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Lecture 1

What is Number Theory

Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest
possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z
is the canonical ring. It structure as a group under addition is very simple: it is the infinite
cyclic group. The mystery of Z is its structure as a monoid under multiplication and the
way these two structure coalesce. As a monoid we can reduce the study of Z to that of
understanding prime numbers via the following 2000 year old theorem.

Theorem. Every positive integer can be written as a product of prime numbers. Moreover
this product is unique up to ordering.

This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern
language this is the statement that Z is a unique factorization domain (UFD). Another deep
fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly
easy to understand - the free commutative monoid with countably infinitely many generators
cross the cyclic group of order 2.

The point is that in isolation addition and multiplication are easy, but together when
have vast hidden depth. At this point we are faced with two potential avenues of study:
analytic versus algebraic. By analytic I questions like trying to understand the distribution
of the primes throughout Z. By algebraic I mean understanding the structure of Z as a
monoid and as an abelian group and how they interact. We shall be taking the algebraic
approach.

Reciprocity

Gauss made many fundamental breakthroughs in Number Theory. The one which he is most
celebrated for is a well known result called quadratic reciprocity. He himself described it as
a golden theorem. I think he proved it when he was 18.
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Theorem. Let p and q be distinct odd primes. The congruence equations

x2 ≡ p (mod q)

x2 ≡ q (mod p)

are either both soluble or insoluble except when both p and q are congruent to 3 modulo 4.
In this case exactly one is soluble.

This theorem looks innocuous, but it is profound. Observe that under multiplication p
and q are completely unrelated. What quadratic reciprocity is saying is that if we throw
addition into the mix then they are. Addition and multiplication are interacting in a highly
non-trivial way. Another way of viewing quadratic reciprocity is as some independent way
of telling whether the congruence x2 ≡ p (mod q) is soluble. This holds the key to how this
result fits into a broader conceptual framework.

Let f(x) be a monic polynomial of degree n with integer coefficients. A very natural question
to ask (the Greeks did it) is how to determine the zeros of f(x) in Q̄ ⊂ C. Up to f(x) of
degree 4 this isn’t so hard: they are soluble by radicals. For degree 2 we have the quadratic
equation. Beyond that things get harder. Galois was the first to truly understand why.
Let E/Q be the minimal subfield of Q̄ containing all the zeros of f(x). This is called the
splitting field of f(x) and is formed by adjoining its zeros to Q. E/Q is a finite exten-
sion. In fact it is Galois. Any finite field extension is called a number field. Understanding
such field extensions is the same as understanding the zeros of f(x), so we’ve translated
the problem into more familiar language. So what we’re really interested in is finite field
extensions of the rationals. Incidentally all Galois finite field extension of Q arise in this way.

Don’t worry if you don’t know what all these words mean. I what to give you an overview.
I’ll introduce them properly later.

Let Gal(E/Q) := field automorphisms of E fixing Q. This group is finite of oder equal
to the dimension of E over Q. The Fundamental Theorem of Algebra tells us that E is
formed by adjoing the n (possibly repeated) roots of f(x) to Q. Fix an ordering on these
roots. Because any element of σ ∈ Gal(E/Q) fixes Q we know that it must permute the
roots. Hence we get an injective homomorphism Gal(E/Q)→ Sn. Observe that there is no
canonical way of doing this so we only obtain a conjuagacy class of subgroups of Sn. Let p
be a prime. We may reduce f(x) mod p to give a polynomial with coefficients in Fp. Factor
this into it’s irreducible in Fp[x] and let n1, ..nr be their degrees. Note that n1 + .. + nr = n.
These numbers naturally give a conjugacy class in Sn, given by permutations with cycle type
(n1, ...nr). The intersection this conjugacy class with any of the images of Gal(E/Q) in Sn

may give more than one conjugacy class in Gal(E/Q). However, if p does not divide the
discriminant of f(x) then this conjugacy class is well defined. Hence for all but finitely many
primes p we have a well defined conjugacy class which we denote by frobp ⊂ Gal(E/E),
the frobenius at p. It is a fact that all of this only actually depends on E and p, not on
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f(x). The prime p is said to split completely in E if is of frobenius class one: that is p does
not divide the discriminant and f(x) splits into linear factors in Fp[x]. Let S(E) denote the
subset of the primes which split completely in E. We have the following remarkable fact:

Theorem. The map from number fields to subsets of the primes given by E → S(E) is
injective.

This is amazing. It tells us that understanding number fields is the same as determining
the image of this map. Any independent way of giving a characterization for this image is
called a reciprocity theorem. Quadratic reciprocity gives us the case when f(x) = x2 + p, so
E = Q(

√
−p). At the end of the nineteen century a categorization was given when Gal(E/Q)

is abelian. This was later generalized to what we now call class field theory - a high point
of early twentieth century mathematics. In 1967 Robert Langlands proposed a complete
reciprocity law. Let me describe the essence of his insight.

Recall that we can spot whether a prime p is contained in S(E) by looking at its frobe-
nius conjugacy class. Conjugacy classes are slippery things so Langlands idea is to consider
a faithful representation

ρ : Gal(E/Q)→ GLm(C),

for some positive integer m. Such a representation is called an Artin representation (after
Emile Artin). For any p not dividing the discriminant the image of frobp gives a semi-simple
conjugacy class in GLm(C). A conjugacy classes in GLm(C) has a well defined characteristic
polynomial. This gives us something solid to play with. For p not dividing the disciminant
we define the local L-factor of ρ at p to be the complex analytic function:

Lp(ρ, s) = det[I − p−s(ρ(frobp))]
−1.

This looks rough but if we choose f(x) = x (so E = Q then Gal(E/Q) is trivial) and the
trivial one dimensional representation then we get

Lp(ρ, s) = (1− p−s)−1.

Recall that in this case a famous theorem of Euler (and later Riemann) states that the
product of all these very simple L-factors gives a meromorphic function on C, and for Re(s) >
1 we get

ζ(s) =
∏

p

(1− p−s)−1,

the Riemann zeta function. Taking a cue from this we define the L-function associated to ρ
to be the formal product

L(ρ, s) =
′∏

p

Lp(ρ, s).

The dash meens we are taking the product only over primes not dividing the discriminant.
This in fact can be proven to converge to a meromorphic function on C. An elementary
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lemma of Dirichlet tells us that we can recover the local L-factors for each p. Also notice
that we can detect from Lp(ρ, s) whether p is contained in S(E). Hence this meromorphic
function knows S(E).

We’ve turned a piece of arithmetic into a piece of analysis. Langlands fundamental in-
sight was there such a function should be naturally associated to another class of object - an
automorphic representation. Automorphic representations are totally analytic. Examples of
such things are modular forms. This is amazing. He is essentially saying that they provide
the key to truly understanding arithmetic. This is the Langlands Philosophy the guiding
force behind a vast swath of modern mathematics. Wile’s proof of Fermat’s Last Theorem
involved proving that the L-functions coming from a certain class of Galois representation
actually came from modular forms

I wanted to tell you this because the central idea is very elegant and often overlooked in
a first course. Clearly there is far too much to cover everything I’ve said here in any depth.
What should be clear is that the language of number fields and Galois groups and their
representations is fundamental to this whole picture. It is these that we’ll study in the most
depth. Hopefully by the end of the course we’ll get to automorphic representations.
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Number Fields

Throughout this section all rings will be commutative with unit.

Dedekind Domains

A number field is a finite field extension E/Q. The simplest example is Q. By construction
we have the inclusion Z ⊂ Q. Q is the field of fractions of Z. It is elementary to show that
Z is a PID, in particular it is Noetherian and all non-zero prime ideals are maximal. This
last statement says that it has Krull dimension 1. The Fundamental Theorem of Arithmetic
tells us that it is a UFD. A not so obvious property is that Z is integrally closed. This means
that if α ∈ Q is a root of a monic polymomial f ∈ Z[X] then α ∈ Z. This is Gauss’ Lemma.
The key algebraic properties of Z which we will be interested in are:

1. Noetherian.

2. Integral domain.

3. Integrally closed.

4. Every non-zero prime ideal is maximal.

Obverse that we’ve left out the fact that Z is a PID. This motivate the following key
definition:

Definition. A ring R is a Dedekind domain if it satisfies the above four properties.

Observe that any fields is a Dedekind domain. We want to generalize this to a number
field E/Q. First let me remind you about the concept of integral dependence and closure.

Let R be an integral domain (not necessarily Dedekind), K its field of fractions. Let L/K
be a finite field extension.
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Definition. The integral closure of R in L is the subset of S ⊂ L such that α ∈ S ⇐⇒
∃f ∈ R[X] monic, such that f(α) = 0.

Proposition. 1. S is a subring of L and is hence a domain.

2. Frac(S) = L.

3. S is integrally closed in L.

Proof. The first and second parts are an elementary exercise. A proof of the third can be
found in §1, of Chapter 5 of Commutative Algebra volume 1 by Zariski/Samuel.

Fundamental Fact 1:

Proposition. Let R be a Dedekind domain, K it’s field of fractions. Let L/K be a finite
separable extension. Let S be the integral closure of R in L. Then S is a Dedekind domain,
Frac(S) = L and S s a finite R-module spanning L over K.

Proof. This is proposition 1 of §4 of the Local Fields chapter of Cassels/Frohlich.

The separability is only required for the finiteness property of S as an R-module. We
now have the following key definition:

Definition. Let E/Q be a finite extension. The ring of integers of E, denoted OE, is the
integral closure of Z in E.

Corollary. Let E/Q be a number field. The ring of integers OE is a Dedekind domain and
is finite and free as a Z-module with rank equal to [E : Q].

Proof. The first part is immediate by the above proposition and the fact that Z is a Dedekind
domain. E/Q is automatically separable because char(Q) = 0. Because OE is a domain we
know that as a Z-module it is finite and torsion free, hence it is free. Because it spans E
over Q we know it must have rank equal to [E : Q].

Remarks. 1. If E/F is a finite extension of number fields then the integral closure of
OF in E is equal to OE. Hence OE is a finitely generated OF -module. Again it must
be torsion free, and by the structure theorem for finitely generated modules over a
Dedekind domain it is projective. In general it will not be free.

2. When we wrote down our initial list of algebraic properties of Z we did not include that
it was a PID. This was because this property is not necessarily preserved under under
finite integral closure. For example: Let E = Q(

√
−5). Then OE = Z[

√
−5]. Observe

that 6 has two distinct factorisations into irreducibles:

6 = 2× 3 = (1 +
√
−5)(1−

√
−5).

We see that in this case the ring of integers is not a PID as it is not a UFD. The initial
algebraic properties of Z we listed were singled out precisely because they are preserved
by finite integral closure.
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Hence we have seen that in general OE is not a PID or even a UFD. In fact it is true that
for a Dedekind domain being a PID is equivalent to being a UFD. At this point this would
seem like a catastrophe - how are we going to come up with the concept of a prime for an
arbitrary number field?

Observe though that if R is a PID then there is a natural bijection between prime
elements (up to association) and prime ideals: a → (a). Hence in Z we could think about
prime numbers as prime ideals. Recall a prime ideal is proper by convention. To recover a
good concept of primes in a Dedekind domain we will switch from the concept of a prime
elements to a prime ideals.

Fractional Ideals

Let R be an integral domain, K it’s field of fractions. For R-submodules I1, I2 of K we
may define the concept of multiplication: I1I2 ⊂ K, generated by products. If I1 and I2

are contained in R then they are ideals in the usual sense and this is just multiplication of
ideals. In particular, if R is a PID and I1 = (a) and I2 = (b), then I1I2 = (ab). We may also
define the concept of addition I1 + I2 ⊂ K in the obvious way. If I1 and I2 are ideals of R
then we say that they are coprime if I1 + I2 = R.

An R-submodule of K is a fractional ideal of R if it is non-zero and there is a non-zero
element a ∈ R such that aI ⊂ R. The simplest example is the free Z-module in Q generated
by a non-zero fraction a ∈ Q. It is clear that the product of two fractional ideals is again a
fractional ideal. The trivial ideal in R is clearly a fractional ideal.

Proposition. Let R a commutative ring, the following are equivalent:

1. R is a Dedekind domain.

2. All fraction ideals are invertible. That is, given I ⊂ K, a fractional ideal ∃J ⊂ K a
fractional ideal, such that IJ = R.

Proof. This is proposition 1 of §2 of the Local Fields chapter of Cassels/Frohlich.

In fact I−1 = {x ∈ K|xI ⊂ R}. Hence for R a Dedekind domain, under the operation
of multiplication, the fractional ideals of R form an abelian group I(R). Observe that if
I ∈ I(R) such that I ⊂ R but I %= R then I−1 is not contained in R.

Fundamental Fact 2:

Theorem. If R is a Dedekind domain then I(R) is free on the non-zero prime ideals of R.

Proof. This is propostion 2 of §2 of the Local Fields Chapter in Cassels/Frohlich.

Hence given I ∈ I(R) , there is a unique decomposition

I =
∏

p

pvp(I),
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where the vp(I) ∈ Z are zero for all but fintely many p. Clearly I ⊂ R ⇐⇒ vp(I) ≥ 0 ∀p.
Two ideals of R are coprime ⇐⇒ they share no common prime factor.

Observe that there is a natural homomorphism of abelian groups:

K∗ −→ I(R)

x −→ (x)

Here (x) denotes the free R-submodule of K generated by x. The kernel of this map is R∗.
The quotient is called the ideal class group of R. We get the exact sequence:

1→ R∗ → K∗ → I(R)→ CL(R)→ 1,

Where we define CL(R) to be the ideal class group of R. It is an astounding fact, due
to L. Claborn, that given any abelian group G, there exists a Dedekind domain such that
CL(R) ∼= G. It is clear from the definition that CL(R) = 1 ⇐⇒ R is a PID (equivalently
a UFD). For number fields we have the following finiteness condition:

Theorem. For E/Q a number field, CL(OE) is finite.

Proof. This result is due to Dedekind and Kronecker. It’s theorem 50 of The Theory of
Algebraic Number Fields by Hilbert. The proof uses Minkowski’s approach to the geometry
of numbers.

As we vary across different number fields the behaviour of these groups is very mysterious.
We write h(E) := |CL(OE)|, for the class number of E. Gauss conjectured the following
very odd result: the only positive integral values of d such that h(Q(

√
−d) = 1 are d = 1, 2,

3, 7, 11, 19, 43, 67, 163. This was first proven by a German high school teacher called Kurt
Heegner, but no one believe him at first.

It is worth remarking at this point the formal similarity between these ideas and that the
Picard group of a smooth projective curve over C. (equivalently a compact Riemann sur-
face). In that setting K is replaced by the field of meromorphic functions on your curve
and I(R) is the replaced by the divisor group of the curve (the free abelian group on it’s
closed points). The reason that these two cases are so similar is that the number fields and
transcendence degree one extensions of C share some vary strong algebraic properties. We’ll
discuss this further then we start talking about completions of a number field.
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Relative Extensions

Let E/F be an extension of number field. Let P ⊂ OE be a non-zero prime ideal. Recall
that it is also maximal.

Proposition. P ∩ OF = p ⊂ OF is a non-zero prime ideal.

Proof. The fact that p is a prime ideal is elementary. To show it is non-zero, let b ∈ P Hence
it must be the root of a monic polymomial f(x) ∈ OF [X]. Recall that OE is a domain hence
we may assume that the constant coefficient of f(x) is non-zero. If f(x) = a0+a1X...+anXn

then
a0 = −(a1b + a2b

2 + ... + anb
n) ∈ p.

For E/Q a number field and P ⊂ OE a non-zero prime ideal we define the residue field
at P to be FP = OE/P. If E/F is a finite extension of number fields, keeping the above
notation, P ∩ OF = p then FP is naturally a field extension of Fp.

Proposition. FP/Fp is a finite field extension.

Proof. This follows immediately from the fact that OE is a finitely generate OF -module.

Proposition. Let R be a Dedekind domain. Let I, J ⊂ R be two ideals. Then I ⊂ J ⇐⇒
J |I.

Proof. J |I ⇒ I ⊂ J is trivial. Assume that I ⊂ J . Because every fractional ideal of R
is invertible we may choose an ideal J ′ ⊂ R such that JJ ′ = (a) for some a ∈ R. Then
IJ ′ ⊂ (a) so H = (a−1)IJ ′ ⊂ R is an ideal. Now

HJ = (a−1)IJ ′J = (a−1)I(a) = I.
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So in a Dedekind domain inclusion of ideals is the same as division of ideals. Keeping the
above notation, if pOE ⊂ OE is generated by p then pOE ⊂ P and we deduce that P|pOE.
In this case we say that P divides p, or that P lies over p.

Proposition. If P ⊂ OE is a prime ideal then is divides one and only one prime p ⊂ OF .

Proof. By the above we know that P divides at least one prime. Assume that P divides the
distinct prime ideals p1 and p2. Note that because these two primes are distinct they are
coprime and hence p1 + p2 = OF . Hence they generate the unit ideal in OE. By assumption
this implies P|OE, a contadiction as P is a proper ideal.

Let p ⊂ OF be a prime ideal. Let P|pOE. We define the ramification index to be

e(P/p) = vP(pOE).

Similarly we define the residue class degree to be:

f(P/p) = [FP : Fp].

These behave well with respect to towers of extensions, i.e. if K/E/F are number fields and
we have a three primes P ∈ OK , P ⊂ OE and p ⊂ OF such that P|POK and P|pOE, then
e(P/p) = e(P/P)e(P/p) and f(P/p) = f(P/P)f(P/p).

We know we may completely factor pOE as follows:

pOE = Pe1
1 .....Pem

m ,

for some m ∈ N, where each Pi is a prime ideal of OE and ei = e(Pi/p). For simplicity of
notation we write fi = f(Pi/p).

Theorem.
∑m

i=1 eifi = [E : F ].

Proof. This is proposition 1 of §10 of the Local Fields chapter of Cassels/Frohlich.

Definition. Let p ⊂ OF be a prime ideal.

1. We say that p ramifies in E ⇐⇒ some ei > 1.

2. We say the p is unramified in E ⇐⇒ ei = 1 ∀i.

3. We say that p splits completely in E ⇐⇒ e1 = fi = 1 ∀i.
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Galois Extensions

Now assume that E/F is a Galois extension. For a general field extension this means that
it is algebraic (automatic in our case because it is finite) and if Aut(E/F ) = field automor-
phisms of E fixing F then EAut(E/F ) = F . In this case we write Gal(E/F ) = Aut(E/F ), the
Galois group of E/F . Clearly Gal(E/F ) preserves OE. It is a standard result from basic
Galois theory that if E/F is finite then [E : F ] = |Gal(E/F )|.

Let P ⊂ OE be a prime ideal and σ ∈ Gal(E/F ). We denote by σP ⊂ OE the image
of P under σ. It is elementary to show that σP is a prime ideal and if p ⊂ OF is a
prime ideal such that P|pOE then σP|pOE. It is clear also that e(P/p) = e(σP/p) and
f(P/p) = f(σP/p)

Proposition. Let E/F be a Galois extension of number fields. Let p ⊂ OF be a prime ideal.
Then Gal(E/F ) acts transitively on the primes dividing p.

Proof. This is proposition 2 of §10 of the Local Fields chapter of Cassels/Frohlich.

Corollary. Let E/F be a Galois extension of number fields. Let p ⊂ OF be a prime ideal. If
P ⊂ OE is a prime ideal dividing pOE then it’s ramification index and residue class degree
only depend on p.

Ramification, Traces and Norms

Let E/F be a finite extension of number fields. Given x ∈ E there is a natural F -linear
maps of vector spaces:

φx : E −→ E

y −→ xy

Thinking about this as a map of finite dimensional F -vector spaces we may compute it’s
trace and determinant:

Definition. 1. We define the Trace map of E/F by:

TrE/F : E −→ F

x −→ trace(φx)

2. We define the Norm map of E/F by:

NE/F : E −→ F

x −→ det(φx)

It is easy to show that TrE/F (OE) ⊂ OF and NE/F (OE) ⊂ OF
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Proposition. The trace map defines a non-degenerate, symmetric F -bilinear form:

B : E × E −→ F

(u, v) −→ TrE/F (uv).

