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Math 113 Final Exam Practice 1

This exam consists of 7 questions. Answer the questions in the
spaces provided.

1. (25 points) (a) Carefully define what it means for a set R to be a ring. State all the
axioms precisely.

Solution:

(b) Define the units R∗ ⊂ R.

Solution:

PLEASE TURN OVER
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(c) Prove, using only the axioms, that R∗ = R implies that |R| = 1.

Solution:

PLEASE TURN OVER
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2. (25 points) Let R be a ring.

(a) Define what it means for a subset I ⊂ R to be an ideal.

Solution:

(b) Prove that the binary operation

φ : R/I ×R/I −→ R/I

(x+ I, y + I) −→ (xy) + I

is well-defined, i.e. independent of coset representative choices.

Solution:

(c) If R/I is the quotient ring, is the following true:

x+ I ∈ (R/I)∗ ⇒ x ∈ R∗. Be sure to justify your answer.

Solution:

PLEASE TURN OVER
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3. (25 points) Let R be an integral domain.

(a) Define the characteristic of R.

Solution:

(b) Prove that if the characteristic of R is p, then there is an injective homomorphism

φ : Fp → R. Be sure to carefully justify your answer.

PLEASE TURN OVER
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4. (25 points) Let R be a commutative ring.

(a) Define what it means for two elements a, b ∈ R to be associated.

Solution:

(b) Prove that if R is an integral domain then a and b are associated if and only if there
exists u ∈ R∗ such that a = ub.

Solution:

(c) Using this, prove that 2
√
2 + 1 and 5 + 3

√
2 are associated in Z[

√
2].

PLEASE TURN OVER
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5. (25 points) Prove that if R is a PID then a ∈ R is irreducible ⇐⇒ (a) ⊂ R is maximal.

Solution:

PLEASE TURN OVER
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6. (25 points) Let R be an integral domain.

(a) Define what it means for an ideal I ⊂ R to be maximal.

Solution:

(b) Is the ideal (x4 − 1, x5 − x3) ⊂ Q[X] maximal? Be sure to carefully justify your
answer. If you use any results from lecture be sure to state them clearly.

Solution:

PLEASE TURN OVER
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7. (25 points) (a) Let E/F be a field extension and let α ∈ E be algebraic over F . Define
the minimal polynomial of α over F .

Solution:

(b) Prove the minimal polynomial is irreducible.

Solution:

PLEASE TURN OVER
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(c) Determine the degree of the extension Q( 3
√
2)/Q. You may use any results from

lectures as long as they are clearly stated.

END OF EXAM


