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Let 5 be a set d functions

Permutation group at 5 s t S s I I bijection
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4 G ECS s
Say action is faith if 9 injective I
Example Left regular representation

G XG G

Cg x ga
t

composition
Cayley's Theorem G is isomorphic to a in a

subgroup of ECG I G l u G isomorphic
to a subgroup of Symu
Let G act on 5 orbit of S

Given SE S orbis gcs I got G C 5

Feat The orbits 7am a partition A S

ie t e orbis orb t Wbls

We say the action is transitive orb s S fses
given s t E S 7g E G s t gcs C

stab g e G I g s s C G
A
stabilizer subgroup of s

bit Stabiliser 1Gt c If I Istabcs lovbcssl

louses 1Gt and I stab G 1 14 1
A T

D S Lagrange



Isymul ul cydent length r

Cycle notation 5 a.az ar art as a n
e

Fact Every e Symu can be written as a

product of disjoint cycles The lengths at the cycles
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Let G H be a homomorphism
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kernel at 0
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Directproducts
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It x Hr x Hr has a group structure given by it

I
hi hz h r g ga s gr hag shag h u g r

H Hz x Hr Direct Product at A Hn

H I e z
eH hi EH i e v f hi C H C Hix x Hr

Subgroup at A Hzx x Hu



Direct sums subgroups

It Hu C G

G It HzD It

Y Given g E G I l hi c Hi such that g h h has hr

7 hi hj hj hi t hi C Hi hj c Hj i j

Fact H Hr Hix Hz x x H

TiuiteyGenerat.cl ehianGroups

G F g Abelian group
2G see G l and Lx c c C

Tension subgroup

GIte 7 g and torsion free Etta is f g Free Abelian

Gita has a 2 basis
rank G rank GGG size of a 2 basis
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Putting all this together gives

Structure Theorem For Finitely Generated Abelian Groups
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