Proof. This is in proposition 1 of §4 of the Local Fields chapter of Cassels/Frohlich. It is a
general fact about finite separable field extensions.

Definition. Let {x1, ....xn} ⊂ E be an F -basis. We define ∆(x1, ..., xn) = det(B(xi, xj)).

We see that {x1, ....xn} ⊂O E ⇒ ∆(x1, ..., xn) ∈ OF .

Definition. We define the relative discriminant of E/F , D(E/F ) ⊂ OF as the ideal gener-
ated by all ∆(x1, ..., xn), where {x1, ....xn} ⊂O E are an F -basis for E.

Key Property of Relative Discriminant:

Theorem. Let E/F be an extension of number fields. Let p ⊂ OF be a prime ideal. The p
ramifies in E ⇐⇒ p|D(E/F ).

Proof. This is Corollary 1 of §5 of the Local Fields chapter of Cassels/Frohlich.

Corollary. Let E/F be a finite extension of number fields. All but finitely many prime ideals
p ⊂ OF are unramified in E.

Proof. By the previous theorem we know that a prime ideal p ⊂ OF ramifies in F ⇐⇒
p|D(E/F ). But OF is a Dedekind domain, hence only finitely many primes ideal can divide
D(E/F ).

The Artin Map

Let E/F be a Galois extension of number fields, p ⊂ OF a prime ideal. Let us assume
that pOE splits into prime ideals in OE as above. We know that in this situation all the
ei are equal and all the fi are equal. We will denote their common value by e(p) and f(p)
respectively. Combining several of the above results we know that

|Gal(E/F )| = [E : F ] = m× e(p)× f(p).

Let P ⊂ OE be one of the primes dividing pOE.

Definition. The decomposition group at P is

G(P) := {σ ∈ Gal(E/F )|σP = P}.

Viewing Gal(E/F ) as a finite group acting on the set of primes dividing p this is clearly
the stabiliser group of P. Recall that Gal(E/F ) preserves OE (and trivially fixes OF ).
Hence if σ ∈ Gal(P) then it naturally gives rise to a field automorphism of FP which fixes
Fp. FP/Fp is an extension of finite fields, and is consequently Galois. Hence we get a natural
map homomorphism of groups:

η : G(P) −→ Gal(FP/Fp).
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Proposition. η is surjective.

Proof. This is proposition 14 of §5 of Chapter 1 of Algebraic Number Theory by Serge
Lang.
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Let E/F be a Galois extension of number fields, with Galois group Gal(E/F ). Let p ⊂ OF

be a non-zero prime ideal. We have the non-zero prime factorisation (in OE)

pOE = Pe
1....P

e
m,

where e = e(p), the ramification index. All the exponents are equal because the extension is
Galois. Recall that for almost all such p, e(p) = 1. Similary the residue class degrees of each
Pi over p are all equal and we denote their common value by f(p). We know from lecture 3
that

|Gal(E/F )| = [E : F ] = m× e(p)× f(p).

Let P = Pi for some i ∈ {1, ....,m}. Recall that decomposition group at P is

G(P) := {σ ∈ Gal(E/F )|σP = P}.

The action Gal(E/F ) on the primes dividing p is transitive. Thinking about Gal(E/F ) as a
finite group acting on the set of m primes dividing p, we see by the orbit-stabiliser theorem
that |G(P)| = e(p)× f(p).

We also observed that there was naturally a homomorphism

η : G(P) −→ Gal(FP/Fp),

which was in fact surjective.

Definition. The kernel of η, denoted T (P), is the inertia subgroup of Gal(E/F ) at P.

Proposition. |T (P)| = e(p).

Proof. We know that |Gal(FP/Fp)| = [FP : Fp] = f(p). Because η is surjective and |G(P)| =
e(p)× f(p) we deduce from the 1st isomorphism theorem that |T (P)| = e(p).

Hence for almost all non-zero primes p ⊂ OF (i.e. those not dividing D(E/F )) we know
that G(P) ∼= Gal(FP/Fp) for every non-zero prime P ⊂ OE dividing p.
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Interlude on Galois Theory for Extensions of Finite Fields

Let F be a finite field. Because it is finite we know that char(F) = p for some prime p ∈ Z.
This tells us that Fp ⊂ F and consequently |F| = pn = q, for some n ∈ N. Recall that
any finite multiplicative subgroup of a field is cyclic. Hence F∗ is cylic of order q − 1. In
particular no element has multiplicative order p.

Recall that on any ring of characteristic p there is a canonical endomorphism called the
absolute frobenius, Frobp : x→ xp. We say that a ring of characteristic p is perfect if Frobp

is an automorphism. By the above remarks it is clear that F is perfect.
It is a well known fact that F is uniquely determined up to isomorphism by its cardi-

nality. Hence we may write F = Fq without any ambiguity. Conversely, given any q = pn

for n ∈ N there exists a finite field of order q. If q = pn and r = pm such that n|m ⇒
Fq ⊂ Fr. In this case Fr/Fq is finite and Galois. There is a canonical Frobenius element
Frobq = (Frobp)n ∈ Gal(Fr/Fq), which acts on Fr by Frobq : x → xq. This element natu-
rally generates Gal(Fr/Fq), and we deduce that it is cyclic.

All of these facts can be found in any elementary textbook on Galois Theory.

Back to the Artin Map

Keeping the above notation let us assume that e(p) = 1. Hence η : G(P) → Gal(FP/Fp) is
an isomorphism. Let FrobP ∈ Gal(FP/Fp), be the Frobenius.

Definition. The Frobenius element at P is

(E/F,P) := η−1(FrobP) ∈ G(P) ⊂ Gal(E/F )

If K/E/F is a tower of number fields, all extension being Galois, then there is a natural
restriction homomorphism :

resE : Gal(K/F ) −→ Gal(E/F ).

If P ⊂ OK is a non-zero prime ideal lying over P ⊂ OE then it is not hard to show that

resE((K/F,P)) = (E/F,P).

In his sense the Frobenius respects field extensions.

Let F be a field and F̄ denote an algebraic closure of F . It is a standard fact that F̄
is unique up to isomorphism. By the fundamental theorem of algebra, if F is a number field
we may naturally consider F̄ ⊂ C. In this case, because F/Q is finite (hence algebraic)
we may identify F̄ and Q̄. Here F̄ /F is not finite, because of the existence of irreducible
polynomials over Q of arbitrary degree.

Definition. Let E/F and K/F be two extensions of F contained in F̄ . The compositum of
E and K, denoted by EK, is the minimal subfield of F̄ containing E and F .
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Let us now restrict to the case where E, F and K are number fields. Furthermore let us
assume that E/F and K/F are both Galois. It is not hard to show that EK/F is a Galois
extension and there is a natural injective homorphism:

φ : Gal(EK/F ) −→ Gal(E/F )×Gal(K/F )

σ −→ (resE(σ), resK(σ))

In general φ is not an isomorphism, except in the case when E ∩K = F . If P ⊂ OEK is a
non-zero rime ideal lying over P ⊂ OK and P ⊂ OE then it is true that:

φ((EK/F, P)) = ((E/F,P), (K/F,P)).

In this sense the Frobenius element respects composition of fields.

Let σ ∈ Gal(E/F ). Then G(σP) = σG(P)σ−1. Consequently (E/F, σP) = σ(E/F,P)σ−1.
Hence, in general there is no canonical way of associating a Frobenius element to a non-zero
prime ideal p ⊂ OF . Instead we have:

Definition. Let p ⊂ OF be a non-zero prime ideal and P ⊂ OE a non-zero prime ideal lying
over p. We define the Frobenius class at p to be the conjugacy class

Frobp := {σ(E/F,P)σ−1|σ ∈ Gal(E/F )} ⊂ Gal(E/F )}.

Because Gal(E/F ) acts transitively on the primes lying over p and the previous comment
this is well defined. Observe that Frobp = {1} ⇐⇒ p splits completely in E.

We say that E/F is Abelian if Gal(E/F ) is an Abelian group. This is a very restrictive
property. Global Class Field Theory gives a way of classifying such extensions. It crucially
relies on the fact that in this case Frobp is a well defined element of Gal(E/F ). We will
return to this once we have introduced the important concept of a local field.

Tchebotarev Density Theorem. Let E/F be Galois extension of number fields. Let
C ⊂ Gal(E/F ) be a conjugacy class. Then the primes p ⊂ OF such that Frobp = C
have density |C|/|Gal(E/F )| in the set of all non-zero prime ideals. In particular there are
infinitely many such primes.

Remarks. 1. By density we mean density in the sense of Dirichlet, i.e. If F = Q then
the density of S, a subset of the primes numbers equals the limit as n tends to ∞ of

(Number of elements of S less than n) / (Number of primes less than n).

2. This theorem is deep because it exhibits a link between the distribution of the primes
and their algebraic behaviour.
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Theorem. Let E/F and K/F be two Galois extensions of number fields (thought of as both
lying in a fixed algebraic closure F̄ ). Let Spl(E/F ) and Spl(K/F ) denote the subset of
non-zero prime ideals in OF which split completely in E and K respectively. Then

E ⊂ K ⇐⇒ Spl(K/F ) ⊂ Spl(E/F ).

Proof. If E ⊂ K we know by the multiplicative behavior of ramification index and residue
class degree in towers of extensions that Spl(K/F ) ⊂ Spl(E/F ). Let us assume that
Spl(K/F ) ⊂ Spl(E/F ). Let p ⊂ OF be a non-zero prime ideal. Observe that because
Frobenius respects composition of fields

p splits completely in EK ⇐⇒ p splits completely in both E and K.

Hence in general we have Spl(EK/F ) = Spl(E/F ) ∩ Spl(K/F ). We deduce that

Spl(K/F ) ⊂ Spl(E/F )⇒ Spl(EK/F ) = Spl(K/F ).

By the Tchebotarev density theorem we deduce that [EK : F ] = [K : F ]⇒ E ⊂ K.

Hence number fields which are Galois over Q are determined (up to isomorphism) by the
primes in Z which split completely. Let me give you another powerful consequence of the
density theorem.

Crash Course on Cyclotomic Fields

Let n ∈ N. Fix ζn ∈ C, a primitive nth root of unity. We denote by Q(ζn), the splitting field
of f(x) = xn − 1. Q(ζn)/Q is finite and Galois. If σ ∈ Gal(Q(ζn)/Q) then σ(ζn) is again a
primitive nth root of unity. This establishes an isomorphism

χ : Gal(Q(ζn)/Q) −→ (Z/nZ)∗,

where σ(ζn) = ζχ(σ)
n . Hence Q(ζn)/Q is an Abelian extension. It can be shown that a prime

p ∈ Z ramifies in Q(ζn) if and only if p|n. Note that because Z is a PID we can freely switch
between the concept of an ideal and a positive integer. Hence given p ∈ Z coprime to n we
get a canonical element Frobp ∈ Gal(Q(ζn)/Q).

Proposition. Frobp(ζn) = ζp
n

Proof. This is the proposition in §3.4 of Tate’s article on Global Class Field Theory in
Cassels/Frohlich.

Dirichlet’s Theorem on Arithmetic Progressions. Let a ⊂ Z be coprime to n. Then
the arithmetic progression S = {a + kn|k ∈ N} contains infinitely many primes.

Proof. Because a is coprime to n is defines a unique element of (Z/nZ)∗, which we denote by
[a]. By the Tchebotarev density theorem the know that there exist infinitely many primes
p ∈ Z such that χ(Frobp) = [a]. But by the previous proposition we know that this occurs
precisely when a and p are congruent modulo n. Hence there are infinitely many such
primes.

The Tchebotarev density theorem is a vast generalization of this result.
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Local Fields

The rational numbers come equipped with a canonic metric: For x, y ∈ Q we define d(x, y) :=
|x− y|, where |.| denotes the standard absolute value. Completion of Q with respect to this
metric gives R. R inherits a canonical metric and is complete with respect to it. Heuristically
we see that to truly understand Q we much understand R. Let us examine, in abstraction
the process of completion.

Absolute Values and Valuations

Let F be a field.

Definition. A discrete valuation is a function v: F ∗ −→ Z, such that

1. v(xy) = v(x) +v(y) ∀x, y ∈ F ∗

2. v(x + y) ≥ min{v(x), v(y)} ∀x, y ∈ F ∗

Remarks. The example we will be interested in is when F is a number field. In this case
we know there is a natural homorphism:

F ∗ −→ I(OF )

x −→ (x)

The latter is the free abelian group on the set of non-zero prime ideals of OF . Hence for any
non-zero prime ideal p ⊂ OF we get the valuation vp which sends x ∈ F ∗ to the exponent of
p in the prime factorization of (x) ∈ I(OF ).

Definition. A discrete valuation ring (DVR) is a PID with only one non-zero prime ideal.
A domain R is a DVR ⇐⇒ F = Frac(R) admits a discrete valuation, v such that

R = {x ∈ F ∗|v(x) ≥ 0} ∪{ 0}.
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Because a PID is always integrally closed we deduce that R is a DVR ⇐⇒ R is
a Dedekind domain with exactly on non-zero prime ideal. Being a Dedekind domain is
preserved under localisation at a prime ideal. Hence If R is a Dedekind domain, and p ⊂ R
is a non-zero prime ideal then Rp is a DVR. Conversely, a Noetherian domain R which is not
field is Dedekind ⇐⇒ for every non-zero maximal ideal p ⊂ R, Rp is a DVR. All of these
results are very standard and can be found in An Introduction to Commutative Algebra by
Atiyah and Macdonald.

Definition. Let F be a field. An absolute value on F is a function |.| : F −→ R+ such that:

1. |x| = 0 ⇐⇒ x = 0.

2. ∀x, y ∈ F |xy| = |x| ×| y|.

3. ∀x, y ∈ F |x + y| ≤ |x| + |y|.

These conditions force |1|2 = |1|, so |1| = 1. Similarly | − 1| = 1 Hence |1/x| = 1/|x| and
| − x| = |x| for all x ∈ F ∗. The canonical example of a field with an absolute value is any
subfield of C together with the usual absolute value.

If (F, |.|) is a field with an absolute value then we may canonically define a metric on
F : for x, y ∈ F d(x, y) := |x − y|. We may define the trivial absolute value on a field by
|x| = 1 ∀x ∈ F ∗. In general we will be interested in non-trivial absolute values. The resulting
topology on F makes it a topological field.

Let (F, v) be a Field together with a discrete valuation. Fix c ∈ (0, 1). We may define
the absolute value |.|v,c on F by

|.|v,c : F −→ R+

x −→ cv(x)

Strictly speaking this function is not defined at zero so we set |0|v,c = 0.

Theorem. Let |.| and |.|′ be two absolute values on a field F . Then they induce the same
topology on F ⇐⇒ there exists e > 0 such that |.|′ = |.|e.

Proof. This is the second lemma of §4 of the Global Fields Chapter of Cassels/Frohlich.

We call two such absolute values equivalent. We deduce from this result that if (F, v)
is a field with discrete valuation then the topology defined above by the absolute value is
independent of the choice of c.

Definition. Let (F, |.|) be field together with an absolute value. We say that |.| is non-
archimedean if the ultrametric triangle inequality holds:

∀x, y ∈ F |x + y| ≤ max{|x|, |y|}.

If this does not hold we say that |.| is archimedean.
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This is a very strong condition. For example, it forces |k| ≤ 1 for all k ∈ Z. Any absolute
value coming from a discrete valuation is non-archimedean. If |.| is a non-archimedean
absolute value on F then all equivalent absolute values are non-archimedean.

Theorem. Any field F with an archimedean absolute value is isomorphic to a subfield of C,
the absolute value being equivalent to the one induced by the absolute value on C.

Proof. See pages 45 and 67 of The Theory of Algebraic Numbers by E. Artin.

So fields with archimedean absolute values are familiar objects. Let us now focus on the
non-archimedean case.

Let (F, |.|) be a field together with a non-archimedean absolute value. Let a ∈ F and
r ∈ R r > 0. The closed ball of radius r around a defined to be

B̄r(a) := {x ∈ F ||x− a| ≤ r}.

Let b ∈ B̄r(a). Consider the open ball of radius r/2 around b,

Br/2(b) := {x ∈ F ||x− b| < r/2}.

Observe that if c ∈ Br/2(a) then

|c− a| = |(c− b) + (b− a)| ≤ max{|c− b|, |b− a|} ≤ r.

Hence Br/2(b) ⊂ B̄r(a). We deduce that B̄r(a) is in fact open! A similar argument shows
that all triangles in F are isosceles!

Definition. A topological space is totally disconnected if the only non-empty connected sub-
sets are one point sets.

Theorem. Let (F, |.|) be a field with a non-archimedean absolute value. Then F is totally
disconnected under the induced topology.

Proof. Let X ⊂ F be a connected subset having two distinct points x0, x1 ∈ X. Choose
r > 0 such that r < |x0 − x1|. We have a disjoint union

X = (X ∩ {|x− xo| ≤ r}) ∩ (X ∩ {|x− xo|r})
By the above we know that each piece is open (the the subset topology) in X. Note that
each piece is non-empty as x0 is in the first and x1 is in the second. This contradicts the
assumption that X is connected.

Hence the topology in the non-archimedean case is wildly different than in the archimedean
case.

Observe that in the non-archimedean setting R = {x ∈ F ||x| ≤ 1} is a subring. Similarly
M = {x ∈ F ||x| < 1} is an ideal. It is clear by the muliplicative behavior of |.| that
a ∈ R∗ ⇐⇒ |a| = 1. We deduce that R is a local ring with M as its unique maximal ideal.
Both of these only depend on |.| up to equivalence. Hence we may associate to F a residue
field R/M .
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Back to Number Fields

Let F be a number field. We saw that any non-zero prime ideal p ⊂ OF gives rise to a
valuation on F . Hence by the above it gives an equivalence class of non-archimedean absolute
values. Let N(p) = |Fp|. We normalise the absolute value so that |x|p = (N(p))−vp(x) for all
x ∈ F ∗. In this case, R is the localisation of OF at p and the residue field is just Fp.

Also observe that given σ : F −→ C an embedding we get an induced absolute value
|x|σ = |σ(x)|. This gives an example of an archimedean absolute value on F . It is a fact
that there are precisely [F : Q] distinct such embeddings.

Fundamental Fact:

Theorem. Let F/Q be a number field. Every non-trivial non-archimedean absolute value
on F is equivalent to |.|p for a unique non-zero prime ideal p ⊂ OF . Up to equivalence,
every archimedean absolute value of F is induced by an embedding σ : F −→ C, and two
such embedding give rise to equivalent absolute values if and only if they coincide or differ
by complex conjugation.

Proof. In the case F = Q this is a famous theorem of Ostrowski. The general case can be
deduced from that.

Definition. Let F be a number field. By a place of F we mean an equivalence class of a
non-trivial absolute value on F . We denote a place by v.

By the above the places are indexed by non-zero prime ideals of OF and embeddings
σ : F −→ C up to complex conjugation. We call the non-archimedean places finite and the
archimedean ones infinite.

If σ : F −→ C is an embedding then we say that it is a real embedding if it’s image is
contained in R. If not then we say it is complex.

The following important result links the infinite and finite places:

Theorem. Let F be a number field. For x ∈ F ∗

∏

v|∞

|x|e(v)v ·
∏

v finite

|x|v = 1.

Where e(v) = 1 if v comes from a real embedding and e(v) = 2 is v comes from a complex
embedding.

Proof. This is the Theorem in §12 of the chapter on Global Fields in Cassels/Frohlich.
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There is a very strong analogy between the above and the theory of smooth projective
algebraic curves over C (or any algebraically closed field). Let X be such a curve and x ∈ X
be a closed point. Being smooth at x is equivalent to the stalk of functions at x, denoted
OX,x, being regular local ring of dimension 1. This is equivalent to being a DVR. Hence
Frac(OX,x) is a field together with a discrete valuation. Intuitively this is the order of
vanishing of a meromorphic function at x. The natural embedding KX −→ Frac(OX,x) ,
induces a discrete valuation on KX . Hence as above, for every such x, we get an equivalence
class of absolute values on KX . As above this gives all non-trivial places on KX , one for each
closed point. There is an equivalence between transcendence degree one field extensions of C
and smooth projective algebraic curves over C. Hence we may define an abstract algebraic
curve over C as a transcendence degree one field extension of C together with it’s non-trivial
places. This definition is given in §1 of Hartshorne. Observe that unlike the number field case
all places are non-archimedean. This makes this theory, although analogous, fundamentally
easier.

