MATH 113 FINAL EXAM (4.10PM-6PM)
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Math 113 Final Exam 4.10pm-6pm

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) (a) Carefully define what it means for a set R to be a field. State all the
axioms precisely. Give two examples of a field, neither of which is contained in the
other.
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(b) Prove that a field is an integral domain. If you use any result from lectures be sure
to state it clearly.

Solution:
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(c) Is the converse to b) true? Be sure to justify your answer.

Solution:
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2. (25 points) Let R and S be non-trivial rings and ¢ : R — S be a ring homomorphism.

(a) Define ker(¢) C R and prove it is an ideal. You do not need to prove it is a subgroup
under addition.

Solution:
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(b) Prove that ker(¢) C R is not a subring. You may assume any results from the
lectures as long as they are clearly stated.

Solution:
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(c) Prove that if R is a field then R is isomorphic to a subring of S. You may assume
any results from the lectures as long as they are clearly stated
Solution:
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3. (25 points) Let R be a commutative ring

(a) Define what it means for an ideal I C R to be prime.
Solution:
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(b) Prove that R/I is an integral domain if and only if I is prime.
Solution:
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(c) Give an example of a prime ideal which is not maximal.

Solution:
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4. (25 points) Let R be an integral domain.

(a) Define what is means for R to be UFD.
Solution:
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(b) Define what it means for r € R to be prime. Prove that r prime = r irreducible.
Solution:
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(c¢) Prove that in a UFD, r irreducible = r prime.
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5. (25 points) Let F' be a field, @ € F' and f(x) € F[z] such that deg(f(x)) > 1. Prove
fla) =0 <= (r — a)|f(z) in F[z]. You may assume any results from lectures as
long as they are clearly stated. T Flx) € FIx) rvedueible, w & b, LA
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6. (25 points) (a) Define what it means for f(x) € Z[z] to be primitive.
Solution:
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(b) State, without proof, Gauss’ Lemma for polynomials in Z[z].

Solution:
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(c) Does the polynomial f(x) = 2z™ — 982° 4 282% + 35 have any roots in Z? Is thel
A s~ 1ing Clz]/(f(z)) a field? You may assume any results from lectures as long as they
are clearly stated.
Solution:
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7. (25 points) (a) Let E/F be a field extension. Define what if means for a« € F to be
algebraic over F'.

Solution:
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(b) Prove that V2 +/3is algebraic over Q.
Solution:
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(c) Using this, or otherwise, prove that if @ € Q(v/2++/3), then there exists f(z) € Q7]
non-zero, such that deg(f(x) <4 and f(a) = 0. You may assume any results from
lectures as long as they are clearly stated.

Solution:
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END OF EXAM












