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Math 113 Final Exam Practice 2

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) (a) Let R be a ring. Define what it means for a subset S ⊂ R to be a
subring. State all the axioms precisely.

Solution:

(b) Define what it means for a ring to be an integral domain.

Solution:
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(c) Prove that if R is an integral domain then so is any subring S ⊂ R.

Solution:

(d) Give an example of a ring R which is not an integral domain, but contains a subring
which is an integral domain.

Solutions:
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2. (25 points) Let R and S be non-trivial rings.

(a) Define what it means for a map φ : R → S to be a ring homomorphism.

Solution:

(b) Prove Im(φ) ⊂ S is a subring.

Solution:

(c) Prove that r ∈ R∗ ⇒ φ(r) ∈ S∗. Is the converse true? Be sure to justify your
answer.

Solution:
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3. (25 points) Let R be an integral domain.

(a) Define the field of fractions of R, denoted Frac(R). Make sure you define both
addition and multiplication. You do not need to prove they are well-defined.

Solution:

(b) Prove that if R is a field then R ∼= Frac(R). You may use any result in lectures as
long as it is clearly stated.

PLEASE TURN OVER
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4. (25 points) Let R be an integral domain.

(a) Define what it means for a ∈ R to be irreducible.

Solution:

(b) Prove that if a, b ∈ R are associated then a irreducible ⇒ b irreducible.

Solution:

(c) prove that 1 + i is irreducible in Z[i]. Be sure to justify your answer.

PLEASE TURN OVER
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5. (25 points) Prove that a Euclidean ring is a PID.

Solution:

PLEASE TURN OVER



Math 113 Final Exam, Page 7 of 8

6. (25 points) Prove that the quotient ring Q[X]/(x3 + x2 + 1) is a field. You may assume
that x3 + x2 +1 ∕= 0 for all x ∈ Q, where |x| > 2. If you use any results from lectures be
sure to state them clearly.

Solution:
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7. (25 points) (a) Let E/F be a field extension. Define what it means for the extension
to be finite.

Solution:

(b) Prove that E/F finite ⇒ E/F algebrai.

Solution:

END OF EXAM


