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Math 113 Practice Midterm Exam

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) Let (G, *) be a group.
(a) Let H C G. Definite what it means for H to be a subgroup of G.
Solution:

‘/e.eH
2, he # & W'e H

—

3 j,l«el-l' = jLeH

(b) For x € G, let tH = {x * h|h € H}. Prove that y € tH <= yH = zH.

Solution:
(=) 9=t 2 9=xbh, Fn sax Le g
€ n
T ogke xlu) ¥ he R, ghexH

A~

y==he D yuwlo x> JUTR) = = ¥ ke i
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(c) Show that if H is of finite index in G, then there exist z1,--- ,x, € G such that
given any x € G, x = x; * h for some x; and some h € H

Solution:
P T R

ke st [x.,...,zglC e Tl cowh o4 H L

G oo o potitin o g . feaw ;«/uw:ceé—

o € x,; tH ‘4?);/ e e Zl/_,., "‘3.

=> x = 2 h bl he 'y
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2. (25 points) Let H and G be two groups.
(a) What is a homomorphism ¢ from G to H?

Solution:
TN L bomemorpplhisn o & b K o«

. woets, Elaot _
hmld ¢/ G —> H suck ¢(;’°j} = ¢Cx)¢¢c'7)
Vx.ye & C"“z"elf"" c.oarm’um«# o

(b) Define the ker¢ C G. Prove that it is a normal subgroup. You may assume any
standard results about homomorphisms from lectures.

Solution:

ke ff = {je&/¢9); e, S

L fle) me, > €4 € keg
‘2/ %(F):&e# =) (%CZ})—’.:- ‘C#
3 2,4 € ﬁ‘v?{_;) (/C::y):_—, ﬂ(a—)ﬁt]) =R, € =€, = x._j <o i

Y xetf,yeb 2 Floxg )= A EDGG) = By) din) =en

=5 j.xj-’e ﬁs‘~¢

(c) State, without proof, the First Isomorphism Theorem.

Solution: /oAt ¢/__ G — 4 be 49“'0(«0«?%% tlee

- C//éw;»’ ™ Za B jta el -oliTred
x ko — ¢C’9 /}pm“?,“.n'

- 5/@"/56” =) gﬂ'—‘é-éeyﬁ

(d) Using this, or otherwise, show that there are no non-trivial homomorphisms from

Z./5Z to Dx;. ¢ . Z/S.Z — p,/ a AvluomwFN.rhn

Solution:
/%ﬂamm;olam«» Tberom =D [ Lo g//s
(,W =» [/ Zn #/ / 2z
weg (22,5) =) 2 [Zwdl =/ D & &ivu,
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3. (25 points) Let G be a group.

(a) If x € G is of finite order, define ord(z). You need only give one of the two equivalent
definitions.

Solution:

v (2) = minimed wme X/ s.L. -

x =&
(ovz((at):- /gp([xg) /)

(b) Prove that if d € N such that 2% = e, then ord(x)|d.
Solution:

Assuunn xd_—_e amaoh M*o’\ (o-rdc.z):: )

?M “r

L
S
I

W""’“ =< m -
q otV
c ::xd\

%
2 - sz - x(‘ = );r

Alis s a cowbeolictn ,5» Ll minimotdy A4 m.

= ol (x) /o'f

(c) If |G| = 20, is it possible that there is x € G such that ord(z) = 3. You may use
any result from lectures as long as it is clearly stated.

3} zo - ZLF /&/=zo ;’x e & sdi.
oo (z) =3
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4. (25 points) Let S be a set equipped with an action of a group G.

(a) Define what it means for the action to be transitive. Be sure to carefully explain
any terminology you use.

Solution:

Tl actia. o LGursdia 7 ab(s) = {jcs) /3&.—&]
Fse S .

(b) Define what it means for the action to be faithful.
Solution:

ﬁu. a ko O SuithFud He  aduad hamamw,ozmﬁm
[ﬂ: G- — 2Gs) < (::t.)v_dﬁ'i/e..

(c¢) Give an example of an action which is both faithful and transitive. Give an example
of an action that is transitive but not faithful.

Solution:

S = vewbus oA an &fm(wf“"/t éwa"/z-» A

¢ = Z/ZZ Lt (aj act” ou (1,2,2) LJ ,,,l!.ﬁ,e,-‘N

/

o ook ot ?_ 21T lis atmn o both bosdne

/-a. .

3
oA FarbbHA

CTz = Z/Gz . Lek [a3‘ act ou {112(33 é] rotalion
aunkiclockuic b a Fii's pobion. o bromsibin LA

net  LastBA 57, L3 (1) =C1) = (o3

——
[3]6 [7—) = (Z—) = CGY‘ (Z)
(3le (3) = (3) =Ce3_ (3
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5. (25 points) (a) Define what it means for a subgroup N C G to be normal. Define what
it means for G to be simple.

Solution:

NG = Nis asbpog ad gnTe N ¥gel, ne

G is siupu T N & =5 N> fe) o V= 6.

(b) State, without proof, the Third Isomorphism Theorem.
Solution:

(et é’bcaﬁ”“f""’"" N &

,/ {b‘/{ /S am Inolmgion pre s,w\/;,;z ,&a eoi o~ botvana
(-] A 561974/07\4 A
z KA = > H
/ H’/Nq G H <& a1 tlux Cre (&/”){“_ ~ G‘/H-
19, '

(c) Using this, prove that if there are no normal subgroups of G strictly between G and
N, then G/N is simple.

Solution:
T4 Gy B8 nck sgly Al ewy N<HC G st

H'/N g 6‘/“ o #/V # EQM} o G/rd

=> NgHh € &
“/N 4 e/lu > Ha e _ Ttis is « Cou/h/av‘t"c’t‘fo'—\/

hoa e &/M 5 F/'be..
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6. (25 points) (a) How many conjugacy classes of Syms are there. Give an example of
three elements, none of which are conjugate.

Solution:
= 4 s
A 5‘7&5
4] Tl e €123, €23, Crsy)
[€ 141 42 = 4C-Wjuja\7 2 ’
GarR, how — coun
1+ 2+ 72 clastsy 4 % coMjugate
(413 IS elsmnants
2+ *
1+4 (b) What is the highest possible order of an element in Syms. Using this, or otherwise,
s prove that Syms is not cyclic.
Solution:
L, ¢, 1 ~ (Cm =/

= Mox owde o4 xe%ms is 6 . /Sj“*s/=5_/=/20
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7. (25 points) Let G be a finitely generated Abelian group.

(a) Define the torsion subgroup tG C G. Prove that it is a subgroup.
Solution:

e = [xe Grz ordA(x) < o«}

VY o ed(a)=| S sect&
e b S

4 N =0 Y

5/’ 9o €6 D NxX =@ gud

=) CM‘“)CL*J) -

ne NN 2 -x)-o = n(l-x) =o = -z ¢ té
‘MJ:O Fou Soune, U\_,MeN_

M(Inx) Th(“'\j) =

O+0 =0 —_-_) x*jc_e&‘
(b) Prove that G/tG is torsion-free.

Solution:
LA x+te < 'Ece/ée-) = Jdune N st wl(=x+tG)
= Q-I'ECT =>

nx+t = 0+Lg = nx el

= Jume X ) = lmu)x = o o * &« &g

> =ttt = o+te = -é(é‘_/.e_e_) = {ofea—E

—
—

(c¢) Give an example of a torsion group that is infinite. Make sure you justify why it is
torsion.

(8, +) . (33 e % = v($7 = [J=Ce3

=> C‘t’} = <« (%z)

END OF EXAM