Completions

Given an absolute value |.| on a field F , we may naturally complete F with respect to |.|.
We denote the completion by F̂ . Recall that F̂ is the set of Cauchy sequences, modulo
null sequences. Observe that the process of completion preserves the algebraic structure, in
particular F̂ is again a field. By the completeness of R, F̂ inherits an absolute value, which
we also denote by |.|. It is a simple exercise to show that (F̂ , |.|) is complete.

Proposition. Let (F, |.|) be a field together with an archimedean absolute value. Then F̂ is
isomorphic to R or C and the absolute value is equivalent to the standard one in each case.

Proof. By a previous theorem we know that F is isomorphism to a subfield of C, and with
respect to this embedding |.| is equivalent to the standard absolute value. Let us denote
this embedding by φ. If φ is a real embedding then because Q ⊂ F we deduce that F̂
is isomorphic to R, and the induced absolute value is equivalent to the standard one. If
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φ is complex then the completion must isomorphic C, and the induced absolute value is
equivalent to the standard one.

Hence up to equivalence the only complete archimedean fields are R and C , together
with their usual absolute values. The situation in the non-archimedean case is radically
different.

Proposition. Let (F, |.|) be a field together with a non-archimedean absolute value. Then
|F̂ | = |F | ⊂ R+.

Proof. Let a = (an)n∈N ∈ F̂ be a Cauchy sequence in F . Then (|an|)n∈N is a Cauchy
sequence in R+. By definition |a| is the limit of this sequence. Assume that l = |a| #= 0.
Hence ∃N ∈ N such that |an| > l/2 and |an−am| < l/2 ∀n, m > N . By the non-archimedean
property we know that |an − am| ≤ max{|an|, |am|} and that if |an| and |am| are distinct
then equality must hold. By our choice of N , we deduce that |an| = |am| ∀n, m > N . Hence
|an| = l ∀n > N .

Hence if |.| is an absolute value coming from a discrete valuation then |F̂ ∗| ⊂ R+ is a
discrete subset. Also observe that the inherited absolute value is again non-archimedean.

Proposition. Let (F, |.|) be a field together with a non-archimedean absolute value. Let F̂
be the completion. Then the residue field of F is isomorphic to the residue field of F̂ .

Proof. Let F and F̂ be the reside fields of F and F̂ respectively. There is clearly an embedding
φ : F −→ F̂. Observe that if ā ∈ F̂∗ then it has a representative a = (an)n∈N ∈ F̂ such that
|a| = 1. This implies ∃N ∈ N such that |an| = 1 and |an− am| < 1/2 ∀n > N . Let āN+1 ∈ F
be the element of the residue field given by aN+1. Then φ(āN+1) = ā, and we deduce that φ
is surjective and hence an isomorphism.

Here are two general facts about complete fields:

Theorem. Let (F, |.|) be a field together with an absolute value. Assume further that F is
complete. Let E/F be an algebraic extension. Then there is a unique absolute value on E
extending that on F . If E/F is finite then with respect to this absolute value E is complete.

Proof. This is the theorem in §10 of the Global Fields Chapter of Cassels/Frohlich

Theorem. Let (F, |.|) be a field together with two non-trival non-archimedean absolute values
|.| and |.|′. Assume furthermore that F is complete with respect to both. Then |.| and |.|′ are
equivalent.

Proof. This can be found on page 104 of Frohlich/Taylor.

Definition. Let (F, |.|) be a field together with a non-archimedean absolute value. Assume
further that |.| is induced by a discrete valuation, that F is complete and that the residue
field is of finite cardinality q ∈ N. Then we say that F is a non-archimedean local field.

2



Some authors have a slightly more general definition, demanding only that the residue
field be of finite characteristic and perfect. By an archimedean local field we mean a
topological field topologically isomorphic to R or C.

Let F be a non-archimedean local field. Let R ⊂ F be the valuation ring, with maxi-
mal ideal m ⊂ R. Then R is a DVR and hence m is principal. Fix π ∈ m such that
(π) = m. Observe that |π| < 1 and that |x| ≤| π| ∀x ∈ m. Hence |π| maximal for in the set
{|x| ∈ R+ |x ∈ m}. We deduce that all α ∈ R can be written uniquely in the form α = πeε,
for e a positive integer and ε ∈ R∗. Observe π is unique up to multiplication by a unit in R.

Proposition. Every element α ∈ R can be written uniquely in the form

α =
∞∑

n=0

anπ
n,

where the an run through some fixed set Σ of representatives in R of R/m.

Proof. There is a uniquely defined a0 ∈ Σ such that |α−a0| < 1. Then α1 = π−1(α−a0) ∈ R.
Now define a1 ∈ Σ by |α1 − a1| < 1. And so on.

Corollary. Every α ∈ F can be written uniquely in the form

α =
∞∑

n=e

anπ
n,

where e ∈ Z and aj /∈ m. Moreover |α| = |π|e.

Proof. By the above we know that there exists a unique e ∈ Z such that α = πeε, where
ε ∈ R∗. By the above proof we know that we may expand ε as a power series in π with
coefficients in Σ and that the leading term in this expansion is not in m. Multiplying this
power series by πe yields the result.

One should think about this as a decimal expansion. The concept is totally analogous. Be-
cause Σ is finite we see that K has the same cardinality as R.

Observe that R is the disjoint union of q open balls of radius 1. Each of these is in turn
the disjoint union of q open ball of radius |π|. By induction we see that for n ∈ N, R is the
disjoint union of qn disjoint open balls of radius |π|n−1. The topology is completely different
to the standards one on R (or indeed C).

Observe also that R is algebraically complete with respect to m, i.e. the natural ring
homomorphism R −→ lim←−n∈N R/mnR is an isomorphism. Furthermore it is a homeomor-

phism for the product topology on the projective limit after giving each R/mnR the discrete
topology. By our assumption on the finiteness of the residue field each R/mnR is finite.
Hence by Tychonoff’s theorem R is compact. Hence we deduce
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Theorem. Let F be a non-archimedean local field. Then F is locally compact.

Proof. Let a ∈ F , r ∈ R r > 0. F is a topological field, hence the closed ball B̄r(a) is
homeomorphic to R. We deduce that B̄r(a) is compact. Thus there is a neighborhood of a
which is compact.

Note that both R and C are locally compact for the same reason - closed balls are
compact.

Proposition. Let F be a non-archimedean local field. If we give F ∗ the subspace topology,
the it is a locally compact topological group.

Proof. By the above we know that F ∗ is locally compact in the subspace topology. It is
clearly a topological group as multiplication and taking reciprocals are continuous.

In a moment we shall see examples of topological rings where the multiplicative group of
units is not a topological group under the induced subspace topology. The reason that this
result is important is that locally compact topological groups admit a unique (up to scalar)
left (and right) Haar measure. Consequently we’ll be able to introduce the full power of
measure theory into our study.

Extensions of Non-Archimedean Fields

Let R be a discrete valuation ring of characteristic zero, which is complete with respect to
the induced topology. Let F = Frac(R). Fix a representative of the equivalence class of
absolute values on F . R is the valuation ring of F . Let E/F be a finite extension of complete
non-archimedean fields such that the restriction of the absolute value on E to F , equals the
one on F . Recall that by completeness this uniquely determines the absolute value on E.
Conversely, if F is a non-archimdean field and E/F is a finite extension, then there is a
unique complete absolute value on E extending that on F

Recall that a DVR is a Dedekind domain with one non-zero prime ideal. Let S ⊂ E is
the integral closure R in E. By the abstract algebraic properties of Dedekind domains we
know that that S is a Dedekind domain and is a free R-module of rank [E : F ]. Moreover
it must be a have only finitely many non-zero prime ideals and is hence a DVR. It is a fact
that S is the valuation ring of E with respect to the absolute value. Let p ⊂ R and P ⊂ S
be the non-zero prime ideals. We also know that

pS = Pe

for some e ∈ N. We call this the ramification index of E/F and we denote it by e(E/F ).
If FE and FF are the respective finite residue fields we know that FE is a finite field

extension of FF . The degree of this extension is called the residue degree denoted f(E/F ).

Proposition. [E : F ] = e(E/F )f(E/F )

Proof. This is proposition 3 of §5 of the chapter on Local fields in Cassels/Frohlich.
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Definition. 1. We say that E/F is unramified if e(E/F ) = 1

2. We say that E/F is totally ramified if f(E/F ) = 1

3. We say that E/F tamely ramified if the characteristic of the residue fields does not
divide e(E/F ).

4. We say that E/F is has wildly ramified if is not tamely ramified.

Now assume that E/F is Galois. Then FE/FF is Galois and there is a natural group
homomorphism

φ : Gal(E/F ) −→ Gal(FE/FF ).

As in the number fields case this is surjective. We call ker(φ) the inertia subgroup, denoted
IE/F . Clearly |IE/F | = e(L/K). If E and F are local fields the residue fields are finite. Hence
in this case E/F unramified ⇒ φ is an isomorphism ⇒ Gal(E/F ) is cyclic.

Back to Number Fields

Let F be a number field. Let v be a place of F , i.e an equivalence class of non-trivial absolute
values on F . Because completion is a topological property we may form the completion of
F at v in a well defined way to get the complete topological field Fv. There are two possible
situations:

1. If v is archimedean then either Fv is R or C depending on whether the corresponding
equivalence class of embedding φ : F → C is real or complex. Thus all archimedean
completions are archimedean local fields

2. If v is non-archimedean then it corresponds to a non-zero prime ideal p ⊂ OF and we
often write Fp = Fv. The discrete valuation ring will be denoted by OFp (or sometimes
Ov). Recall that the residue field is preserved by completion. Thus the residue field of
Fp is Fp. Hence all non-archimedean completions are non-archimdean local fields.

Let DF :=
∏

v Fv be the direct product over all places. Giving DF the product topology
makes it a topological ring. We say that x ∈ DF is restricted if for all but finitely many
non-archimedean places v, xv ∈ Ov.

Definition. Let F be a number field. The ring of Adeles of F , denoted AF is the subring of
DF consisting of restricted element.

Observe that AF is a topological ring under the subspace topology. Because each of the
completions F are locally compact, AF is a locally compact topological ring. As we shall
see ring is supremely important in the arithmetic theory of F . Incidentally, they are named
after Serre’s wife. The units of AF are called the ideles. We may think of the ideles as the
restricted tensor product over all F ∗

v where for almost all places the entry is contained in
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O∗
v . We give the ideles of F the product topology. This makes the ideles of F a locally com-

pact topological group. Warning: This is not the subspace topology. Under the subspace
topology taking inverses is not continuous!

For p ∈ N a prime number the corresponding completion of Q is called the p-adic num-
bers and is denoted by Qp. We denote its valuation ring Zp, also called the p-adic integers.
If F is a number field and the non-zero prime ideal p ⊂ OF lies over (p) ⊂ Z then Fp is
naturally a field extension of Qp. If F is a non-archimedean local field of characteristic zero
and residue characteristic p then F is automatically a finite extension of Qp. It is a fact that
all such local fields are isomorphic to ones coming from this global construction.

As above, the discrete valuation ring of OFp ⊂ Fp is the integral closure of Zp in Fp.
More generally, if E/F is an extension of number fields and P ⊂ OE is a non-zero prime
ideal lying over p ⊂ OF , then EP is naturally a finite extension of Fp and OEP is the integral
closure of OFp in EP.

Recall that a DVR is a Dedekind domain with precisely one non-zero prime ideal. In
this case the unique non-zero prime ideal is pOFp , and we denote it by p again. As above we
know that

pOEP = Pe

for e = e(EP/Fp). It is a straight forward exercise to show that that in this setting e(P/p) =
e(P/p), so the local and global ramification indexes coinicide. If E/F is Galois then EP/fp

is Galois.

Proposition. The Decomposition group at P, G(P) ⊂ Gal(E/F ), is isomorphic to Gal(EP/Fp).

Proof. This is proposition 3 of §10 of the chapter on local Fields in Cassel’s/Frohlich.
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Extensions of Non-Archimedean Fields

Let R be a discrete valuation ring of characteristic zero, which is complete with respect to
the induced topology. Furthermore let us assume that R has a perfect residue field of finite
characteristic. Let F = Frac(R). Fix a representative of the equivalence class of absolute
values on F . R is the valuation ring of F . Let E/F be a finite extension of complete
non-archimedean fields such that the restriction of the absolute value on E to F , equals the
one on F . Recall that by completeness this uniquely determines the absolute value on E.
Conversely, if F is a non-archimdean field and E/F is a finite extension, then there is a
unique complete absolute value on E extending that on F

Recall that a DVR is a Dedekind domain with one non-zero prime ideal. Let S ⊂ E be
the integral closure R in E. By the abstract algebraic properties of Dedekind domains we
know that that S is a Dedekind domain and is a free R-module of rank [E : F ]. Moreover
it must be a have only finitely many non-zero prime ideals and is hence a DVR. It is a fact
that S is the valuation ring of E with respect to the absolute value. Let p ⊂ R and P ⊂ S
be the non-zero prime ideals. We also know that

pS = Pe

for some e ∈ N. We call this the ramification index of E/F and we denote it by e(E/F ).
If FE and FF are the respective finite residue fields we know that FE is a finite field

extension of FF . The degree of this extension is called the residue degree denoted f(E/F ).

Proposition. [E : F ] = e(E/F )f(E/F )

Proof. This is proposition 3 of §5 of the chapter on Local fields in Cassels/Frohlich.

Definition. 1. We say that E/F is unramified if e(E/F ) = 1

2. We say that E/F is totally ramified if f(E/F ) = 1

3. We say that E/F tamely ramified if the characteristic of the residue fields does not
divide e(E/F ).
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4. We say that E/F is wildly ramified if is not tamely ramified.

Now assume that E/F is Galois. Then FE/FF is Galois and there is a natural group
homomorphism

φ : Gal(E/F ) −→ Gal(FE/FF ).

As in the number fields case this is surjective. We call ker(φ) the inertia subgroup, denoted
IE/F . Clearly |IE/F | = e(E/F ). If E and F are local fields the residue fields are finite. Hence
in this case E/F unramified ⇒ φ is an isomorphism ⇒ Gal(E/F ) is cyclic.

Back to Number Fields

Let F be a number field. Let v be a place of F , i.e an equivalence class of non-trivial absolute
values on F . Because completion is a topological property we may form the completion of
F at v in a well defined way to get the complete topological field Fv. There are two possible
situations:

1. If v is archimedean then either Fv is R or C depending on whether the corresponding
equivalence class of embedding φ : F → C is real or complex. Thus all archimedean
completions are archimedean local fields

2. If v is non-archimedean then it corresponds to a non-zero prime ideal p ⊂ OF and we
often write Fp = Fv. The discrete valuation ring will be denoted by OFp (or sometimes
Ov). Recall that the residue field is preserved by completion. Thus the residue field of
Fp is Fp. Hence all non-archimedean completions are non-archimdean local fields.

Let DF :=
∏

v Fv be the direct product over all places. Giving DF the product topology
makes it a topological ring. We say that x ∈ DF is restricted if for all but finitely many
non-archimedean places v, xv ∈ Ov.

Definition. Let F be a number field. The ring of Adeles of F , denoted AF is the subring of
DF consisting of restricted element.

We do not give AF the subspace topology. Instead we define a basis of open subsets as
follows: Let S be a finite subset of places including all archimedean places. For v ∈ S, let
Uv ⊂ Fv be an open subset. Then we define the subset

∏

v∈S

Uv ×
∏

v/∈S

Ov ⊂ AF ,

to be open. Such sets subsets form the basis of a topology for AF . With respect to this
topology AF becomes a topological ring. This topology is not the subspace topology. We
do this because each of the completions F are locally compact and Ov is compact for all
non-archimedean places, hence this topology makes AF is a locally compact topological ring.
As we shall see, this ring is supremely important in the arithmetic theory of F . Incidentally,
they are named after Serre’s wife. We denote by A∞F the restricted direct product over
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the non-archimedean places only. Observe that there is a natural continuous injective map
F −→ AF . The units of AF are called the ideles. Clearly there is an embedding F ∗ −→ A∗

F .
We may think of the ideles as the restricted direct product over all F ∗

v where for almost all
places the entry is contained in O∗

v . We do not give the ideles of F the obvious subspace
topology. Instead we define a basis of open subsets as follows: Let S be a finite subset of
places including all archimedean places. For v ∈ S, let Uv ⊂ F ∗

v be an open subset. Then we
define the subset ∏

v∈S

Uv ×
∏

v/∈S

O∗
v ⊂ A∗

F ,

to be open. This makes the ideles of F a locally compact topological group.

For p ∈ N a prime number the corresponding completion of Q is called the p-adic num-
bers and is denoted by Qp. We denote its valuation ring Zp, also called the p-adic integers.
If F is a number field and the non-zero prime ideal p ⊂ OF lies over (p) ⊂ Z then Fp is
naturally a field extension of Qp. If F is a non-archimedean local field of characteristic zero
and residue characteristic p then F is automatically a finite extension of Qp. It is a fact that
all such local fields are isomorphic to ones coming from this global construction.

As above, the discrete valuation ring of OFp ⊂ Fp is the integral closure of Zp in Fp.
More generally, if E/F is an extension of number fields and P ⊂ OE is a non-zero prime
ideal lying over p ⊂ OF , then EP is naturally a finite extension of Fp and OEP is the integral
closure of OFp in EP. It is a standard fact that there is a canonical isomorphism

Fp⊗F E ∼=
∏

P|p

EP.

A similar result holds at the archimedean places. This establishes there is a canonical
isomorphism

AF ⊗F E ∼= AE.

Hence these is a norm map:
NE/F : AE −→ AF ,

induced by the usual norm map. This is a group homomorphism when restricted to the
ideles. Recall that a DVR is a Dedekind domain with precisely one non-zero prime ideal. In
this case the unique non-zero prime ideal is pOFp , and we denote it by p again. As above we
know that

pOEP = Pe

for e = e(EP/Fp). It is a straight forward exercise to show that that in this setting e(P/p) =
e(EP/Fp), so the local and global ramification indexes coinicide. It is a standard fact that
If E/F is Galois then EP/Fp is Galois.

Proposition. The Decomposition group at P, G(P) ⊂ Gal(E/F ), is isomorphic to Gal(EP/Fp).

Proof. This is proposition 3 of §10 of the chapter on local Fields in Cassel’s/Frohlich.
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Profinite Groups

Definition. Let I be a set together with a reflexive, transitive relation, ≤. We say that
(I,≤) is a directed set if given i1, i2 ∈ I, there extist i ∈ I such that i1 ≤ i and i2 ≤ i.

Definition. Let (I,≤) be a direct system. An inverse system of topological groups over I is
an object (I,Gi; φ

j
i ), where for each i ∈ I, Gi is a topological group and for each i ≤ j in

I, φj
i is a morphism: Gj −→ Gi. Moreover, φi

i is the identity on Gi and if i ≤ j ≤ k, then
φj

iφ
k
j = φk

i .

One should think about an inverse system of topological groups an a particular type of
diagram in the category of topological groups.

Let (Gi) be an inverse system of topological groups and form the cartesian product∏
i∈I Gi. This is again a topological group giving it the product topology. Let L be the

subgroup of all (xi) in
∏

i∈I Gi with the property that whenever i ≤ j, φj
i (xj) = xi. We

give L the subspace topology. It is clearly closed in
∏

i∈I Gi. We say that L is the inverse
(sometimes projective) limit of (Gi) and we denote it by L = lim←−Gi. One should view this
bject as the limit of the diagram given by the inverse system in the category of topological
groups.

