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Math 113 Praactice Midterm Exam

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) Let G be a set.

(a) What is a binary operation on G?
Solution:
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(b) Carefully define what it means for a set G with a binary operation x to be a group
Solution:
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(c) Let (G, *) be a group and g € G. Prove that the map

0 G — G
h — glxhxg

is an automorphism. Carefully justify your answer

Solution:
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2. (25 points) Let (G, *) be a group and S a set.

(a) What is an action of G on S?7
Solution:

Lo action A G a S s a Fuschlo
s GxS—=+S suck €lA

Cy,5) =25 o] )
! _ out Z/ CJENIE) Z5CACs))
J els) =5 ¥seJ 7 ¥y hee, ses

(b) Assume we are given an action ¢, of G on S. Let s € S. Define stab(s) C G and
orb(s) C S.

Solution:

Stab(s) = {je C([j(.S).-:;B C G
oré (s) = fjcs) (jeC%S < S

(c) State, without proof, the orbit-stabilizer theorem
Solution:

Z—Z/f‘ Cf be a %‘a;{—l /7’770 aoEn am & ot S
Tlaw [6/ = /MCSJ/. /b Cs)/ Fse S _

(d) If |G| = 5 is it possible for there to be an action of G on a set of size 5, where there
are precisely 2 orbits?

Solution:
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3. (25 points) (a) State, without proof, Lagrange’s Theorem.

Solution:

LedA & be a Drute /‘4'07 aul # C & 0\5’0\4/070.
7 la /#///G»/_

(b) Using this prove that all groups of prime order are simple. Is the same true of all
groups of prime power order? Carefully justify your answers.

Solution:
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4. (25 points) (a) Define what it means for a group to be cyclic.
Solution:

G s ookt & Jxe & st jpﬁiﬂ):ér.

(b) Prove that if G is cyclic and |G| = n € N, then G = Z/nZ. You may assume any
result from lectures are long as it is clearly stated.

Solution:
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5. (a) (20 points) Determine the number of cyclic subgroups of order 3 contained in Syms.

Solution:

oyo((x):'l S x oo 70"- ghaotim 3/’//,
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2
w
S
(b) (5 points) Prove that none of these are normal in Syms. You may use any result
from lectures as long as it is clearly stated. Is Syms a simple group?

Solution:
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6. (25 points) (a) Define the dihedral group Ds.
Solution:

55 = .&m ZE;MJM /quﬁ)
3

/N

[ 2

(b) Prove that D3 = Syms. In general is it true that D, = Sym,? Carefully justify
your answer.

Solution:
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7. (25 points) (a) State the Structure Theorem for Finitely Generated Abelian Groups.
Solution:

A 4, ” ”(_.{5 / ennrwted Abetian jfoy s 1 Som oplhz o
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(b) Let
G =7 x 7 x L)257 x 7./9Z.

What is the rank of G7 Explicitly describe the torsion subgroup of G' and prove
that it is cyclic.

Solution:
Zak () =2 4G = [(00/03,, 062,) /o,»ez}
~ Z z S onA 9 copwi
-(:& = /ZS'Z\< /qz z J Pvive
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(c) Up to isomorphism, how many Abelian groups are there of order 16 are there? Is
this all possible groups of order 167 Hint: Consider Dj.
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END OF EXAM size /6.



