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Math 113 Final Exam 4.10pm-6pm

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) (a) Carefully define what it means for a set R to be a field. State all the
axioms precisely. Give two examples of a field, neither of which is contained in the
other.

Solution:

PLEASE TURN OVER
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(b) Prove that a field is an integral domain. If you use any result from lectures be sure
to state it clearly.

Solution:

(c) Is the converse to b) true? Be sure to justify your answer.

Solution:

PLEASE TURN OVER
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2. (25 points) Let R and S be non-trivial rings and φ : R → S be a ring homomorphism.

(a) Define ker(φ) ⊂ R and prove it is an ideal. You do not need to prove it is a subgroup
under addition.

Solution:

(b) Prove that ker(φ) ⊂ R is not a subring. You may assume any results from the
lectures as long as they are clearly stated.

Solution:

(c) Prove that if R is a field then R is isomorphic to a subring of S. You may assume
any results from the lectures as long as they are clearly stated

Solution:

PLEASE TURN OVER
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3. (25 points) Let R be a commutative ring

(a) Define what it means for an ideal I ⊂ R to be prime.

Solution:

(b) Prove that R/I is an integral domain if and only if I is prime.

Solution:

(c) Give an example of a prime ideal which is not maximal.

Solution:

PLEASE TURN OVER
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4. (25 points) Let R be an integral domain.

(a) Define what is means for R to be UFD.

Solution:

(b) Define what it means for r ∈ R to be prime. Prove that r prime ⇒ r irreducible.

Solution:

(c) Prove that in a UFD, r irreducible ⇒ r prime.

PLEASE TURN OVER
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5. (25 points) Let F be a field, α ∈ F and f(x) ∈ F [x] such that deg(f(x)) ≥ 1. Prove
f(α) = 0F ⇐⇒ (x − α)|f(x) in F [x]. You may assume any results from lectures as
long as they are clearly stated.

Solution:

PLEASE TURN OVER
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6. (25 points) (a) Define what it means for f(x) ∈ Z[x] to be primitive.

Solution:

(b) State, without proof, Gauss’ Lemma for polynomials in Z[x].

Solution:

(c) Does the polynomial f(x) = 2x11 − 98x5 + 28x2 + 35 have any roots in Z? Is the
ring C[x]/(f(x)) a field? You may assume any results from lectures as long as they
are clearly stated.

Solution:

PLEASE TURN OVER
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7. (25 points) (a) Let E/F be a field extension. Define what if means for α ∈ E to be
algebraic over F .

Solution:

(b) Prove that
√
2 +

√
3 is algebraic over Q.

Solution:

PLEASE TURN OVER
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(c) Using this, or otherwise, prove that if α ∈ Q(
√
2+

√
3), then there exists f(x) ∈ Q[x]

non-zero, such that deg(f(x) ≤ 4 and f(α) = 0. You may assume any results from
lectures as long as they are clearly stated.

Solution:

END OF EXAM