We shall view finite groups as topological groups with the discrete topology. A topological
group is topologically isomorphic to an inverse limit of finite groups is called a profinite group.
If all the finite groups are p- groups are p-groups for some prime p we say it is a pro-p group.
By Tychonoff’s theorem we deduce that profinite groups are compact. It can also be shown
that all profinite groups are totally disconnected. In fact we have the following classification:

Theorem. A topological group is profinite if and only if it is compact and totally discon-
nected.

Proof. This is Theorem 1 of the profinite group chapter of Cassels/Frohlich.
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Essentially the reason is that given N ⊂ G an open normal subgroup, then by compact-
ness it is of finite index. G is topologically isomorphic to the inverse limit of all quotients
G/N . Observe that an open subgroup of a profinite group is automatically closed and of
finite index.

Important Special Cases:

1. (Hi) is the family of all normal subgroups of finite index in G. We denote the profinite
completion of G by lim←−G/Hi := Ĝ. For example Ẑ is the inverse limit over all finite
cyclic groups.

2. (Hi) is the family of all normal subgroups of G with index a power of p, for some
fixed prime p. Then the pro-p completion of G is lim←−G/Hi : Ĝp. If G is abelian then

Ĝ =
∏

p Ĝp. If G = Z then Ẑp = Zp and Ẑ =
∏

p Zp.

Profinite Groups in Field Theory

Let F be a field and E/F an algebraic extension. We say that E/F is Galois if fixed field of
the F -automorphisms of E is precisely F . In this case we define the Galois group of E/F ,
denoted Gal(E/F ) , to be the F - automorphisms of E

Let (Ki, i ∈ I) be the family of all finite Galois extensions of F contained in E. This set
is a direct system, where the relation is given by containment. This induces the structure of
an inverse system on (Gal(Ki/F ), i ∈ I), there the morphism are given by restriction.

Proposition. There is a canonical isomorphism Gal(E/F ) ∼= lim←−Gal(Ki/F )

Proof. This is proposition 1 of the Profinite group chapter of Cassels/Frohlich.

Hence we may naturally endow Gal(E/F ) with the structure of a profinite topological
group. By the above Gal(E/F ) is compact and totally disconnected. If E/F is finite then
this gives the discrete topology on Gal(E/F ).

If F is perfect (all finite extensions are separable) then an algebraic closure F̄ is Galois
over F . We define the absolute Galois group of F to be GF := Gal(F̄ /F ). Given another
algebraic closure of F the resulting group is canonically isomorphic to Gal(F̄ /F ), hence the
concept is well defined up to canonical isomorphism. If we take the special case F = Fp,
then Gal(F̄p/Fp) ∼= Ẑ.

Fundamental Theorem of Galois Theory. Let E/F be a Galois extension with Ga-
lois group G. Let Σ be the set of all closed subgroups of G and Γ be the set of all fields
between E and F . Then K −→ Gal(E/K) is a bijection from Γ to Σ. An intermediate
field K is Galois over F if and only if the corresponding closed subgroup is normal. Here
Gal(K/F ) ∼= G/Gal(E/K). The intermediate fields which are finite over F correspond to
the open subgoups (which are automatically open).

Proof. This is Theorem 2 of the profinite groups chapter of Cassels/Frohlich.
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Hence if F is perfect the absolute Galois group has all possible Galois groups of finite ex-
tensions of F as quotients. Intuitively we should think about Gal(F̄ /F ) as a way of binding
together all finite Galois groups for F . This will unify many of the constructions we have
already encountered.

Let E/F be an extension of perfect fields. Let us fix algebraic closures Ē and F̄ . By
construction, there must exist an F -embedding φ : F̄ −→ Ē. Because F̄ /F is Galois we
know if ϕ is another such embedding then ϕ = φσ for some σ ∈ Gal(F̄ /F ). The embedding
φ induces a continuous embedding Gal(Ē/E) −→ Gal(F̄ /F ). The embedding induced by ϕ
differs from that induced by φ by conjugation by σ. Hence the absolute Galois group of E
embeds in the absolute Galois group of F , but only up to conjugation.

Absolute Galois groups of Number Fields

Let F be a number field. F is of characteristic zero hence is perfect. Let us denote the
absolute Galois group by GF . By the above considerations we know that GF holds the in-
formation of all finite Galois extensions of F . By the above we know that GF embeds in GQ
(up to conjugation) as an open normal subgroup. It is no exaggeration to say that most of
algebraic number theory is just the study of GQ. This topological group is in some senses
the arithmetic group. Conjecturally it has all finite groups as quotients! Really we want to
understand as much about this group as we can. As we shall see it’s internal complexity is
mind blowing. The rest of the course will be exclusively devoted to this group. First let’s
try and relate it back to ideas we’ve already covered.

Let p ⊂ OF be a non-zero prime ideal. We have a canonical embedding F ⊂ Fp. Fix
an embedding φ : GFp −→ GF (equivalently an embedding F̄ → F̄p) . Let E/F be a finite
extension contained in F̄ . It corresponds by the fundamental theorem to an open subgroup
GE ⊂ GF . Taking the preimage of this subgroup under φ we get an open subgroup H ⊂ GFp .
This subgroup corresponds to some finite Galois extension K/Fp. It is not hard to see that
K = FpE, via the embedding φ. Note that this field is a finite extension is of Fp, which
is complete. Hence it’s absolute value is uniquely determined. We also know that up to
equivalence the only absolute values on E extending the one on F induced by p ⊂ OF come
from non-zero primes P ⊂ OE diving p. We deduce that that there exists a unique non-zero
prime ideal P ⊂ OE such that K is topologically isomorphic to EP. Moreover Gal(K/Fp)
is equal to the decomposition group at P. Recall that embeddings of GFp in GF differ only
by conjugation. If ϕ equals φσ for σ ∈ GF then if we carry out the above procedure for ϕ,
K will be topologically isomorphic to EσP.

Definition. Let E/F and K/F be two finite extensions contained in the finite extension
L/F . We say that the non-zero prime ideals P ⊂ OE, P ⊂ OK and P ⊂ OL over p is
compatible if P|P and P|P.

If E/F is an algebraic extension then by a compatible system of non-zero primes lying
over p we mean a choice of non-zero prime ideal P ⊂ OK for every K/F finite such that they
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are compatible in the above sense. Observe that to stipulate a compatible system we only
need to make a choice for all finite Galois extensions. To conclude, to give a compatible
system of non-zero primes ideal lying over p in the extension F̄ /F is the same as
giving an embedding F̄ → F̄p and GF acts transitively on this set.

Maximal Unramified Extensions

Let E/F be an extension of fields with E ⊂ F̄ . We say that E is unramified at p if all finite
extensions of F contained in E are unramified at p. Let E,K be two finite Galois extensions
of F contained in F̄ . We know by the properties of Frobenius elements that

E,K unramified at p ⇒ EK unramified at p.

This result is also true when we omit the finiteness condition. Hence given any set of place S
containing all archimedean places, there is a maximal extension of F contained in F̄ which
is unramified at all non-zero primes not contained in S. We denote this extension by FS. It
is a Galois extension of F and we denote the Galois group by GF,S. It is naturally a quotient
of GF by the fundamental theorem and by construction

GF,S = lim←−
E/F Finite Galois Unramified

Gal(E/F ).

Let us fix a compatible system of non-zero primes lying over p /∈ S, which we denote by
φ. By the compatibility of Frobenius elements under extensions and compositions we know
that for such p there is a canonical frobenius element Frobp,φ ∈ GF,S. This is just just the
usual choice of Frobenius for each Galois extension.

As in the finite case, two different choices of compatible system over p /∈ S will give
conjugate Frobenius elements. By transitivity of GF,S on the set of compatible systems over
p we get a well defined conjugacy class Frobp ⊂ GF,S. Let us assume that S is finite. Let Σ
be a collection of representatives for each class Frobp ⊂ GF,S for p /∈ S. The Tchebotarev
density theorem implies that Σ is dense in GF,S, after giving it the profinite topology. This
is very important.

Recall that an embedding φ : F̄ → F̄p is the same thing as choosing a compatible sys-
tem of non-zero prime ideals over p in the extension F̄ /F . Again this is the same as fixing
an embedding φ : GFp → GF . Next time we shall see how to determine Frobp,φ directly from
this embedding.
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Maximal Unramified Extensions

Let F be a number field and F̄ a fixed algebraic closure. Let p ⊂ OF be a non-zero prime
ideal. Let E/F be an extension of fields with E ⊂ F̄ . Note that E is non necessarily finite
over F . We say that E is unramified at p if all finite extensions of F contained in E are
unramified at p. Let E,K be two finite extensions of F contained in F̄ . It is true that:

E,K unramified at p ⇒ EK unramified at p.

We deduce that given any set of places S containing all archimedean places, then FS, the
union of all finite extensions of F unramified outside S is a field. FS is the maximal extension
of F contained in F̄ which is unramified at all non-zero prime ideals not contained in S. It
is a Galois extension of F and we denote the Galois group by GF,S. By the fundamental
theorem of Galois theory it is naturally a quotient of GF . If I is the direct system of finite,
unramified away from S, Galois extensions of F contained in F̄ then by construction

GF,S = lim←−
E∈I

Gal(E/F ).

Let us fix a compatible system of non-zero primes lying over p /∈ S, which we denote by φ
(equivalently an embedding φ : F̄ → F̄p). By the compatibility of Frobenius elements under
extensions and compositums we know that for such p there is a canonical frobenius element
Frobp,φ ∈ GF,S. In terms of the inverse limit if we have

Frobp,φ = lim←−
E∈I, P⊂OE , P∈φ

(E/F,P).

As in the finite case, two different choices of compatible system over p /∈ S will give
conjugate Frobenius elements. By transitivity of GF,S on the set of compatible systems over
p we get a well defined conjugacy class Frobp ⊂ GF,S. Let us assume that S is finite. Let Σ
be a collection of representatives for each class Frobp ⊂ GF,S for p /∈ S. The Tchebotarev
density theorem implies that Σ is dense in GF,S, after giving it the profinite topology. This
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is very important.

Recall that an embedding φ : F̄ → F̄p is the same thing as choosing a compatible sys-
tem of non-zero prime ideals over p in the extension F̄ /F . Again this is the same as fixing
an embedding φ : GFp → GF . So for every p ⊂ OF a non-zero prime ideal we get a canonical
(up to conjugation) subgroup of GF . To try to understand GF better we will first attempt
to understand these subgroups. As we shall see, this task is already formidable.

Absolute Galois Groups of Local Fields

Let F be a non-archimedean local field of characteristic zero and residue characteristic p.
Recall that this is equivalent to F being a finite extension of Qp. Fix an algebraic closure
F̄ . We want to study GF . Our first attack will be to decompose GF into certain subgroups
whose quotients are easy to understand.

Observe that as in the global case the compositum of two unramified extensions of F
contained in F̄ is again unramified. This also makes sense for infinite extensions.

Definition. The maximal unramified extension of F contained in F̄ , denoted F nr, is the
union of all finite unramifed extensions of F contained in F̄ .

By the previous remark we see this definition makes sense. In fact F nr is the union of
the fields of mth roots of unity in F̄ for m coprime to p. For a proof of this fact see the
bottom of page 28 of Cassels/Fohlich. It should be noted that even though F nr naturally
comes with a unique absolute value extending that on F it is not complete. The residue field
of F nr equals F̄F , for a fixed algebraic closure. If π is a uniformiser for F then π is also a
uniformiser for F nr. F nr/F is Galois and by construction

Gal(F nr/F ) ∼= lim←−
F̄ /E/F finite Galois unramified

Gal(E/F ).

But recall that E/F finite, unramified and Galois then Gal(E/F ) ∼= Gal(FE/FF ). This
latter group is isomorphic to the the cyclic group of order [E : F ]. It is true that given any
n ∈ N there exists a unique unramified extension of F of degree n contained in F̄ . One can
actually give a direct construction of such an extension using something called Witt vectors -
see the first section of Serre’s book on Local Fields. Even though F nr is not complete we may
still talk about tamely, wildly and totally ramified extensions of it because its residue field
is perfect. In particular, every finite extension of F nr , contained in F̄ is totally ramified.
We deduce that there is a canonical topological isomorphism

Gal(F nr/F ) ∼= GFF
∼= Ẑ.

The canonical Frobenius element in GFF corresponds to 1 ∈ Z ⊂ Ẑ.
Recall that Gal(F nr/F ) is isomorphic to the quotent of GF by the subgroup Gal(F̄ /F nr).

Hence there is a short exact sequence

0 −→ Gal(F̄ /F nr) −→ GF −→ Ẑ −→ 0.
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In particular there is a natural homomorphism ϕ : GF → Ẑ.

Definition. The Weil group of F , denoted WF , is the pre-image of Z under ϕ. The inertia
subgroup of F , denoted IF , is the kernel of ϕ.

Observe that because Z ⊂ Ẑ is dense, WF ⊂ GF is dense. We have the exact sequence:

0 −→ IK −→WF −→ Z −→ 0.

Note that IK = Gal(F̄ /F nr). The inertia subgroup is naturally the inverse limit of all
finite inertia groups of finite Galois extensions of F contained in F̄ . Observe that WK is
the disjoint union of right cosets of IK indexed by Z. We topologize WF by giving IK the
subspace topology induced from IK ⊂ GF and then endowing WF with the disjoint union
topology. This makes WF a topological group. Warning: This is not the subspace topology
induced by WF ⊂ GF , however the inclusion is still continuous. It is hard to justify why
we do this, but it will become clear when we introduce the local Langlands correspondence.
If E/F is a finite extension then WE is naturally an open subgroup of WF , and is hence of
finite index . If E/F is Galois then WE is normal in WF and the quotient is isomorphic to
Gal(E/F ).

Tamely Ramified Extensions

Let F be a no-archimedean local ring of characteristic zero and residue characteristic p.
Recall that a finite extension E/F contained in F̄ is tamely ramified if p does not divide
e(E/F ). This still makes sense even if we drop the completeness hypothesis. We can also
relax the condition that the residue field is finite. It merely needs to be perfect.

Proposition. Let E/F and K/F be two finite extensions contained in F̄ .

E/F and K/F are tamely ramified ⇐⇒ EK/F is tamely ramified.

Proof. This is Corollary 2 of §8 of the Local Fields chapter of Cassels/Frohlich.

Definition. We define the maximal tamely ramified extension, F tr ⊂ F̄ to be the union of
all tamely ramified extensions of F in F̄ .

Note that by the proposition this makes sense. Again F tr/F is a Galois extension and
F nr ⊂ F tr. If E/F nr is a finite extension contained in F̄ then it is tamely ramified if and
only if it is contained on F tr. Also observe that such an extension must be totally ramified.

Proposition. Let E/F nr be a finite tamely ramified Galois extension contained in F̄ (and
hence in F tr), of degree e. Then ∃π ∈ F nr a uniformiser (i.e a generator of the maximal
ideal of the valuation ring of F nr) such that E = F nr(π1/e).

Proof. This is proposition 1 of §8 of the Local Fields chapter of Cassels/Frohlich.
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Let F be a non-archimedean local field of characteristic zero and residue characteristic p.
Recall that this is equivalent to F being a finite extension of Qp. Fix an algebraic closure
F̄ . Recall that we defined F nr ⊂ F̄ , the maximal unramified extension of F , as the union
of all finite unramified extensions of F in F̄ . Similarly we defined F tr ⊂ F̄ , the maximal
tamely ramified extension of F , as the union of all finite tamely extensions of F in F̄ . There
was a natural inclusion F nr ⊂ F tr. At the end of the last lecture we saw that it we fix a
uniformiser π ∈ F , then F tr is the union of all fields F nr(π1/e), for all e ∈ N coprime to p.
These are all Galois extensions. We should note that this π1/e is only well defined up to a
multiple of a primitive eth root of unity, contained in F nr. It is in fact true that F nr(π1/e) is
the unique tame extension of F nr contained in F̄ of degree e. Because of the fact that F nr

contains a primitive eth root of unity for all e coprime to p F nr(π1/e)/F nr is an example of
a Kummer extension. Kummer theory is the study of Galois extensions where the base field
contains many primitive roots of unity. Let µe ⊂ F nr∗ be the subgroup of eth roots of unity.

Lemma. The homomorphism

Gal(F nr(π1/e)/F nr) −→ µe

σ −→ σ(π1/e)

π1/e

is an isomorphism.

Proof. This is a fundamental result in basic Kummer theory. It is a special case of lemma 1
(page 90) of the Cyclotomic Fields chapter of Cassels/Frohlich.

Combining all of the above we see that there is a natural topological isomorphism:

Gal(F tr/F nr) ∼= lim←−
e∈N, (e,p)=1

Gal(F nr(π1/e)/F nr) ∼= lim←−
e∈N, (e,p)=1

µe.
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If e, f ∈ N such that e|f then the transition map µf → µe is ζ → ζf/e. If we fix a compatible
collection of eth roots of unity in F nr for all e ∈ N coprime to p, then this establishes a
(non-canonical) topological isomorphism:

Gal(F tr/F nr) ∼= lim←−
e∈N, (e,p)=1

µe
∼= lim←−

e∈N, (e,p)=1

Z/eZ ∼=
∏

q "=p

Zq.

Hence there is a short exact sequence:

0 −→
∏

q "=p

Zq −→ Gal(F tr/F ) −→ Ẑ −→ 0.

This sequence is not trivial because there are finite tamely ramified extensions of F which
are not abelian, thus Gal(F tr/F ) is not abelian. Note that if σ ∈ Ẑ and σ̃ ∈ Gal(F tr/F )
is any lift then for τ ∈

∏
q "=p Zq, σ(τ) = σ̃τ σ̃−1 is independent of the lift. This is because

∏
q "=p Zq is Abelian. hence there is a natural action of Ẑ on

∏
q "=p Zq. Note that the frobenius

element in Ẑ (1 ∈ Ẑ) generates Z ⊂ Ẑ, which is dense. Because the action is contiuous if we
know how frobenius acts then we know the whole action.

Theorem. Frobenius acts on
∏

q "=p Zq via multiplication by |FF |.

Proof. We’ll outline the basic argument: It is enough to treat the case of E/F nr a finite
tamely ramified Galois extension of degree e. Then we know that Gal(E/F nr) is isomorphic
to µe. Hence it is sufficient to prove that frobenius acts on Gal(E/F nr) ∼= µe by ζ → ζ |FF |.
To prove this observe that

1. Gal(E/F nr) ∼= µe preserves the action of Gal(F nr/F )(µe ⊂ F nr).

2. If ζ is a primitive root of unity of order prime to p then Frobenius sends ζ to ζ |FF |.

If E/F tr is a finite extension contained in F̄ then by theorem 1 on page 29 of Cas-
sels/Frohlich, we know that E/F nr is wildly ramified and in face [E : F tr] is a power of p.
In particular this tells us that Gal(F̄ /F tr) is a pro-p group. This group is quite mysterious
- we can’t really decompose it in the same was as Gal(F tr/F ).

In summary: Let F be a finite extension of Qp. Let F̄ be fixed algebraic clo-
sure. We have a tower of Galois field extensions F ⊂ F nr ⊂ F tr ⊂ F̄ . Gal(F̄ /F tr)
is a pro-p subgroup of GF , whose quotient is naturally isomorphic to Gal(F tr/F ).
The subgroup Gal(F tr/F nr) ⊂ Gal(F tr/F ) is non-canonically topologically isomor-
phic to

∏
q "=p Zq. The quotient is naturally isomorphic to Gal(F nr/F ), which is in

turn naturally topologically isomorphic to Ẑ.
That’s about as far as this decomposition approach will work - there is no easy description

of the pro-p part of GF . Instead let’s try another attack.
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Local Class Field Theory

Again let F be a non-archimedean local field of characteristic zero and residue characteristic
p. Let F̄ be a fixed algebraic closure. We say that E/F , a finite Galois extension contained
in F̄ , is Abelian if Gal(E/F ) is Abelian. Taking the compositum of two Abelian extension
within F̄ is again an Abelian extension.

Definition. The maximal Abelian extension of F , denoted F ab is the union of all finite
abelian extensions of F contained in F̄ .

