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NOTATIONS

T is the n-dimensional complex torus (C∗)n

x = (x1, . . . , xn) ∈ T ⇔ x1 ̸= 0, . . . , xn ̸= 0.

xα = x
a1
1 · · ·xann

is a character (monomial) of the power

α = (a1, . . . , an) ∈ Zn.

The support, Supp(P ), of a Laurent polynomial P is the finite
set A ∈ Zn, such that P =

∑
α∈A cαx

α, where cα ̸= 0.

The Newton polyhedron ∆(P ) is the convex hull of Supp(P ).
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EXAMPLE

Let P be y2 + a0 + a1x + a2x
2 + a3x

3, where a0 ̸= 0, a1 ̸= 0,
a2 ̸= 0, a3 ̸= 0. Then ∆(P ) is
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and Supp(P ) = {(0, 0), (0, 1), (0, 2), (0, 3), (2, 0)}.

3



FINITE DIMENSIONAL T -INVARIANT SPACES

Let C[T ] be the ring of regular functions on the torus T , i.e., let
C[T ] be the ring of Laurent polynomials in x ∈ T .

For a finite set A in the lattice Zn, let LA be the space spanned
by characters xα for α ∈ A.

Thus a Laurent polynomial P belongs to the space LA if and only
if the inclusion Supp(P ) ⊂ A holds.

The torus T acts naturally on the ring C(T ). Each space LA is a
Finite dimensional T -invariant subspaces of the ring C(T ).

Vice versa, any T -invariant finite dimensional subspace of C[T ]
is the space LA for some finite A ⊂ Zn.
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MAIN PROBLEM OF THE THEORY

Problem 1. For generic P1 ∈ LA1
, . . . , Pr ∈ LAr

determine
the discrete invariants of X ⊂ T defined by the system

P1 = · · · = Pr = 0.

It turns out that the invariants from Problem 1 depend not on
supports Ai of the Laurent polynomials Pi but only on their New-
ton polyhedra ∆i = ∆(Pi). Thus Problem 1 is equivalent to the
following

Problem 1′. For generic P1, . . . , Pr with Newton polyhedra
∆1, . . . ,∆r determine the discrete invariants of X ⊂ T defined
by

P1 = · · · = Pr = o.
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CURVE X DEFINED IN (C∗)2 BY

P = 0 WITH ∆(P ) = ∆

Theorem. For generic P , let X = X ∪ X∞ be a smooth
compact curve, where X∞ is a finite set. Then:

1) the genus g(X) is equal to the number B(∆) of integral points
in the interior of ∆ = ∆(P );

2) the number #X∞ is equal to the number of integral points in
the boundary of ∆;

3) the Euler characteristic χ(X) of X is equal to the volume
V (∆) of ∆ multiplied by −2!.
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TOY GEOMETRIC APPLICATION

The following formula from planner geometry is well-known:

The Pick formula. The area of a planar integral polygon ∆
is equal to the number of integral points inside ∆ plus half of
the number of integral points in its boundary ∂∆ minus one.

The invariants 1)-3) of an algebraic curve X are related:

χ(X) = χ(X) + #(X∞) = 2 − 2g(X).

Thus Theorem from the previous slide implies the Pick formula
for a planar integral polyhedron ∆:

V (∆) = #
(

(∆ \ ∂∆)
⋂

Z2
)

+
1

2
#
(
∂∆

⋂
Z2

)
− 1.
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PROJECTIVE PLANE AND POLYNOMIALS
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On the left: ∆(P ) for generic polynomial P of degree 5.
On the right: diagram of projective plane.

Terms on the horizontal side of ∆(P ) determine P (x, 0).

Terms on the vertical side of ∆(P ) determine P (o, y).

Terms on the hypotenuse of ∆(P ) determine asymptotic of P
about the infinite line.
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TORIC VARIETIES

Toric variety M of dimension n is a normal irreducible variety
equipped with an action of (C∗)n with one orbit O ∼ (C∗)n

Under this action M is broken up into a finite number of orbits
isomorphic to tori of different dimensions.

