let X be a smooth algebraic variety over C and let Xan = X denote its complex

analytification. We say that a sheaf F ∈ Shc(X,C) is algebraically constructible if it

is llc on each piece of some algebraic stratification. We denote this full subcategory by

Shalc(X,C) ⊂ Shc(X,C).

We now define the dg-category of (algebraically) constructible sheaves on X. Let Chb(X,C)

denote the dg-category of bounded complexes of objects in Sh(X,C). Because Sh(X,C) is

a Grothendieck Abelian category we define the bounded, derived dg-category of sheaves in

complex vector spaces on X to be the full sub-dg-category dg-Modb(X,C) ⊂ Chb(X,C)

given by complexes of injective objects. The homotopy category of dg-Modb(X,C) is

just the usual bounded derived category of Sh(X,C).

We define the dg-category of algebraically constructible sheaves on X to be the full

sub-dg-category dg-Modbc(X,C) ⊂ dg-Modb(X,C), given by objects with algebraically

constructible homology. The dg-category dg-Modbc(X,C) is triangulated and we equip it

with the perverse t-structure for the middle perversity (§8.1 [4]).

As in the case of D-modules, these dg-categories are subject to the six functor formalism.

Let X and Y be smooth algebraic varieties over C and f : X → Y be a morphism.

This induces a morphism fan : Xan → Y an. As explained in §4.5 of [4], this induces the

cohomological functors:

f−1 : dg-Modbc(Y
an,C)→ dg-Modbc(X

an,C),
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f∗ : dg-Modbc(X
an,C)→ dg-Modbc(Y

an,C).

f ! : dg-Modbc(Y
an,C)→ dg-Modbc(X

an,C),

f! : dg-Modbc(X
an,C)→ dg-Modbc(Y

an,C),

We again have the following standard facts:

• For f as above we have the adjoint pairs (f−1, f∗) and (f!, f
!).

• For f smooth of relative dimension d there is a canonical isomorphism f−1 ∼=
f ![−2d]. Moreover the functor f−1[d] is t-exact (with respect to the perverse t-

structure).

Let X be a smooth algebraic stack over C, which admits a complex algebraic variety as

a smooth atlas. Let π : X → X be such an atlas. Let X an be the associated complex

analytic stack. By applying the complex analytification functor we get a smooth complex

analytic atlas Xan → X an. From this we may form the Cech smooth simplicial cover as

in the algebraic case, Xan
• → X an. We denote the associated simplicial complex analytic

space by πan• . This gives rise to the pseudofunctor:

Con−1
πan
•

: ∆→ dg-Cattri

[n] 7→ dg-Modbc(X
an
n ,C).

Let Ĉon−1
πan
•

denote the associated strict 2-functor. As in the case ofD-modules we associate

to this data the corresponding ∞-functor:

Ĉon−1
πan
• ∞ : N(∆)→ dg-Cattri∞ .

Definition 18. We define the derived dg-category of algebraically constructible sheaves

on X to be the limit

dg-Modbc(X an,C) := lim(Ĉon−1
πan
• ∞).

Concretely, an object M ∈ dg-Modbc(X an,C) is an assignment for every non-negative

integer n, an object MXn ∈ dg-Modbc(X
an
n ,C), and for every morphism φ : [n] → [m] in

∆ (inducing a morphism fφ : Xm → Xn) an isomorphism f−1
φ (MXm) ∼= MXn , where the

collection of such isomorphisms forms a homotopy-coherent diagram.

Let dπ be the relative dimension of our fixed atlas. As in the case of D-modules, the

triangulated dg-category dg-Modbc(X an,C) inherits a (perverse) t-structure by decreeing

that M ∈ dg-Modbc(X an,C)≥0 if and only if MX0 [dπ] ∈ dg-Modbc(X
an
0 ,C)≥0. We de-

fine the Abelian category of perverse sheaves on X to be the heart of this triangulated

dg-category.
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5. The Riemann-Hilbert Correspondence

Let X be a smooth complex algebraic variety. For M ∈ Db
rh(X) we denote the associ-

ated analytic D-module on the complex analtyic space Xan by Man. Let ΩXan denote the

canonical bundle on Xan. Recall that ΩXan is equipped with a canonical (right) analytic

D-module structure. As explained in §4.2 of [4], we define the de Rham functor:

DRX : Drh(X)→ dg-Modbc(X
an,C)

M 7→ ΩXan ⊗L
DXan M

an.

The Classical Riemann-Hilbert Correspondence. For X a smooth, complex al-

gebraic variety the de Rham functor is a t-exact weak equivalence of triangulated dg-

categories.

Proof. We remind the reader that we have fixed the standard t-structure on for D-

modules and the (middle) perverse t-structure for constructible sheaves. A proof is given

in §7.2.2 of [4]. �

We now extend this result to algebraic stacks. Let X be a smooth complex algebraic stack

which admits an algebraic variety as a smooth atlas. Let π : X → X be such an atlas.

By §7.1.1.1 of [4], if Y and Z are smooth complex algebraic varieties and f : Y → Z is

a morphism then there is a canonical isomorphism of functors:

DRZ ◦ fF ∼= f−1 ◦DRY .

This induces the pseudonatural transformation

DRX : DrhFπ• → Con−1
πan
•
,

[n] 7→ DRXn

This in turn gives rise to the strict-natural transformation

D̂RX : D̂rhFπ• → Ĉon−1
πan
•

By the remark following Theorem 2, a canonical (up to homotopy) morphism

D̂RX∞ : Db
rh(X )→ dg-Modbc(X an,C)

in dg-Cattri∞ . We called D̂RX∞ the ∞-categorical de Rham functor.

The Riemann-Hilbert Correspondence for Stacks. Let X be a smooth complex al-

gebraic stack, which admits an algebraic variety as a smooth atlas. Then the∞-categorical

de Rham functor D̂RX∞ is an equivalence in dg-Cattri∞ . Moreover it induces a canonical

equivalence between the category of regular, holonomic D-modules on X and the category

of perverse sheaves on X .
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Proof. The classical Riemann-Hilbert correspondence implies that the D̂RX becomes

a natural isomorphism after composing each D̂rhFπ• and Ĉon−1
πan
•

with the canonical func-

tor dg-Cattri → h(dg-Cattri∞ ). Applying Theorem 2 we conclude that D̂RX∞ is an

equivalence in dg-Cattri∞ .

The classical de Rham functor is t-exact for the standard t-structure on D-modules

and the perverse t structure on constructible sheaves. It is clear by therefore that D̂RX∞
induces a t-exact morphism in dg-Cattri∞ . This concludes the proof. �
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