By the previous remark F ab is a field. Observe that unramified Galois extensions of F
are Abelian (they are cyclic), hence F nr ⊂ F ab. As before F ab/F is Galois. The aim of local
class field theory is to give an independent description of Gal(F ab/F ). By the fundamental
theorem of Galois theory this is basically the same as classifying all finite Abelian extensions
of F .

If G is a topological group and M ⊂ G is it’s commutator subgroup, then we define Gab,
the topological abelianisation of G to be G/M̄ , there M̄ is the closure of M in G. It is an
easy exercise to that Gal(F ab/F ) ∼= Gab

F :=. If WF is the Weil group then there is a natural
inclusion W ab

F ⊂ Gab
F is dense. There are two natural short exact sequences:

0 !! Iab
F

θF !! Gab
F

!! Ẑ !! 0

0 !! Iab
F

identity

""

!! W ab
F

inclusion

""

!! Z

inclusion

""

!! 0

where Iab
F is isomorphic to Gal(F ab/F ur). Let us fix a lift of frobenius frob ∈ W ab

F . Also
recall that if G is a topological group and H ⊂ G is an open subgroup then there is a
transfer map on topological abelianisations: Gab → Hab. For a detailed description of this
map see Tate’s ”Number Theortic Background” in the Corvallis conference proceedings on
Automorphic Representations.

Fundamental Theorem of Local Class Field Theory. Let F be a finite extension of Qp

and F̄ a fixed algebraic closure. Let E/F be finite Abelian Galois extension contained in F̄ .
Let NE/F : E∗ → F ∗, denote the norm map.

1. There is a local reciprocity isomorphism:

θE/F : F ∗/NE/F (E∗)→ Gal(E/F ).

2. let F̃ := lim←−F ∗/NE/F (E∗), where the limit is taken over all finite Abelian Galois ex-
tension contained in F̄ . Then the local reciprocity isomorphisms induce a topological
isomorphism F̃ ∼= Gab

F . The natural injective map

θ : F ∗ → F̃ ∼= Gab
F

is continuous and maps isomorphically only W ab
F .

3



3. θF (O∗
F ) = Iab

F and if πF ∈ F ∗ is a uniformiser then θ(πF ) ∈ frob Iab
F . (One should

note that there is another convention which gives θF (πF ) ∈ frob−1Iab
F )

4. For E/F a finite extension we have the following commutative diagrams:

E∗

NE/F

!!

θE "" W ab
E

inclusion
!!

F ∗ θF "" W ab
F

F ∗

inclusion

!!

θF "" W ab
F

transfer
!!

E∗ θE "" W ab
E

Proof. Unsurprisingly this is a deep pretty deep theorem and is not easy to prove. See Serre’s
Chapter of Cassels/Frohlich. Interestingly the proof there is entirely local, with no appeal to
number fields. Historically the local case was first deduced from the global version of class
field theory, which we’ll encounter soon. Conversely, the modern generalisation of class field
theory are much better understood in the local case than in the global.
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Let F be a non-archimedean local field of characteristic zero and residue characteristic p.
Recall that this is equivalent to F being a finite extension of Qp. Fix an algebraic closure
F̄ . Recall that if F ab is the maximal abelian extension of F contained in F̄ then the main
theorem of local class field theory asserts that there is a natural topological isomorphism

W ab
F
∼= GL1(F ).

There are two possible normalisations depending on whether we choose to send a uniformiser
π ∈ F ∗ to an element of the coset (of Iab

F ) containing a lift of frobenius or it’s inverse.
Let K be a topological field. Let χ : GF −→ GL1(K) be a continuous (for the profinite

topology on GF ) character. Observe that by continuity we know that χ must factor through
the quotient

χ : GF −→ Gab
F −→ GL1(K).

Recall that W ab
F ⊂ Gab

F is dense, hence χ is completely determined by it’s restriction to W ab
F .

We deduce that as a consequence of local class field theory there is a canonical (up to a
choice of normalisation) bijection between the two sets

{Continuous one dimensional K-vector space representations of WF }

&

{Continuous one dimensional K-vector space representations of GL1(F ) }

This seemingly innocuous observation will be the key to the higher dimensional general-
isation of local class field theory. What I mean by this is that it is natural to consider the
set

{Isomorphism classes of continuous n-dimensional K-vector space representations of WF ,
for some n ∈ N }

1



To what should this set correspond? It is not at all obvious. We shall address this issue
when we consider the local Langlands correspondence.

To conclude this section we should observe that if we choose K = C then a continuous
representation of WF (or GF ) on a finite dimensional complex vector space is automatically
continuous for the discrete topology on C. This is because the topology of C is extremely
incompatible with the totally disconnected topology on WF . Recall that WF is not compact,
where as GF is. Hence any continuous representation

ρ : GF −→ GLn(C),

has open kernel, and hence has finite image. Conversely a continuous representation

ρ′ : WF −→ GLn(C),

extends to a representation of GF if and only if its image is finite. In this case we say that ρ′

is of Galois-type. Not all such ρ′ are of Galois-type. In the one dimensional case a character
is of Galois type if and only if the image of a frobenius lift is a root of unity. An elegant
survey of these results can be found in §2 of Tate’s ”Number Theoretic Background” article.

Global Class Field Theory

Let F/Q be a number field. A number field is an example of a global field, a concept we will
not make precise. Let F̄ be a fixed algebraic closure of F . As in the local case, if E/F is a
finite Abelian Galois extension contained in F̄ we say that E/F is Abelian. The compositum
of two finite Abelian extensions extensions (in F̄ ) is again Abelian.

Definition. The maximal Abelian extension of F , denoted F ab is the union of all finite
abelian extensions of F contained in F̄ .

By the previous remark F ab is a field. F ab/F is Galois and we have

Gab
F
∼= Gal(F ab/F ) ∼= lim←−

F̄ /E/F finite Ablian

Gal(E/F ).

The aim of Global Class Field theory is to give an explicit description of this group. For
F = Q this is essentially achieved by the following famous theorem of Kronecker and Webber:

Theorem. Let E/Q be a finite belian extension contained in a fixed algebraic closure Q̄.
Then ∃n ∈ N such that E ⊂ Q(ζn), where ζn ∈ Q̄ is a primitive nth root of unity.

Recall that Q(ζn)/Q is Abelian with a canonical isomorphism:

Gal(Q(ζn)/Q) ∼= (Z/nZ)∗.

Hence we deduce, via the Kronecker-Webber theorem that there is a canonical topological
isomorphism:

Gab
Q
∼= Gal(Qab/Q) ∼= lim←−̄

n∈N
Gal(Q(ζn)/Q) ∼= lim←−̄

n∈N
(Z/nZ)∗ ∼=

∏

p prime

Z∗
p.
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Class Field Theory seeks to generalise this type of result to all number fields. The gen-
eralisation is much more difficult to prove, and its completion was the high point of early
twentieth century number theory.

Let E/F be a finite Abelian extension (in F̄ ). Let S be the set of all archimedean places
of F together with the non-zero primes ideals p ⊂ OF which are ramified in E/F . In par-
ticular S is finite. Let IS

F denote the free abelain subgroup of the fractional ideal group of
F , generated by the non-zero prime ideals not contained in S. In particular p is unramified
in E/F if and only if p /∈ S. Because E/F is Abelian, given p /∈ S there is a well defined
Frobenius element frobp ∈ Gal(E/F ). This allows us to define the group homomorphism:

FE/F : IS
F −→ Gal(E/F )

∏

p/∈S

pnp −→
∏

p/∈S

frobnp
p

This makes sense only because E/F is Abelian. Without this assumption this is not
possible.

Let JF = GL1(AF ), the ideles of F . Similarly let JE denote the ideles of E. Recall that
there is a canonical embedding F ∗ ⊂ JF . Let JS

K ⊂ JK denote the subgroup whose entries
for v ∈ S have value 1. Recall that if x ∈ JK then it has a non-unit component at only a
finite number of places. Hence there is a group homomorphism:

(.)S : JS
K −→ IS

F

x −→ (x)S :=
∏

p/∈S

pvp(xp)

Let CF := JK/F ∗ and CE : JE/E∗, be the respective idele class groups. The norm homo-
morphism NE/F : JE −→ JF naturally descends to a homomorphism: NE/F : CE −→ CF .
We will freely switch between these viewpoints.

Fundamental Theorem of Global Class Field Theory. Let F be a number field and F̄
a fixed algebraic closure. Let E/F be a finite abelian extension contained in F̄ .

1. There exists a unique, continuous, surjective group homomorphism (the Artin reci-
procity homomorphism)

ψE/F : JK −→ Gal(E/F ),

such that (i) ψE/F (F ∗) = 1 and (ii) ψE/F (x) = FE/F ((x)S) for all x ∈ JS
K. Hence ψ is

a continuous homomorphism from CF onto Gal(E/F ).

2. The kernel of ψE/F is F ∗NE/F (JE) and hence induces an isomorphism of CF /NE/F (CE)
on to Gal(E/F ).

3



3. If F ⊂ E ⊂M are finite abelian extensions, then the diagram:

CF /NM/F (CM)

j
!!

ψM/F
"" Gal(M/F )

restriction
!!

CF /NE/F (CE)
ψE/F

"" Gal(E/F )

commutes. (j is the natural surjective map which exists because NM/F (CM) ⊂ NE/F (CE).)

4. (Existence Theorem) For every open subgroup N of finite index in CF , there exists a
unique finite Abelian extension E/F (in F̄ ) such that NE/F (CE) = N .

Proof. This is a deep theorem (deeper than the local field case). It is proven in Tate’s article
on Global Class Field Theory in Cassels/Frohlich. The original proof was very messy and
technical. The proof given by Tate is much slicker using Group cohomology. To give a
complete survey of it would take an entire course. Somehow though knowing the proof is
unenlightening - it hints at none of the higher dimensional generalisations. Understanding
the statement is the main thing.
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Let F/Q be a number field. Let F̄ be a fixed algebraic closure of F . Let F ab be the maximal
abelian extension. Let JF denote the ideles and CF = JF /F ∗ denote the idele class group.
For E/F a finite Abelian extension (contained in F̄ ) let NE/F : CE −→ CF denote the
natural norm homomorphism. We say last time that there is a natural isomorphism (Artin
reciprocity map) ψE/F : CF /NE/F (CE) ∼= Gal(E/F ). These maps are all compatible under
restriction hence we get a topological isomorphism:

ψ : lim←−
F̄ /E/F finite abelian

CF /NE/F (CE) ∼= Gal(F ab/F ).

The existence theorem ( part (iv) of the main theorem) tells us that ψ can further be
interpreted as

ψ : lim←−
N⊂CF open, finite index

CF /N ∼= Gal(F ab/F ).

Thus we obtain the natural reciprocity homomophism :

ψF : CF −→ Gal(F ab/F ).

It is a fact ψF is surjective and the kernel is precisely the connected component of CF

containing the identity, denoted by DF . For G a topological group we denote by Go, the
connected component containing the identity. Then (

∏
v|∞ F ∗

v )o is contained in the kernel of

ψF : JF −→ Gab
F . In fact the kernel is precisely the closure of F ∗(

∏
v|∞ F ∗

v )o ⊂ JF . In the
case F = Q, CQ is topologically isomorphic to

R>0 ×
∏

p prime

Z∗p.

Hence the connected component containing the identity is just

DQ = R>0 ×
∏

p prime

{1}.

1



and we recover the chief consequence of the Kronecker-Webber theorem:

Gab
Q
∼=

∏

p prime

Z∗
p.

Similarly if F/Q is a quadratic extension (degree 2) such that it has only one archimedean
place (a complex conjugate pair) then the connected component of CF containing the iden-
tity can be given an explicit description. This is the subject of complex multiplication. It
turns out that in this case the there is a link between Gab

F and an elliptic curve with some
special properties. Note that in both cases there is only one archimedean place. In general
if there is more than one archimedean place no such explicit description of the connected
component of CF containing the identity is known. This is the principle reason that proving
Class Field Theory is so hard in general.

There is a global equivalent of the Weil group of F , denoted WF (See Tate’s ”Number
Theoretic Background” article). There is no known explicit description of WF . What is
true is that W ab

F
∼= CF canonically. Unlike in the local case there is a natural surjective

homomorphism WF −→ GF . This induces a surjective homomorphism CF
∼= W ab

F −→ Gab
F ,

which turns out to be the Reciprocity map ψF .
We will finish this section by considering how these isomorphism behave under finite

extension. Let E/F be a finite extension (contained in F̄ ). Hence we have the natural open
(thus closed) inclusion GE ⊂ GF . This induces the inclusion Gab

E ⊂ Gab
F . As in the local case

we have a transfer homomorphism Gab
F −→ Gab

E . The Global Artin reciprocity maps behave
well under inclusion and transfer, i.e. we have the following commutative diagrams:

J∗
E

NE/F

!!

ψE
"" Gab

E

inclusion
!!

JF
ψF

"" Gab
F

J∗
F

inclusion

!!

ψF
"" Gab

F

transfer
!!

JE
ψE

"" Gab
E

Relations Between Local and Global Class Field Theory

Let F/Q be a number field. Let F̄ be a fixed algebraic closure of F . Let F ab be the maximal
abelian extension. Let p ⊂ OF be a non-zero prime ideal. Let F̄p be a fixed algebraic
closure of Fp. Fix an embedding F̄ −→ F̄p. Recall that this induces a continuous embedding
GFp → GF . Hence this gives rise to an embedding Gab

Fp
→ Gab

F . Observe that there is
a natural injective homomorphism i : F ∗

p −→ JF given by identity at p and 1 elsewhere.
The compatibility between local and global class field theory is expressed by the following
commutative diagram:

2



F ∗
p

i

!!

θFp
"" Gab

Fp

!!

JF
ψF

"" Gab
F

At the level of Weil groups, for every non-trivial non-archimedean place p ⊂ OF there is
an embedding

WFv −→WF

This induces the natural commutative diagram:

F ∗
p

i

!!

θFp
"" W ab

Fp

!!

CF
ψF

"" W ab
F

Observe that because W ab
F
∼= CF , WF has an ”archimedean component” not shared with

GF . Recall that there is a surjective topological homomorphism: WF −→ GF . The kernel
contains all the archimedean stuff. One should not ignore this. In fact for v an archimedean
place of F , there is a version of the Weil group WFv . Remember that Fv is either R or C
so there are only two choices. In the case Fv = C it turns out that WC = C∗. In the case
Fv = R, WR is an extension of C∗ by the cyclic group of order 2. These look quite mysterious.
Miraculously these two groups strictly control the behaviour of the representation theory of
reductive lie groups. This is the subject of the local archimedean Langlands correspondence
which we shall not talk about further.

Hecke Characters

For a moment let F be a finite extension of Qp. Recall that local class field theory could
be interpreted as a natural bijection between one dimensional continuous representations of
WF and GL1(F ). Can we do something similar for global class field theory?

Let F/Q be a number field. Let F̄ be a fixed algebraic closure of F . Let F ab be the
maximal abelian extension. Observe that GL1(AF ) = JF .

Definition. A Hecke character of F is a continuous homomorphism (for the usual topology
on C)

CF = GL1(F )\GL1(AF ) −→ C∗.

Let ρ : GF −→ C∗ be a continuous character. Note that because GF is totally disconnected
we may as well take the discrete topology on C∗. As GF is compact we deduce that ρ must

3



have finite image. Moreover ρ must factor through the quotient Gab
F . Pre-composing with

the global reciprocity map ψF : CF −→ Gab
F we get a Hecke character naturally associated

to ρ. We say a Hecke Character is of finite order if it’s image in C∗ is finite. This establishes
a natural bijection:

{ Hecke characters of F of finite order }

#

{ One dimensional continous complex representations of GF }

What happens if we talk another field than C? Recall that Gab
Q
∼=

∏
p prime Z∗

p. Hence
there is a natural continuous (for the p-adic topology) group homomorphism:

χp : GQ −→ Gab
Q −→ Z∗

p.

If we fix an algebraic closure Q̄p, then χp may be naturally interpreted as a continuous
character:

χp : GQ −→ Q̄∗
p.

We call χp the p-adic cyclotomic character. If we fix an algebraic closure Q̄ and take F/Q a
number field contained in Q̄ then there is a natural embedding φ : GF −→ GQ. Hence there
is a natural notion of the p-adic cyclotomic character of GF , after pre-composing χp with
φ. By a standard abuse of notation we’ll also denote it by χp. There is a very curious link
between these p-adic character and Hecke characters as we’ll see next time.
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Hecke Characters

Let F/Q be a number field. Let F̄ be a fixed algebraic closure of F . Let F ab be the maximal
abelian extension. Recall that Global class field theory gives natural continuous surjective
reciprocity homomorphism:

ψF : GL1(F )\GL1(AF ) −→ Gal(F ab/F ).

The kernel is connected component containing the identity. This gives us a reasonably
explicit understanding of all finite Abelian extensions of F contained in F̄ . Motivated by
this we introduce the following fundamental definition.

Definition. A Hecke character of F is a continuous homomorphism (for the usual topology
on C)

GL1(F )\GL1(AF ) −→ C∗.

We saw that if ρ : GF −→ C∗ is continuous character, then ρ has finite image and factors
through Gal(F̄ /F ). Pre-composing with ψF yields a Hecke character of F with finite image.
Hence the reciprocity map induces a canonical bijection:

{ Hecke characters of F of finite order }

#

{ One dimensional continous complex representations of GF }

If we use the Global Weil group WF instead then there is a tight fit:

{ Hecke characters of F}

#

1



{ One dimensional continous complex representations of WF }

There are many more Hecke characters than those of finite order. Recall that given x ∈
GL1(AF ), we may define ||x|| =

∏
v |xv|v. This defines a continuous character of GL1(AF ).

The product formula tells us that ||x|| = 1 for all x ∈ F ∗. Hence ||.|| defines a Hecke
character on F . Observe that it is clearly not of finite order For example, for F = Q, recall
that

GL1(Q)\GL1(AQ) ∼= R>0 ×
∏

p prime

Z∗p.

We freely pass between these two perspectives. Let x ∈ R>0 ×
∏

p prime Z∗p. Then ||x|| =
x∞. The connected component containing the identity is topologically isomorphic to R>0.
All continuous complex characters of R>0 are of the form

|.|s : R>0 −→ C∗

a −→ as

for a unique s ∈ C. From this we see that a Hecke character is uniquely of the form

(χ, s)(x) = χ(x)||x||s,

where χ is a finite order character, s ∈ C.

In general it is more difficult to give such an explicit description because the connected
component on the identity can be very complicated. Hence finite order Hecke Characters
correspond to (χ, 0) in the above notation. It would be reasonable to assume that this was
as far as the relation between Hecke characters and characters of GF can be pushed. If
a Hecke character doesn’t vanish on the connected component containing the identity how
can it possibly give a character of GF ? You are correct - it won’t give a character over C.
However there is a natural class of characters of GF taking values in p-adic fields.

The Cyclotomic Character

There was no inherent reason that we chose to take characters in C. Recall that C is just
the algebraic closure of the archimedean completions of Q. Why don’t we do the same for
a non-archimedean completion. The fist issue to address is what the correct analogue of C
should be. Let p ∈ Z be a prime . Let us fix an algebraic closure Q̄p. One would naively
hope that Q̄p would be the correct avatar of C. Unfortunately one of the key properties of
C, completeness, is not shared by Q̄p. Let Cp be the completion of Q̄p with respect to the
canonical metric. It is a fact the Cp is algebraically closed. This is the p-adic equivalent of
C.

2



Definition. A p-adic Hecke character of F is a continuous homomorphism (for the canonical
topology on Cp)

GL1(F )\GL1(AF ) −→ C∗
p.

Recall that in the classical case the subtle behavior of the Hecke character occurred at
the archimedean places. This was because of the incompatibility between the p-adic and
complex topology. In this case the interesting behavior will occur at finite places dividing
p. In particular because Cp is totally disconnected we know that a p-adic Hecke character
must vanish on the connected component containing the identity. Thus there is a natural
bijection:

{ p-adic Hecke characters of F }

#

{ one dimensional continuous representations of GF on a one dimensional Cp-vector space }

Observe that there is a much tighter fit between p-adic Hecke characters and p-adic Galois
characters. This shouldn’t surprise us - GF not very archimdean.

