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Math 113 Midterm Exam

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) Let G be a set equipped with a binary operation .

(a) Carefully define what it means for (G, *) to be a group.
Solution:

(G’;x) ;5 a jYOuf) e tla %oMow}ug P(opwé-'n.s owe SafisFtred

(/ erjl%ea‘ , x»(!xé):(xaz)uz Ckfxvaeﬁv*y)
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‘3/ q;‘/am %€ e Gﬂ ; QJG - Suoh M x”J = a‘”a' =e (rnVWSQJ)

(b) Let z € G. Prove that there is a unique element y € G such that zxy =y xx = e.
Solution:

ép" J’j’ee SuCl M x*aaa*x:_e = xacj’.-.-_j’,‘,_

= Jr = :]'xe = J'x (xxj) = (:l"l'%)*J =¢"J = Z]

PLEASE TURN OVER



Math 113 Midterm Exam, Page 2 of 8

2. (25 points) (a) Let G be a cyclic group such that gp({z}) = G and |G| = n. Prove the

following:
gp({z°}) = G <= HCF(a,n) = 1.

You may use any result from lectures as long as it is clearly stated.

Solution:

Givem ys &
|3P(3)|= W,l(j) = min me N suoch Ht :]“':

| 3
n —e o oro((j) | k

abk
=) o‘,‘((x") = nh =) x. *e ¥ te {1/"-/"’"3

&) gp(Ex"3) =

= wpok ¥V ke Sl n=t1y D HE(a,n)= |

(=)
"H'C‘(‘a,n) = | = V\-/rall V ke e E\,.-.,m.—-lz =) xak_-#e_ & Le{l,.., k—l}

> onl(x") Z ~ e & o ed(=)]lg] » adl(at) |«

=) o‘fd (x‘) = =') jP( ixa‘;)

(b) Is it possible for a group to have exactly 9 elements of order 47 Carefully justify

your answer.

Bl ovetan (4 as l,3 Copvime to
Ao

m—

ord(=x) = =) j?(t’(S) = SQ x "1/ 2 = 7f(s*s3)
So eaoh  @yolic sabjy,.r counramg &vad:? 2 eloments o avdae U,

Heuy Hlat gl U o even wamber ot such  Eerws
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3. (25 points) Let (G, *) be a group together with an action on a set S
(a) Prove that the orbits partition S. You may use any result from lectures are long as
it is clearly stated.
Solution:

e e(x) = x bxes = =xe Orb(x) = U Qbix) = ¢

xe
* Assume Orbix) a OVL(J) * S
=) 3 j"j"-ee Sucks  Clat J;(") =jz<j)
P 2= 37500 ad gy = (9790w

Cek J-e &

JO = (o't = Ot c oy

e S Orb(se) = ovp ¢
ch) = (jjzg.JCM = ayb(jJ < Orb(=) N/

(b) State, without proof, the orbit-stabilizer theorem
Solution:

Lk xS . Tau wep g g — O@) 4

Js'éqb(z) —_— J (=)
el - X Pineod é('/'“a,.‘

(¢) Assume now that |G| = 77 and |S| = 6. Prove that the action is trivial.

Solution:
Ovedk —Stobdizes =D & | = | stab (*)|-|Or\.(a)| ¥xe S
V:lﬂ\.l. .
sl=c = [oMn| €€, lal=7ps fag s oo

= |ont]| =1 Vze & = Adbdou is Lavie
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4. (25 points) (a) Let G and H be two groups. Define what it means for ¢ : G — H to
be a homomorphism. .
in &

Solution: Ia 4

.. 4
g : G —H is a bhowmowwphm @ ';'%C’L*j) = %Cx)cé(:))
V?(,jeG

(b) State and prove the first isomorphism theorem for groups. You may use any result
from lectures are long as it is clearly stated.

Solution: G—/ =
Cet f: G—> H be a Aoluma.//h;m . Tl  €la b4 e Feg = 4
2 Cogh — g
/5 a weldl oliBot i.s'.omw,ha%n

/0/604

Ald =gkud > X 9E K @ Fixy) 2oy D FSU Y =,

G Fx) =¢cj) =y A hel el otTHwo oo iajectue.
AV Suwpestin ,é] Aehnts. o4 . 2

YVl x K E) Yy K“"?”) - A’/("] ked) = 5/("3) = g gty)

= N (x Keeg) (g hey)
O
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5. (25 points) (a) Let o € Sym,,. Define what it means for o € Alt,,. Is the permutation
(123)(345)(5267) contained in Alt;?

Solution:

ce Ak, & Tt hes anm even uuwbe of cven by, aycls de it ol
W

Sdushue / Onwe cevey (M«ﬁt‘ 90&

-—
C|23)(3‘-|$)($"zc‘-7-) = (lzC?) (3(,5) # A’l&;

(b) Determine the center Z(Syms) C Syms. Hint: Consider conjugacy classes.
You may use any result from lectures are long as it is clearly stated.

Solution:
g e Z(gjws) & Cauy(s) = S Toz |Tesyw5] = {aJ

Cauj(c) = Al  pewutdions wdl. Sowme 90& Shucbue as 5

/a',le[_‘_ ?ob- S(’Vuahw% :

s Cizzys) # ClR2¢s)
cf/, CIZ?Q) * ('ZZL‘)
3,01 (123) + (132)
2
z/ Ciz3)(¢s) 3# Ci32)Ces7
2
rc,) €12)(3¢) + C13)Cqys)
z,0, 1,1 Ci12) *  (z21)
1,0,1,1,) e

= Z(Sjus) = Je}
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6. (25 points) (a) Let G be a group and N C G a subgroup. Define what it means for N
to be normal. Is it true that G/N Abelian = G is Abelian? Carefully justify your
answer. You may use any result from lectures are long as it is clearly stated.

Solution:

Nagae & we)U,je-G— = ju\.J"el\}
UAM'DMGA’ C.oujujaon

/ olasses So asyunaf

Cpy Abclion ¥ G kicte .

3 e ?

= |1« = - N S = & .
194, ] = | l/INI 2T D Uy = By » T ke

(b) Give an example of a group G and a subgroup N C G such that N is not normal.
Carefully justify your answer.

You may use any result from lectures are long as it is clearly stated.

Solution:

G 35\«714«_5 Vo= e, (r)

N;IG— as N & aet e waion of cmjuyay cAassea.

| — Mok shoy b NP,
CouJ (n) = {Ciz),('Z?),(B’)j
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7. (25 points) (a) Let G be a finite group. State, without proof, Sylow’s Theorem.
Solution:

let G bhe a Fude grosp el

P 4 ;ur}mc. .

Pnlle_l = a « s«bjﬂk,o 'H‘CG’ suol. tuA |H|= p"‘

-

(b) Let p be a prime. Prove the following:
p divides |G| = There exists an element of order p in G.
Solution:

Cek xe U , x4 = ovd(x) > | awr vd (x) p

=) avd (x) = P.

(c) Again for p prime, is the following statement true?
p™ divides |G| = There exists an element of order p” in G.

Carefully justify your answer.

Ze 15 wnet bu. Foo evsuple G = Z/?Z x €/ o

F‘llel ; hxveve ovd (x) S P Vxe G.

END OF EXAM