For simplicity let us restrict to the case F = Q again.

GL1(Q)\GL1(AQ) ∼= R>0 ×
∏

p prime

Z∗
p.

Because Cp is totally disconnected and R>0 is path connected can see that any p-adic Hecke
character is determined by its behaviour in the non-archimdean component

∏
p prime Z∗

p.
The character ||.|| projected onto the archimedean component. Similarly we can define the
projection χp onto the p-adic component. This gives a p-adic Hecke character

χp : GL1(F )\GL1(AF ) −→ Z∗
p ⊂ C∗

p.

By the above correspondence we get the natural continuous character:

χp : GQ −→ Gab
Q −→ Z∗

p ⊂ C∗
p.

χp is called the p-adic cyclotomic character. Note that χp is clearly not of finite order. If
we fix an algebraic closure Q̄ and take F/Q a number field contained in Q̄ then there is a
natural embedding φ : GF −→ GQ. Hence there is a natural notion of the p-adic cyclotomic
character of GF , after pre-composing χp with φ. By a standard abuse of notation we’ll also
denote it by χp. As in the classical case every p-adic Hecke character of Q can be expressed
by

(χ, κ)(x) = χ(x)κ(χp(xp)),

3



where χ is a finite order character and κ is a continuous C∗
p valued character of Z∗

p. In this
case this representation is not unique because κ could be finite order without being trivial.

Note that there is nothing special about p here. We could have chosen any prime.

Restrict to the case F = Q. Fix embedding Q̄ ⊂ C and Q̄ ⊂ Q̄p. This established a
natural bijection:

{ Hecke characters of F of finite order }

"

{ p-adic Hecke characters of F of finite order }

Assume that we have a Hecke character of Q, given by (χ, k), such that χ is or finite order
and k ∈ Z. Such Hecke characters are called arithmetic. Similarly we define the arithmetic
p-adic Hecke characters to be the ones of form (χ, k) where χ is a finite order p-adic Hecke
character and k ∈ Z denotes the homomorphism: K : Z∗

p → C∗
p, z → zk. Arithmetic p-adic

Hecke characters correspond to continuous characters φ : GQ → C∗
p such that φχk

p is of finite
order for some k ∈ Z. We call such characters potentially semi-stable. I’ll explain why later.

Hence we have established a natural series of bijections bijection:

{ Arithmetic Hecke Characters of Q }

"

{ Arithmetic p-adic Hecke characters of Q }

"

{ p-adic potentially semi-stable characters of GQ }
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Last time we saw a natural bijection between three sets:

{ Arithmetic Hecke Characters of Q }

!

{ Arithmetic p-adic Hecke characters of Q }

!

{ p-adic potentially semi-stable characters of GQ }

We focused on the F = Q case because we have a very explicit description of GL1(Q)\GL1(AF ).
We can extend this to an arbitrary number field as follows:

Let σ : F → C be an embedding. If v is the infinite place corresponding to σ then there is
an induced embedding σv : Fv → C. Recall that if v is real is corresponds to a unique such
σ. If v is complex it corresponds to a unique complex conjugate pair. We say that a Hecke
character χ over F is arithmetic if there exist integers nσ for each embedding such that

χ|(Q
v|∞ Fv)o(x)

∏

σ:F→C
σv(xv)

nσ .

The possible nσ which can occur is actually very restricted.

Definition. A number field M/Q is totally real if all its archimedean completions are iso-
morphic to R. A number field K/Q is totally imaginary if all its archimedean completions
are isomorphic to C. A number field L/Q is a CM field if it is totally imaginary but contains
a subfield of index 2 which is totally real.

The following is a result of Weil.

Proposition. Suppose that χ is an arithmetic Hecke character of F then either

1



1. If F does not contain a CM field then nσ are independent of σ.

2. If F contains a CM field L, then ∃w ∈ Z and integers mα ∀ embeddings α : L → C
such that (1) mα + mᾱ = w independent of α and (2) nσ = mσ|L. Here ᾱ denotes the
complex conjugate embedding of α.

This greatly restricts the possible nσ which can occur.

Let us fix a prime number p ∈ N. In a similar way we can define an arithmetic p-adic
Hecke character of F as follows. For each place v of F dividing p we have an embedding
σv : Fv → Cp. A p-adic Hecke character χ, is arithmetic if there exist integers nv such that

χ|Q
v|p Fv(x) = Γ(x)

∏

v|p

σv(xv)
nv .

where Γ is a p-adic Hecke character with finitie image.

Let χ be an arithmetic (classical) Hecke character of F . We define

χ0 : GL1(AF ) −→ C∗

x −→ χ(x)
∏

σ:F→C
σv(xv)

−nσ

Observe that χ0 is naturally a continuous homomorphism on GL1(AF )/(
∏

v|∞ Fv)o. It is no
longer invariant by GL1(F ).

It is a fact that Eχ ⊂ C the field generated by Q and the image of χ0 is a number field.
Let us fix a prime number p ∈ N and λ a place of Eχ lying over p. Let Eχ,λ denote the
completion and Fp =

∏
v|p Fv. It is a fact that the map

F ∗ −→ E∗χ

x −→
∏

σ:F→C
σ(x)nσ

extends to a unique continuous homomorphism φp : F ∗p → E∗χ,λ. Hence we may define
the continuous

χ0φp : GL1(AF ) −→ E∗χ,λ

x −→ χ0(x)φp(xp)

where xp is projection of x onto Fp. Note that χ0φp is continuous (with respect to the
canonical topology of Eχ,λ) and by construction it contains F ∗(

∏
v|∞ Fv)o Note that after

fixing embeddings Eχ ⊂ Q̄ and Q̄ ⊂ Q̄p it naturally gives rise to an arithmetic p-adic Hecke
character. Thus observe that it must therefor correspond to a continuous character

2



χG
λ : GF → E∗

χ,λ ⊂ C∗
p.

The characters which occur in this way can be characterized in purely Galois theoretic
terms. From this perspective they are potentially semi-stable, a notion we do not make
precise. It is somehow related to Geometry. Hence we have established the natural bijections:

{ Arithmetic Hecke Characters of F }

#

{ Arithmetic p-adic Hecke characters of F }

#

{ p-adic potentially semi-stable characters of GF }

Remember p was chosen freely. An arithmetic Hecke characters of F gives rise to a whole
system of one dimensional continuous p-adic representations of GF . There is a technical
sense in which they are compatible, defined purely Galois theoretically. We will return to
these issues later in the course. Note that given a p-adic Hecke character on F we always
get a p-adic Galois character. It is only when it is arithmetic does it fit into a compatible
system of l-adic Galois characters as l varies over all primes.

In a sense, this is the correct way of viewing the main theorem of Global Class Field
Theory. Why? The main reason is that this gives a clear hint as to how the generalise to
higher dimensions. It also makes it clear that to understand GF we are going to have to
study it continuous representations on p-adic vector spaces.

1 The Local Langlands Correspondence

Here is a powerful general philosophy:

Understanding a Group is the same as understanding it’s category of repre-
sentations

This is intentionally vague. What do we mean by representations? Classically a representa-
tion of a group G is just a linear action on a vector space. In a broader sense a representation
of a group is some way that it naturally appears in another area of mathematics. As we
shall see, a very common mechanism why which this occurs is through the classical concept.
To truly understand the category of representations means that we truly understand how
the group permeates mathematics as a whole. We’ve already seen this above. GF is some-
how manifesting itself in GL1(F )\GL1(AF ) via it’s one dimensional representations. This
observation is deep - it forms the backbone of Langland’s higher dimensional generalization
of Local and Global Class Field theory.
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As above let F/Q be a number field. Fix p ∈ N a prime number and let K/Qp be a finite
extension. Let V be a finite dimensional K-vector space. Let ρ be a continuous K-linear
action of GF on V . In other words, if dimK(V ) = n, then after fixing a basis we get the
continuous homomorphism:

ρ : GF −→ GLn(K).

For n = 1 this is precisely the type of object we have been considering above. For the moment
we shall forgo trying to understand what the correct higher dimensional reformulation of
Global Class Field theory should be. Instead we will try and understand these objects in
abstraction. Let l ∈ N be a prime number. Let v be a place of F dividing l. Let F̄v be an
algebraic closure and fix an embedding F̄ ⊂ F̄v. This induces an embedding GFv ⊂ GF . We
have already seen that to study GF it was worthwhile restricting to such GFv . This made
problems more tractable because we have more of a handle on the structure of GFv . Note
that we may restrict ρ to give

ρv : GFv −→ GLn(K).

Note that there are two quite different situations which can occur. Either l = p or l %= p.
The former of these is much more complicated because the topologies on either side are
both pretty p-adic and hence can interact in subtle ways. The later situation, although
still difficult, is much easier. The classical Local Langlands correspondence for GLn is a
classification of such representations for l %= p.
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Let p, l ∈ N be two distinct prime numbers. Let F/Qp and K/Ql be finite extensions ad fix
F̄ an algebraic closure. Let V be a finite dimensional K-vector space. Let ρ be a continuous
K-linear representation of GF on V . In other words, if dimK(V ) = n, then after fixing a
basis we get the continuous homomorphism:

ρ : GF −→ GLn(K).

We would like to somehow classify such representations independently. The first step
will be to put ρ into a more manageble form. Recall that Local Class Field theory worked
between if we restricted our attention to the Weil group WF ⊂ GF , i.e. W ab

F
∼= GL1(F ).

Because the inclusion is continuous we know that ρ|WF is still continuous. Recall that we
did not give WF the subspace topology. We gave IF ⊂ WF the induced subspace topology
then gave WF the disjoint union topology. In particular, WF was not compact. However,
WF is dense in GF , hence ρ is determined by ρ|WF , so we lose nothing by restriction to WF .
From now on let ρ be a continuous K-linear representation of WF on V .

This broadens our study. This is apparent even in the case n = 1. Recall that there
is a canonical isomorphism WF /IF

∼= Z. Let FrobF ∈ WF be a lift of frobenius. FrobF

is only well defined up to a multiple of IF . Given any α ∈ GL1(K) there is a unique one
dimensional continuous representation

ρα : WF −→ GL1(K),

which is trivial on IK and sends FrobF to α. Clearly if |α| &= 1 then the image is unbounded
and in particular is not compact in GL1(K). However, by compactness, any continuous
character of GF into GL1(K), must have image contained in O∗

K . Hence there are many
more such representations of WF , than of GF .

Let us return to the general case. The topology of WF is completely controlled by IF ⊂
WF . Recall that IF = Gal(F̄ /F nr), where F nr ⊂ F̄ is the maximal unramified extension
of F in F̄ . In particular it is compact. This implies that ρ(IF ) ⊂ GLn(K) is compact.
All compact subgroups of GLn(K) are conjugate to GLn(OK). Hence after changing the
basis we may assume that ρ(IF ) ⊂ GLn(OK). Let π ⊂ OK be a uniformiser. The subgroup

1



In + π2Mn(OK) ⊂ GLn(OK) is of finite index. After restricting ρ to IF the inverse image if
In + π2Mn(OK) is an open normal subgroup of IF . By the Fundamental theorem of Galois
theory there is a finite extension E ′/F nr such that ρ(Gal(F̄ /E ′)) ⊂ In + π2Mn(OK). Let
E be a finite extension of F containing the generators of E ′ over F nr. Then E ′ ⊂ Enr

and thus ρ(IE) ⊂ In + π2Mn(OK). Observe that by completeness and the fact that the
residue characteristic of K is l, OK is a pro-l group. Hence In + π2Mn(OK) is a pro-l group.
Let Etr ⊂ F̄ be the maximal tamely ramified extension of E. Recall that Enr ⊂ Etr and
Gal(F̄ /Etr) is a pro-p group. Note that any continuous homomorphism from a pro-p group
to a finite l-group must be trivial, as l "= p. Thus any continuous homomorphism from a
pro-p group to a pro-l group must be trivial for l "= p. Hence ρ(Gal(F̄ /Etr)) = In and ρ
restricted to IE must factor through Gal(Etr/Enr). Recall that there is a (non-canonical)
topological isomorphism

Gal(Etr/Enr) ∼=
∏

q "=p

Zq.

Observe that this gives a continuous homomorphism t : IE → Zl after projecting onto the
lth component. For the same reason as above ρ|Gal(Etr/Enr) is completely determined by its
behavior on the Zl component. Recall that Z ⊂ Zl is dense, thus by continuity, ρ|Gal(Etr/Enr)

is completely determined by the image of

1 ∈ Z ⊂ Zl ⊂
∏

q "=p

Zq
∼= Gal(Etr/Enr).

Let us write ρ(1) := U ⊂ In + π2Mn(OK). Note that given A ∈ In + π2Mn(OK) and β ∈ Zl

it makes sense to talk about Aβ because the coefficients of the binomial expansion converge.
Hence we have shown that given σ ∈ IE, ρ(σ) = U t(σ). There is a natural continuous
homomorphism from In + π2Mn(OK) to Mn(OK) defined by the logarithmic power series,
i.e. for A ∈ π2Mn(OK) we define

log(In + A) = A− A2

2
+

A3

3
− A4

4
+

A5

5
+ · · ·

This converges because of the condition on the coefficients. There is a partial inverse map exp
defined at the level of power series in the usual way. The reason it is partial is that it will not
always converge because the denominators m! may count against us l-adically. However given
and A ∈ π2Mn(OK), exp makes sense on log(In +A) and we have exp(log(In +A)) = In +A.
Let N = log(U). Hence given σ ∈ IE, ρ(σ) = exp(t(σ)N) ⊂ In + π2Mn(OK).

Let q ∈ N denote the cardinality of the residue field of F . Recall that if σ ∈ Gal(F tr/F nr)
and Φ ∈ WF is a lift of frobenius then ΦσΦ−1 = σq. Hence ρ(Φ)Uρ(Φ)−1 = U q. Hence
ρ(Φ)exp(U)ρ(Φ)−1 = exp(ρ(Φ)Uρ(Φ)−1) = exp(U q) = qN . We deduce that N is nilpotent.
Let ||.|| : WF → Q∗ be the character which is trivial on IF and sends Φ to q. By the above
we know that

ρ(σ)Nρ(σ)−1 = ||σ||N, ∀σ ∈ WF .
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There is a unique character additive character λ : IF → Qp such that λ|IE = t. Indeed
all such additive characters are unique to be scalar. We define the representation ρ0 given
by

ρ0(Φ
mu) = ρ(Φmu)exp(−λ(u)N), ∀m ∈ Z u ∈ IF .

By construction this representation is trivial on the finite index subgroup IE ⊂ IF . Hence

ρ0 : WF −→ GLn(K)

is continuous with respect to the discrete topology on K. Essentially what we’ve shown
is that when l &= p, ρ is not far away from being continuous with respect to the discrete
topology on K. The only thing preventing it is N , which we call the monodromy operator.
This motivates the following definition:

Definition. A Weil-Deligne representation of WF over K is a pair (ρ0, N), where

1. ρ0 : WF −→ GLn(K) is a continuous homomorphism with respect to the discrete
topology on K.

2. N ∈ Mn(K) is nilpotent and ρ0(σ)Nρ0(σ)−1 = ||σ||N for all σ ∈ WF .

We call N the monodromy operator as above. There is an obvious concept of a morphism
between Weil-Deligne representations. What we have shown is that a ρ of the above form
naturally gives rise to a Weil-Deligne representation. Somehow the monodromy operator is
a measure of how far ρ is from being continuous with respect to the discrete topology on K.
Conversely given a Weil-Deligne representation (ρ0, N) we may construct a representation
continuous (with respect to the l-adic topology on K) representation

ρ : WF −→ GLn(K)

Φu −→ ρ(Φu)exp(λ(u)N)

where Φ ∈ WF is a lift of frobenius and u ∈ IF . The isomorphism class of this representation
is independent of all choices. Hence we have established

Grothendieck’s Abstract Monodromy Theorem. There are is a natural bijection:

{ Isomorphism classes of n-dimensional Weil-Deligne representations of WF over K }

'

{ Isomorphism classes of continuous (w.r.t l-adic topology on K) n-dimensional K-linear
representations of WF }

The bijection is given by the above construction. This makes things easier because
we only have to worry about one topology. We say that a Weil-Deligne representation is
Frobenius semi-simple if the underlying Weil representation is semi-simple, i.e. the direct
sum of irreducible representations.
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Let p, l ∈ N be two distinct prime numbers. Let F/Qp and K/Ql be finite extensions and
fix F̄ an algebraic closure. Let q denote the cardinality of the residue field. Let V be a finite
dimensional K-vector space. Let ρ be a continuous K-linear representation of WF on V . In
other words, if dimK(V ) = n, then after fixing a basis we get the continuous homomorphism:

ρ : WF −→ GLn(K).

Recall that because l and p are distinct, the topology on WF and GLn(K) are fairly incom-
patible. We saw that the only obstruction to ρ being continuous for the discrete topology on
K was a monodromy operator N ∈ Mn(K). More precisely, if we fix a continuous non-trival
additive character λ : IF → Qp then there is a nilpotent matrix N ∈ Mn(K) and c ∈ Qp

such that there exists a finite extension E/F (in F̄ ) such that

ρ(u) = exp(cλ(u)N) ∀u ∈ IE.

The c ∈ Qp is chosen such that cλ(IE) = Zp. Moreover if ||.|| : WF → Q∗ is the character
which is trivial on IF and sends a lift of frobenius to q then

ρ(σ)Nρ(σ)−1 = ||σ||N ∀σ ∈ WF .

This motivates the important definition:

Definition. A Weil-Deligne representation of WF over K is a pair (ρ0, N), where

1. ρ0 : WF −→ GLn(K) is a continuous homomorphism with respect to the discrete
topology on K.

2. N ∈ Mn(K) is nilpotent and ρ0(σ)Nρ0(σ)−1 = ||σ||N for all σ ∈ WF .

Remarks. There is an obvious concept of morphisms between Weil-Deligne representations.
We may actually interpret a Weil-Deligne representation as representation (over K) of a
cleverly constructed group scheme which is the semi-direct product of WF and Gm. For more
details see the bottom of page 19 of Tate’s ”Number Theoretic Background” article in the
Corvallis proceedings.
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If Φ ∈ WF is a lift of Frobenius then the map

ρ : WF −→ GLn(K)

Φu −→ ρ0(Φu)exp(λ(u)N)

Gives a continuous representation of WF for the l-adic topology on K. It’s isomorphism
class is independent of the choice Φ and λ. This establishes

Grothendieck’s Abstract Monodromy Theorem. There are is a natural bijection:

{ Isomorphism classes of n-dimensional Weil-Deligne representations of WF over K }

$

{ Isomorphism classes of continuous (w.r.t l-adic topology on K) n-dimensional K-linear
representations of WF }

Remarks. 1. We say that (ρ0, N), a Weil-Deligne representation, is Φ-semisimple if the
underlying representation of WF is semisimple, i.e. the direct sum of (algebraically) ir-
reducible representations of WF . This is equivalent to ρ0(Φ) ∈ GLn(K) being semisim-
ple, i.e. diagonalizable. It is these representations which will be the focus of the Local
Langlands correspondence.

2. We say that ρ is unramified if it is trivial on IF . Clearly such a representation has
trivial monodromy. Because WF /IF

∼= Z we know that unramified Φ-semisimple Weil-
Deligne representations correspond to semisimple conjugacy classes in GLn(K), i.e.
conjugacy classes containing diagonal matrices.

3. Note that in the case n = 1 the monodromy operator is a nilpotent operator on a 1-
dimensional K vector space, hence it must be trivial. Thus non-trivial monodromy only
arrises in higher dimensions.

4. By definition, if (ρ0, N) is Weil-Deligne representation over K then ker(N) ⊂ V is
fixed by ρ0. Hence (ρ0, N) is irreducible ⇐⇒ N = 0 and ρ0 is irreducible. More
generally, if ρ, the l-adic representation attached to (ρ0, N) is semisimple then N = 0.

5. Here is an important example, which we call Sp(n):

V = Ke0 + Ke1 + · · · + Ken−1

ρ0(σ)ei = ||σ||iei ∀σ ∈ WF , i ∈ {0, 1, · · ·n− 1}

Nei = ei+1 ∀ i ∈ {0, 1, · · ·n− 2}; Nen−1 = 0.
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We say that a Weil-Deligne representation is indecomposable if it cannot be expressed
as the direct sum of two non-trivial sub Weil-Deligne representations. Sp(n) is inde-
composable. Moreover, all Φ-semisimple indecomposable Weil-Deligne representations
are of the form ρ′ ⊗ Sp(n) for some irreducible ρ′. Here the tensor product of two
Weil-Deligne representations (ρ1, N1) and (ρ2, N2 is (ρ1 ⊗ ρ2, N1 ⊗ 1 + 1⊗N2). Hence
any Φ-semisimple Weil-Deligne Representation can be written as the direct sum of such
indecomposable Weil-Deligne representations.

This gives one side of the Local Langlands Correspondence. What about the other.

Smooth Admissible Representations of GLn(F )

Let us keep the notation of the previous paragraph. By switching to Weil-Deligne represen-
tations we have effectively removed the topological structure of K from the picture. There is
no harm therefore in assuming that K = C. Because C ∼= Cp as abstract field there is no real
restriction in doing this. Recall that Local Class Field theory gave a natural bijection be-
tween 1-dimensional Weil-Deligne representations of WF over C and complex 1-dimensional
continuous representations of GL1(F ). What should the corresponding objects be for n-
dimensional Weil-Deligne representations for n > 1. An obvious guess is that it should
somehow involve GLn(F ). This is correct but what should we replace complex continuous
characters with? Clearly it should be something to do with representation theory. For n > 1
the topological group GLn(F ) is not Abelian. Recall that the irreducible representations of
Abelian groups are one dimensional. This is spectacularly not the case in this situation. The
correct objects to consider will in fact be infinite dimensional representations of GLn(F ).
Let V be a complex vector space, not necessarily finite dimensional. Let Π be a C-linear
representation of GLn(F ) on V , i.e. a homomorphism Π : GLn(F )→ GL(V ), We introduce
two important restrictions on (Π, V ).

Definition. 1. We say that (Π, V ) is smooth if given v ∈ Π, stab(v) ⊂ GLn(F ) is an
open subgroup. Equivalently given v ∈ Π, the orbit map

φv : G −→ V

g −→ g(v)

is locally constant.

2. We say that (Π, V ) is admissible if given K ⊂ GLn(F ), an open compact subgroup,
V K is a finite dimensional complex vector space.

3. We say that (Π, V ) is irreducible if it is irreducible in the usual sense, i.e. contains no
non-trivial GLn(F ) subrepresentations.

The Local Langlands correspondence (non-Abelian Local Class Field theory) asserts the
following remarkable result:
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The Local Langlands Correspondence for GLn

There is a natural bijection between the two sets

{ Isomorphism classes of n-dimensional Φ-semisimple Weil-Deligne representations of WF

over C }

!

{ Isomorphism classes of irreducible smooth admissible representations of GLn(F ) on a
complex vector space }

Remarks. 1. The operative word is natural. This is hard to define, but it involves attach-
ing natural invariants to objects on both sides and demanding that they coincide. These
invariants are complex analytic functions called local L and ε factors. To motivate their
definition we need to understand the Global picture more.

2. This correspondence was proven in total generality by Richard Taylor and Michael
Harris in 2000, using very sophisticated geometric techniques. In low dimensions it
had been known since the 1970s . For n = 2 if had essentially been proven by hand by
Langlands and Tunnel.- writing out both sides and matching them up.

3. The correspondence makes sense (and remains true) over any field K of characteristic
zero.

4. There is a version of the correspondence when we replace GLn with an arbitrary reduc-
tive algebraic group. In this case the it is not clear what the Weil-Deligne side should
look like, but it can be made sense of. In this generality the correspondence is still a
conjecture.
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Let F be a finite extension of Qp and n ∈ N. We wish to understand irreducible smooth
admissible representations of GLn(F ) on complex vector spaces. A complete classification
of the isomorphism classes of such representations was given by Bernstein and Zelevinsky in
the late 1970s. I’ll partially describe their results.

Let V be a complex vector space and Π a C-linear representation of GLn(F ) on V , i.e.
a group homomorphism Π : GLn(F ) → GL(V ). Recall that Π is smooth if given v ∈ Π,
stab(v) ⊂ GLn(F ) is an open subgroup. Also recall that Π is admissible if given K ⊂ GLn(F )
an open compact subgroup V K is a finite dimensional complex vector space. Let the set of
isomorphism classes of irreducible smooth admissible representation of GLn(F ) be denoted
An(F ).

As every open subgroup of GLn(F ) contains an open compact subgroup (GLn(F ) is
locally compact) Π is smooth if and only if

V =
⋃

K

V K ,

where K runs over all open compact subgroups of GLn(F ).

Hecke Algebras

Let (Π, V ) ∈ An(F ) and K ⊂ GLn(F ) be an open compact subgroup such that V K $= {0}.
Let H(K\GLn(F )/K) be the set of compactly supported (zero off a compact set) K-bi-
invariant C-valued functions on GLn(F ). The simplest example is 1K ∈ H(K\GLn(F )/K)
which is 1 on K and 0 elsewhere. Recall that GLn(F ) is a locally compact topological group.
Hence it possesses a unique (up to scalar) left (and right) Haar measure. In fact GLn(F ) is
unimodular so these measures coincide. We normalise the Haar measure such that

∫

GLn(F )

1GLn(OF )dg = 1.

Using this we may form the convolution product on H(K\GLn(F )/K) by
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(f1 ∗ f2)(h) =

∫

GLn(F )

f1(hg−1)f2(g)dg,

where f1, f2 ∈ H(K\GLn(F )/K) and h ∈ GLn(F ). This integral is not so frightening as
it is really just a finite sum as we’ll see below. This naturally makes H(K\GLn(F )/K) an
associative C-algebra. If

vol(K) =

∫

GLn(F )

1Kdg,

then eK := (vol(K))−11K ∈ H(K\GLn(F )/K) is a unit element in H(K\GLn(F )/K). We
call H(K\GLn(F )/K) the Hecke algebra at K of GLn(F ).

If K ′ ⊂ K are two open compact subgroups then there is a natural inclusionH(K\GLn(F )/K) ⊂
H(K ′\GLn(F )/K ′). Observe that this inclusion is an embedding of rings (considered with-
out unit). The union of all such spaces within the set of all measurable functions on GLn(F )
gives

H(GLn(F )) :=
⋃

K

H(K\GLn(F )/K),

where K runs over all open compact subgroups of GLn(F ). The space H(GLn(F )) is ex-
actly the locally constant, compactly supported C-valued functions on GLn(F ). This is the
full Hecke Algebra of GLn(F ). If naturally has a convolution product as above, except this
makes it an associate C-algebra without unit.

Why have we introduced this algebra? Let (Π, V ) ∈ An(F ). Recall that

V =
⋃

K

V K ,

where K runs over all open compact subgroups of GLn(F ). There is a natural action of
H(K\GLn(F )/K) on V K given by the integral

f(v) :=

∫

Gln(F )

f(g)vdg,

where f ∈ H(K\GLn(F )/K) and v ∈ V . This integral is not really so bad - it’s just a
finite sum again. To make things more concrete let’s do an example. Let α ∈ GLn(F ). Let
1KαK ∈ H(K\GLn(F )/K), denote the function which takes the value 1 on the double coset
KαK and 0 elsewhere. All elements of H(K\GLn(F )/K) are finite C-linear sums of such
functions. How does 1KαK act on V ? Let

KαK =
m∐

i=1

αiK.

Then given v ∈ V K
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1KαK(v) :=

∫

Gln(F )

1KαK(g)vdg =
m∑

i=1

αi(v).

This extends linearly to all of H(K\GLn(F )/K). Passing to the direct limit the observe
that there is a natural action of H(GLn(F )) on all of V by smoothness. Also observe that
given v ∈ V K , eK(v) = v. Hence H(GLn(F )) · V = V . If M is any H(GLn(F ))-module we
say it is non-degenerate if H(GLn(F )) ·M = M . The importance of this shift in perspective
is the following fundamental result.

Theorem. Let K ⊂ GLn(F ) be an open compact subgroup. Let An(F )K ⊂ An(F ) denote
the subcategory such that the K-invariants are non-trivial. The functor from An(F )K to
the category of non-trivial irreducible finite dimension H(K\GLn(F )/K)-modules given by
V → V K is an equivalence of categories.

Remarks. 1. This theorem can be expressed in terms of H(GLn(F )) if we add an extra
admissibility condition on our non-degenerate H(GLn(F ))-modules.

2. We can also relax irreducibility on both sides as long as we restrict to finite length
representation.

3. The power of this theorem is that it allows us to study potentially infinite dimen-
sional representations of GLn(F ) using finite dimensional representation theory of
some Hecke Algebra. The difficulty with this approach is that for arbitrary K, H(K\GLn(F )/K)
may be very complicated.

Spherical Representations

Let us restrict to a very special subcategory of An(F ).

Definition. Let (Π, V ) ∈ An(F ). We say that (Π, V ) is spherical if V GLn(OF ) $= {0}.

By the above we know that there is an equivalence of categories between spherical rep-
resentations of GLn(F ) and non-trivial finite dimensional H(GLn(OF )\GLn(F )/GLn(OF )).
We call this latter algebra the spherical Hecke algebra.

It is an important fact that H(GLn(OF )\GLn(F )/GLn(OF )) is commutative. In fact

H(GLn(OF )\GLn(F )/GLn(OF )) ∼= C[x±1 , · · · , x±n ]Sn ,

Where Sn is the symmetric group acting on {x1, · · · , xn} in the natural way. Because the
non-trivial irreducible representations of a commutative algebra are 1-dimensional we deduce
that given a spherical representation, (Π, V ) ∈ An(F ), then dimCV GLn(OF ) = 1.

Remarks. This structure theorem for H(GLn(OF )\GLn(F )/GLn(OF )) is a special appli-
cation of the Satake isomorphism. The Satake isomorphism in general gives a structure
theorem for spherical Hecke algebras of arbitrary connected reductive groups, a concept we
have not defined.
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Hence an isomorphism class of spherical representations of GLn(F ) is given by a character
of C[x±1 , · · · , x±n ]Sn . But this is just the same as a semi-simple (contains a diagonal matrix)
conjugacy class of GLn(C).

Recall that up to isomorphism unramified n-dimensional Φ-semisimple Weil-Deligne rep-
resentations over C stand in one to one correspondence with semisimple conjugacy classes
of GLn(C. Thus we deduce:

The Unramified Local langlands Correspondence for GLn over F . There is a natural
bijection between the two sets:

{ Isomorphism classes of unramified n-dimensional Φ-semisimple Weil-Deligne
representations of WF over C }

!

{ Isomorphism classes of spherical irreducible smooth admissible representations of GLn(F )
on a complex vector space }

Proof. Both sets stand in natural bijection with semisimple conjugacy classes of GLn(C).

Remarks. This by far the easiest case of the correspondence. Somehow what is going on
is that in the spherical case everything is collapsing to Abelian data - on the Weil-Deligne
side an unramified representation σ is the direct sum of n characters of WF . Hence by Local
Class Field theory, σ gives n characters of GL1(F ). We may package these together to form
a character of B(F ) ⊂ GLn(F ), the subgroup of upper triangular matrices. This subgroup is
generally called the standard Borel. The Spherical representation attached to σ is one which
occurs as a subquotient of the induced representation to GLn(F ). This principle will for the
backbone of the Bernstein-Zelevinsky classification.
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Let F/Qp be a finite extension and n ∈ N. We have been studying irreducible smooth ad-
missible complex representations of GLn(F ). We denoted the set of isomorphism classes of
such representations by An(F ). Last time we singles out a particularly simple subset, the
spherical representations. Recall that (Π, V ) ∈ An(F ) is spherical if V GLn(OF ) "= {0}. It
turned out that dimC(V GLn(OF )) = 1. This was because the spherical Hecke algebra was
commutative. It also turned out that such isomorphism classes stood in natural bijection
with semisimple conjugacy classes of GLn(C). Today and next time we’ll try to under-
stand the Berstein-Zelevinsky classification of smooth irreducible admissible representations
of GLn(F ).

Parabolic Induction

Let n = (n1, · · · , nr) be a partition of n. Let us write Gn(F ) for the group

GLn1(F )× · · · ×GLnr(F ).

Denote by Pn(F ) ⊂ GLn(F ) the subgroup of matrices




A1

A2 ∗
· · ·

0 · · ·
Ar





for Ai ∈ GLni . We call Pn(F ) the standard parabolic subgroup for the partition n. The
subgroup Un(F ) ⊂ Pn(F ) consisting of matrices of form





In1

In2 ∗
· · ·

0 · · ·
Inr




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where Ini ∈ GLni(F ) is the identity matrix, is called the unipotent radical of Pn(F ).
Observe that we may embed Gn(F ) in Pn(F ) as matrices of the form:





A1

A2 0
· · ·

0 · · ·
Ar





Gn(F ) is called the Levi subgroup of Pn(F ). If you have any familiarity with algebraic
groups this is the usual deconstruction of a parabolic subgroup. In particular GLn(F )/Pn(F )
is compact.

Observe that every element p ∈ Pn(F ) can be written uniquely in the form p = mu,
where m ∈ Gn(F ) and u ∈ Un(F ). This makes Pn(F ) the semidirect product of Gn(F )
and Un(F ). Consequently there is a natural projection homomorphism Pn(F ) → Gn(F ). If
n = (1, · · · , 1) then Pn(F ) is called the standard Borel subgroup of GLn(F ).

Let (Πi, Vi) be an admissible complex representation of GLni(F ) for each i ∈ {1, · · · , r}.
Then Π1 ⊗ · · · ⊗Πr is a smooth admissible representation of Gn(F ) on Vi ⊗ · · · ⊗ Vr.. Using
the projection of Pn(F ) onto Gn(F ), Π1⊗ · · · ⊗Πr becomes an admissible representation on
Pn(F ).

Detour on Haar Measure

Observe that Pn(F ) is a locally compact topological group. Hence it has a unique (up to
scale) left Haar measure. If µ is a fixed left Haar measure of Pn(F ) then for any t ∈ Pn(F ),
if A ⊂ Pn(F ) is a Borel measurable subset then

A→ µ(At−1),

defines a new left Haar measure. Because left Haar measure is unique up to scale we know
that there exists ∆, a character of Pn(F ) taking values in the positive reals such that

µ(At−1) = ∆(t)µ(A).

∆ is called the modulus character of Pn(F ). It essentially measure how far from being
unimodular Pn(F ) is. For example, if Pn(F ) is unimodular then ∆ is trivial.

Let ∆1/2 be the character of of Pn(F ) taking in positive square root of ∆. For Π1⊗· · ·⊗Πr as

2



above we define the normalised smooth Parabolic induction of Π1⊗· · ·⊗Πr to representation
of GLn(F ) whose underlying vector space is

V = {f : GLn(F )→ Vi ⊗ · · · ⊗ Vr|f smooth, f(pg) = ∆1/2(p)(Π1 ⊗ · · · ⊗ Πr)(p)f(g),
for all p ∈ Pn(F ), g ∈ Gn(F )}.

Here smooth means that it is is locally constant as a function on GLn(F ). The action
of GLn(F ) on V is given by right translation. i.e. g(f)(h) = f(hg). This gives a left
action of GLn(F ) on V which is smooth and admissible. The admissibility is because of the
compactness of GLn(F )/Pn(F ). Even if the (Πi, Vi) are irreducible this certainly does not
means that V will be irreducible. Let us denote this representation by Π1 × · · · × Πr.

A point of confusion is why have we introduced the modulus function? The reason is
that if each of the (Πi, Vi) are unitary, i.e. admit a Hilbert space structure whose inner
product is invariant under the action of GLni(F ) then the normalised smooth induction V
is also unitary. If we omitted the modulus character then this would fail to be true. Unitary
representations of topological groups are the main object of study within Harmonic Analysis.

Definition. Given two complex representations of a group G, (π, V ) and (µ, W ), we say
that (π, V ) is isomorphic to a subquotient of (µ, W ) if there are two G-stable subspaces
W2 ⊂ W1 ⊂ W , such that the natural representation (µ, W1/W2) is isomorphic to (π, V ).
Note that if (µ, W ) is semistable then all subquotients are subrepresentations. In general this
is not the case.

Definition. An irreducible smooth admissible complex representation (Π, V ) of GLn(F ) is
called supercuspidal if there exists no proper partition n such that Π is isomorphic to a repre-
sentation of the form Π1×· · ·×Πr, where each Πi is an admissible complex representation of
GLni(F ). We denote by An(F )0 ⊂ An(F ) the subset of isomorphism classes of supercuspidal
representations of GLn(F ).

The importance of supercuspidal representations is shown by the following fundamental
theorem of Bernstein and Zelevinsky:

Theorem. Let Π be an irreducible smooth admissible representation of GLn(F ). There
exists a unique partition of n = n1 + · · · + nr and unique (up to isomorphism and ordering)
supercuspidal representation Πi of GLni(F ) such that Π is a subquotient of Π1 × · · · × Πr.

We call the collection (Π1, · · · , Πr) the supersuspidal support of Π.
Powerful as this theorem is it still doesn’t give us a good classification in turns of su-

percuspidal representation. By this I mean that two non-isomorphic smooth admissible
irreducible representations of GLn(F ) can have the same supercuspidal support. We need
to refine the theorem. we’ll do this next time.
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Let F/Qp be a finite extension. In order to try and understand the Local Lanlgands cor-
respondence for GLn/F we have been trying to classify the isomorphism classes of smooth
admissible irreducible complex representations of GLn(F ). To do this introduced the impor-
tant concept of parabolic induction. Recall that a supercuspidal representation is one that
does not appear (up to isomorphism) as a subquotient of a proper parabolic induction. We
denote the set of isomorphism classes of supercuspidal representations of GLn(F ) by A0

n(F ).
The following theorem tells us that the supercuspidals are the ”building blocks” of smooth
admissible irreducible representations of GLn(F ):

Theorem. Let Π be an irreducible smooth admissible representation of GLn(F ). There
exists a unique partition of n = n1 + · · · + nr and unique (up to isomorphism and ordering)
supercuspidal representation Πi of GLni(F ) such that Π is a subquotient of Π1 × · · · × Πr.

Recall that the set {Π1, · · · , Πr} are called the supercusidal support of Π. A point of
confusion is that it appears at first sight that the induced representation depends on the
ordering of the partition. This is indeed true. However, the irreducible subquotients (up to
isomorphism) are invariant.

It is also true that given a partition n = n1 + · · ·+nr and a supercuspidal representation,
Πi, of GLni(F ) for each i, then Π1 × · · · × Πr has finite length. This means that (up to
isomorphism) there are only finitely many subquotients of Π1 × · · · × Πr. Hence (up to iso-
morphism) there are only finitely many smooth admissible irreducible representations with
the same supercuspidal support. We want to get a more refined classification than this.

There is a natural complex character on GLn(F ) given by the composition of the deter-
minant with the absolute value:

|det| : Gln(F ) −→ C∗

g −→ |det(g)|

1



For any s ∈ C we get the character |det|s. Given Π, a smooth admissible representation of
GLn(F ) we may twist Π with the character |det|s i.e. the representsation g → |det(g)|sΠ(g).
We denote this new representation by Π(s).

If Π is supercuspidal then Π(s) is also supercuspidal. Define a partial order on A0
n(F )

by Π ≤ Π′ if and only if there exists an integer n ≥ 0 such that Π′ = Π(n). Hence ever finite
interval ∆ is of the form

∆(Π, m) = [Π, Π(1), · · · , Π(m− 1)].

The integer m is called the length of the interval and nm is called the degree. We write
Π(∆) for the representation Π× · · · × Π(m− 1) of GLnm(F ).

Two finite intervals ∆1 and ∆2 are said to be linked if neither contains the other and
∆1 ∪∆2 is a finite interval. We say that ∆1 precedes ∆2 if they are linked and the minimal
element of ∆1 is smaller that the minimal element of ∆2. We are now in a position to state
the Bernstein-Zelevinsky classification.

Theorem. 1. For any finite interval ∆ ⊂ A0
n(F ), Π(∆) has a unique irreducible smooth

admissible quotient Q(∆).

2. Let ∆1 ⊂ A0
n1

(F ), · · · , ∆r ⊂ A0
nr

(F ) be finite intervals such that for i < j, ∆i does
not precede ∆j (this is the empty condition is ni )= nj). Then the representation
Q(∆1)× · · · ×Q(∆r) admits a unique irreducible quotient Q(∆1, · · · , ∆r).

3. Let Π be a smooth admissible irreducible complex representation of GLn(F ). Then it is
isomorphic to a representation of form Q(∆1, · · · , ∆r) for a unique (up to permutation)
collection of intervals ∆1, · · · , ∆r such that ∆i does not precede ∆j for i < j.

4. Under the hypothesis of (ii), the representation Q(∆1) × · · · × Q(∆r) is irreducible if
and only if no two intervals ∆i and ∆j are linked.

Lets do the special case where n = 2. This is easier as there is only one non-trivial stan-
dard parabolic, the standard borel (upper triangular matrices). The levi component of the
standard borel is just the subgroup of diagonal matrices (a maximal torus). Hence the blocks
in the levi component are just GL1(F ). Thus if Π is a smooth admissible representation of
GL2(F ) which is not supercuspidal then it must be induced from two smooth characters of
GL1(F ).

More precisely, if χ1, χ2 are two smooth complex characters of GL1(F ), then we may
form the normalised parabolic induction, B(χ1, χ2). By the classification we know that if
χ1/χ2 )= |det|±1 (i.e. they are not linked) then B(χ1, χ2) is irreducible. In this case we write
P(χ1, χ2) = B(χ1, χ2).

Such representations are called Principal Series. The infinite dimensional spherical
smooth admissible irreducible complex representations of GL2(F ) are isomorphic to a prin-
cipal series representation where both character are trivial on O∗

F .
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The other case is when χ1 and χ2 are linked, i.e. χ1/χ2 != |det|±1. There are two possible
things that can happen in this situation. If χ2 = χ1|det| then χ1 precedes χ2 in the above
terminology. Hence the classification only works if they are in the same interval. In this case
B(χ1, χ2) is reducible, of length two. We denote the unique irreducible quotient by Sp(χ1).
Such representations are called Special. They are also infinite dimensional. If χ1 is trivial
then it is called the Steinberg representation.

The final case to consider is when χ1 = χ2|det|, i.e. when χ2 precedes χ1. For the
classification to work in this case we must think about χ1 and χ2 as distinct intervals. In
this case the the irreducible quotient is just the character |det|1/2χ1(det). This together with
the supercuspidals exhausts all the smooth admissible irreducible representations of GL2(F ).

Let’s return to the Local Langlands correspondence. Recall that we are trying to find a bijec-
tion between isomorphism classes of smooth admissible irreducible complex representations
of GLn(F ) and isomorphism classes of complex n-dimensional Φ-semisimple Weil-Deligne
of WF . Recall that we showed that any such Weil-Deligne representation is the direct sum
of ones of form ρ′ ⊗ Sp(m), where ρ′ is a an irreducible complex representation of the WF

(N=0) and Sp(m) is given by

V = Ce0 + Ce1 + · · · + Cem−1

ρ0(σ)ei = ||σ||iei ∀σ ∈ WF , i ∈ {0, 1, · · ·m− 1}

Nei = ei+1 ∀ i ∈ {0, 1, · · ·m− 2}; Nem−1 = 0.

This together with the Berstein-Zelevinsky classification indicates that ρ′ should correspond
to a supercusidal Π′ and ρ′ ⊗ Sp(m) should correspond to the unique irreducible quotient
given by Q(∆), where ∆ = [Π′, · · ·Π′(m − 1)]. If (ρ, N) is the direct sum of (ρ′i ⊗ Sp(mi))
(corresponding to Q(∆i) for ∆i = [Π′

i, · · · , Π′
i(mi − 1)]) then it should correspond to the

representation Q(∆1, · · · , ∆r), making sure to order the intervals in accordance with the
classification.

Thus the Bernstein- Zelevinsky classification reduces proving the Local Langlands cor-
respondence for GLn(F ) to finding a natural bijection between A0

n(F ) and complex n-
dimensional irreducible representations of WF . Of course the operative word is natural,
something we have not made precise. To do this would take us too far afield. It was finally
settled by Harris and Taylor in 2000 using very sophisticated geometric techniques. If you are
feeling brave have a look at their book: ”the Cohomology of some Simple Shimura Varieties”.

That’s about all the local stuff I want to talk about. Next time: Global Langlands!
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Thus far we have been considering the generalisation of local class field theory to higher
dimensions. Let us now turn to the global picture.

Recall that we were able to reformulate global class field theory in the language of Hecke
characters. Let F be a number field. Fix an algebraic closure F̄ . For every place v fix an
algebraic closure F̄v and an embedding F̄ ⊂ F̄v. Recall that this fixes embeddings GFv ⊂ GF .
Recall the fundamental definition:

Definition. A Hecke character of F is a continuous homomorphism (for the usual topology
on C)

GL1(F )\GL1(AF ) −→ C∗.

Recall that a finite order Hecke character was one whose image was finite. Global class
field theory established a natural bijection:

{ Hecke characters of F of finite order }

$

{ One dimensional continous complex representations of GF }

We were able to push this slightly further by introducing the concept of an arithmetic Hecke
characker. Recall these where Hecke character whose restiction to the infinite component of
GL1(AF ) was inherently algebraic. For F = Q, χ is arithmetic if and only if χ|R>0 = |.|k for
some k ∈ Z. We also saw that these corresponded to Galois theoretic data.

Let p be a prime number. Fix an algebraic closure Q̄p. A p-adic character of GF is a
continuous (for the p-adic topology on Q̄p) homomorphism:

ρ : GF → GL1(Q̄p).

1



By the Baire category theorem the image is actually contained in GL1(E) for some finite
extension E/Qp. We singled out a special class of such representations which we called
potentially semistable. In general we did not make this notion precise but for F = Q it
meant that ρ was a product of a finite order character and an integer power of the p-adic
cyclotomic character. This allowed us to expand the above bijection:

{ Arithmetic Hecke Characters of F }

!

{ One dimensional p-adic potentially semi-stable representations of GF }

Now we are in a position to consider what the appropriate generalisations of this may be to
higher higher dimensions.

1 The Global Langlands Philosophy

This whole last section is an order of magnitude deeper than what has been done thus far.
I’ll do my best to outline what the landscape looks like.

Perhaps the easiest issue to address first is what the correct analogue of a one dimensional
p-adic potentially semi-stable representation should be. It would take too long to properly
address this question but I’ll give you an outline.

An n-dimensional p-adic representation of GF is a continuous (for the p-adic topology on
Q̄p) homomorphism:

ρ : GF → GLn(Q̄p).

Again by the Baire category theorem we could assume that the image is in GLn(E) for
some finite extension E/Qp. If ρ has finite image then in fact we can assume that E is a
finite extension on Q. Thus continuous n-dimensional complex representations (which are
always finite order) can naturally consider as examples of p-adic representations.

Notice that in the one dimensional case the representations which were of interest had
some restriction: they where potentially semi-stable. This condition is something to do with
the restrictions ρ|GFv

where v|p. Being potentially semistable in the higher dimensional case
is much more complicated, but is still a condition to do with the restrictions ρ|GFv

where v|p.
The definiton was given by Jean-Marc Fontaine and involves something called p-adic Hodge
theory.

Classical Hodge theory addresses the issue of how the deRham cohomology of a compact
complex manifold decomposes. p-adic Hodge theory does something similar for smooth
projective varieties defined over p-adic fields. This gives a hint that something geometric is
going on.
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1.1 Etale Cohomology

Let X be a smooth, projective variety over Spec(F ). Let X̄ be the bases change to Spec(F̄ ).
Note that GF acts on X̄, i.e. given σ ∈ GF there is a natural morphism of schemes (not over
F̄ )

σ : X̄ → X̄.

Fix a prime p and d ∈ N. Let Z/pdZ denote the etale constant sheaf on X̄ associated to

the abelian group Z/pdZ. The etale bit means that we are putting the ”etale topology” on
X̄ instead of the usual Zariski topology. This is a conceptual jump. The etale ”topology”
is actually a ”topology” on a category associated to X̄, and not on X̄ as a set of points.
Anyway, taking the derived functors of the usual global sections functor into abelian groups
gives the etale chomology groups:

H i
et(X̄, Z/pdZ), i ∈ N ∪ {0}.

Note that by functoriality on the coefficients we have a natural projective limits:

H i
et(X̄, Zp) := lim←−

d

H i
et(X̄, Z/pdZ).

Note that by functoriality on the coefficients H i
et(X̄, Zp) is naturally a Zp-module. We define

the p-adic (often in the literature they say l-adic, but we’ve fixed different conventions)
cohomology groups of X̄ to be

H i
et(X̄, Qp) := H i

et(X̄, Zp)⊗Zp Qp.

Finally we write
H i

et(X̄, Q̄p) := H i
et(X̄, Qp)⊗Qp Q̄p.

Fact: H i
et(X̄, Q̄p) is a finite dimensional Q̄p-vector space equipped with a natural continuous

Q̄p-linear action of GF .

This means that the p-adic cohomology groups of smooth projective varieties over F give a
natural source of p-adic representations of GF !.

Theorem. As a GF representation H i
et(X̄, Q̄p) is potentially semistable.

The geometric behaviour of X is intimately connect to the properties of H i
et(X̄, Q̄p) as a

representation of GF .

Definition. Let v be a finite place of F . Let Xv be the base change of X to Fv. It is still
smooth and projective. We say that X has good reduction at v is there exists a scheme X

3



together with a smooth projective morphism

X

!!

Spec(OFv)

Such that there is a cartesian (fiber product) diagram

Xv
""

!!

X

!!

Spec(Fv) "" Spec(OFv)

Facts:

1. For all but finitely many finite places of F , X has good reduction.

2. If X has good reduction at v and v does not divide p then the GF -representation
H i

et(X̄, Q̄p) is unramified at v. This means that the restriction to the interia subgroup
of GFv is trivial.

Definition. We say that a p-adic representation of GF is geometric is it is isomorphic to
a subquotient of a p-adic representation coming from the p-adic cohomology of a smooth
projective variety over F . We come to the following profound conjecture:

The Fontaine-Mazur Conjecture. Let ρ be a p-adic representation of GF . Then ρ is
geometric if an only if it is potentially semi-stable and is unramified at all but finitely many
places not dividing p.

If you want to believe the Fontaine-Mazur conjecture then you could pretty much take this
as the definition for being potentially semi-stable. For 2-dimensional representations this
has almost been settled by work of many people.

There is an asymmetry in this picture: p was chosen arbitrarily. To X we have a collec-
tion of representations for every prime p. We also saw this with the one dimensional case.
Unsurprisingly there is strong compatibility between these different representations: They
form something called a compatible system. If we have time I’ll make this precise next time.

The upshot of all this is that we have a candidate for the Galois theoretic side of the ”Global
Langlands Correspondence”.
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Let F be a number field. Fix an algebraic closure F̄ . For every place v fix an algebraic
closure F̄v and an embedding F̄ ⊂ F̄v. Recall that this fixes embeddings GFv ⊂ GF .

Let X be a smooth projective variety over F and p a fixed prime number. Recall that
we were able to canonically associate to X, via a construction in etale cohomology the fi-
nite dimensional Q̄p-vector spaces :H i

et(X̄, Q̄p). By functoriality of cohomology these vector
spaces naturally came equipped with continuous Q̄p-linear actions of GF . A p-adic repre-
sentation of GF was said to be geometric if it was isomorphic to a subquotient of such a
representation. The Galois theoretic side of the a higher dimensional global class field theory
should then be the set:

{ Isomorphism classes of geometric p-adic representations of GF . }

As a geometer it is natural to ask whether the a geometric p-adic representation of GF

corresponds to something truly geometric. Grothendieck introduced the concept of a pure
motive to try and do this. The idea is that the cohomology groups of X can decompose
(as vector spaces) , without X decomposing as a variety. Grothendieck suggested that
this decomposition did have geometric meaning once one enlarged the category of smooth
projective varieties over F to what he called the category of pure motives over F , denotedM.
This idea is still fuzzy - many natural questions are still unresolved. What is true is thatM is
Abelian and semi-simple and to every pure motive we may canonically associate a geometric
p-adic representation of GF . The category of pure motives over F isn’t so hard to define.
What’s hard is proving it has reasonable properties - the standard conjectures (unproven
after 40 years) imply that the process of associating a geometric p-adic representation to a
pure motive is functorial. If we want to be really fancy we could say that the Galois theoretic
side of the a higher dimensional global class field theory should then be:

{ Grothendieck’s category of pure motives over F . }

1



Automorphic representations of GLn/F

What is the higher dimensional generalisation of a Hecke character over F . This is a hard
question. Firstly observe that Hecke characters are inherently real analytic objects. They are
certain continuous one dimensional complex representations of GL1(AF ). The certain means
that they are trivial on GL1(F ) ⊂ GLn(AF ). The local case would suggest that what we want
is some kind of big infinite dimensional complex representation of GLn(AF ). This is indeed
the case. It also has to have some kind of invariance properties under GLn(F ) ⊂ GLn(AF ).
Finally it has to be fundamentally real analytic. The correct concept is that of an automor-
phic representation of GLn(AF ).

Let χ be a unitary Hecke character, i.e. |χ(g)| = 1 for all g ∈ GL1(F )\GL1(AF ). Let
Z(AF ) ⊂ GLn(AF ) denote the center. There is a natural identification GL1(AF ) = Z(AF ).
Recall that GLn(AF ) is a locally compact topological group. It is unimodular and comes
equipped with a a unique (up to scale) left and right Haar measure. This descends to a
Haar measure on the quotient GLn(F )\GLn(AF ). This further descends to a Haar measure,
which we denote dg, on the quotient Z(AF )GLn(F )\GLn(AF ).

Definition. The space of L2-automorphic forms with central character χ is the complex
vector space

L2(GLn(F )\GLn(AF ); χ)

of all measurable ϕ : GLn(F )\GLn(AF )→ C such that ϕ(zg) = χ(z)ϕ(g) for all z ∈ Z(AF )
and ∫

Z(AF )GLn(F )\GLn(AF )

|ϕ(g)|2dg <∞.

This is naturally a Hilbert space and the group GLn(AF ) acts by right translation on
this space preserving the norm; hence L2(GLn(F )\GLn(AF ); χ) is a unitary representation
of GLn(AF ).

Definition. An automorphic representation of GLn(AF ) with central character χ is an ir-
reducible (topologically) constituent of L2(GLn(F )\GLn(AF ); χ).

We should remark that irreducible constituent means those which occur discretely (are
subrepresentations), and those which occur continuously (as a direct integral). This is diffi-
cult functional analyisis. Just think about it as a subrepresentation for the moment.

Let π be an automorphic representation of GLn(AF ). Let r1 be the number of real places
of F and r2 be the number of complex places of F . Then let

K∞ = O(n)r1 × U(n)r2 ⊂ GLn(
∏

v|∞

Fv)

and
Kf :=

∏

v finite

GLn(OFv).
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Then
K = Kf ×K∞ ⊂ GLn(AF ),

is a maximal compact subgroup.
We say that v ∈ π is K-finite if C[K]v ⊂ π is finite dimensional. We denote the space

of K-finite vectors by πK ⊂ π. It is a fact that πK is dense in π. Unfortunately πK is not
closed under the action of GLn(AF ). The K∞-finiteness is not preserved under the action of
GLn(

∏
v|∞ Fv). However, πK is preserved under the action of GLn(A∞

F ). In this way πK is
a smooth, admissible complex irreducible representation of GLn(A∞

F ). These definitions are
the same as in the local case.

For every finite place v let Vv be a complex, smooth, admissible, irreducible representa-
tion of GLn(Fv). Furthermore assume that for all but finitely many places Vv is spherical
(i.e. has a unique (up to scale) GLn(OFv)-fixed vector uv. We define the restricted tensor
product by

V = ⊗′
vVv = lim−→

S

((⊗v∈SVv)⊗ (⊗v/∈Suv)).

Where S runs over all finite subset of the finite places of F containing those places for
which Vv is not spherical. It is a fact that V is a smooth, admissible, irreducible complex
representations.

Theorem. Let π be an automorphic representation of GLn(AF ). Then as a GLn(A∞
F )-

representation πK decomposes uniquely (up to isomorphism) into the restricted tensor prod-
uct:

πK = ⊗′
vπv,

where πv is a smooth, admissible, irreducible, complex representation of GL(Fv), spherical
for almost all v.

Let Sπ denote the finite subset of the finite places of F such that πv is not spherical. Recall
that by the Satake isomorphism any spherical representation πv of GLn(Fv) is determined
up to isomorphism by a semi-simple conjugacy class of GLn(C). Hence to any automorphic
representation of GLn(AF ) we may associate the data

(Φv)v/∈Sπ , Φv ⊂ GLn(C),

where Φv is a semisimple conjugacy class.

The Global Langlands Correspondence

We are finally in a position to state probably the fundamental conjecture in number theory.

Let ρ be an n-dimensional, p-adic representation of GF such thast ρ is unramified (away
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from p) at almost all finite places of F . Let Sρ be the finite subset of the finite places of F
for which ρ is ramified. Let v be a place not dividin P . We may restrict the representation
to give

ρ|GFv
: GFv → GLn(Q̄p).

By Grothendieck’s abstract monodromy theorem we may associate to this data an n-dimensional
Φ-semisimple Weil-Deligne representation of WF . Hence for v /∈ Sρ we have an associate un-
ramified Weil-Deligne representation. We have seen that such a representation corresponds
to a semi-simple conjugacy class Υv ⊂ GLn(C)

Recall that if ρ is geometric then it satisfies the above property (smooth projective
varieties over F have good reduction almost everywhere). Hence to any ρ, a geometric,
p-adic representation of GF we may canonically associate the data:

(Υv)v/∈Sρ , Υv ⊂ GLn(C).

Definition. We say that ρ, an n-dimensional, p-adic representation of GF , is automorphic
if

1. ρ is unramified away from a finite set of places Sρ.

2. There exist π, an automorphic representation of GLn(AF ), such that there exists S, a
finite set of places of F , contain both Sρ and Sπ such that

(Υv)v/∈S = (Φv)v/∈S.

Global Langlands Reciprocity (Version 1). Every geometric p-adic representation of
GF is automorphic.

Recall that to any Grothendieck pure motive over F we can associate a geometric p-adic
representation of GF .

Definition. A Grothendieck pure motive is automorphic if its associate p-adic representation
is.

Global Langlands Reciprocity (Version 2). Every Grothendieck pure motive over F is
automorphic

This is about a deep as mathematics has made it thus far. We are a very very long
way from proving this. Philosophically it ways that arithmetic and geometry fundamentally
encode analytic data - a kind of grand unified theory of mathematics. To give you some idea
of how hard it has to be. Let’s do a special case:

Let E be an elliptic curve over Q. Remember that this is a smooth projective variety
over spec(Q), so all the machinery of Grothendieck’s etale cohomology may be applied to
it. In particular H1

et(Ē, Q̄p) is a 2-dimensional p-adic representation of GQ. It corresponds
to a Gorthendieck motive which we call h1(E). The Taniyama-Shimura conjecture (Wile’s
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Theorem) states that h1(E) is automorphic (or modular in other terminology). This means
that there is an automorphic representation of GL2(AQ) to which it corresponds. Classical
modular forms give such representations. In loose terminology, when people say that E is
modular, they really mean that h1(E) is automorphic. From the perspective of the Global
Langlands Reciprocity conjecture this is a very very special case. If a proof of Langlands
reciprocity is the same as swimming the Atlantic, we’re only a few miles in. How long will
the swim take? Only time will tell.
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