Fan ∆⊥ ⊂ (Rn)∗ dual to ∆ ⊂ Rn is a decomposition of (Rn)∗

into polyhedral cones Γ⊥ dual to faces Γ of ∆. A covector ξ lies
in the interior of Γ⊥ if the function ⟨ξ, x⟩ attains minima on ∆
at Γ.

To ∆⊥ one associates a projective toric variety M∆.
Each face Γ ⊂ ∆ corresponds to an orbit OΓ ⊂ M∆ such that:

1) dimCOΓ = dimR Γ;

2) if Γ1 ⊂ Γ2, then OΓ1
belongs to the closure of OΓ2

.
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Subvariety X IN (C∗)2 DEFINED BY P1 = · · · = Pr = 0
with ∆(P1) = ∆1, . . . ,∆(Pr) = ∆r.

Let MF ⊃ (C∗)n be a smooth toric variety whose fan F is a
subdivision of the dual fan ∆⊥ to ∆ = ∆1 + · · · + ∆r.

Theorem A. The closure of X in MF is a smooth variety
which is transversal to all orbits of the toric variety MF .

Theorem A helps to determine many invariants of X . Thus,
with V. Danilov we discovered an algorithm for computing Hodge
numbers for the mixed Hodge structure on a cohomology ring of X .

Eventually, this algorithm helped to obtain closed formulae for
these numbers. V. Batyrev made use of these formulas in his
works on mirror symmetry.
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THE BKK THEOREM

Theorem (Kouchnirenko). For generic P1, . . . , Pn with the
same Newton polyhedron ∆, the system

P1(x) = · · · = Pn(x) = 0, x ∈ (C∗)n

has simple roots only and their number is n!V (∆), where V is
the standard volume in Rn.

Theorem (D. Bernstein). For generic P1, . . . , Pn with New-
ton polyhedra ∆1, . . . ,∆n, the system

P1(x) = · · · = Pn(x) = 0, x ∈ (C∗)n

has simple roots only and their number is n!Vn(∆1, . . . ,∆n),
where Vn is the Minkowski mixed volume in Rn.

These theories are often referred to as Bernstein–Koushnirenko-
Khovanskii (BKK) theorem. In the last 50 year, many generaliza-
tions of the BKK theorem were discovered.
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THE MINKOWSKI MIXED VOLUME
(∃ !) Vn(∆1, . . . ,∆n), on n-tuples of convex bodies in ∆i ⊂ Rn,
such that:

1. Vn(∆, . . . ,∆) is the volume of ∆;

2. Vn is symmetric;

3. Vn is multi-linear, for example:

Vn(∆′
1 + ∆′′

1 ,∆2, . . . ) = Vn(∆′
1,∆2, . . . ) + Vn(∆′′

1 ,∆2, . . . );

4. 0 ≤ Vn(∆1, . . . ,∆n);

5. ∆′
1 ⊆ ∆1, . . . ,∆′

n ⊆ ∆n ⇒ Vn(∆′
1, . . . ,∆′

n) ≤ Vn(∆1, . . . ,∆n);

6. Alexandrov–Fenchel inequality

V 2
n (∆1,∆2, . . . ,∆n) ≥ Vn(∆1,∆1, . . . ,∆n)Vn(∆2,∆2, . . . ,∆n);

7. isoperimetric inequality (n = 2, ∆1 is the unite ball, ∆ = ∆2)

(
1

2
length of ∂∆)2 ≥ πV (∆).

12



VECTOR-VALUED VERSION OF THE THEORY

A vector-valued Laurent polynomial, whose values lie in
a finite dimensional complex vector space E , is an element of the
space

ET = E ⊗ C[T ].

The torus T acts on ET by acting on C[T ]. For α ∈ Zn, let Eα

be a subspace in E which is nonzero only for finitely many α.

The set {Eα}, α ∈ Zn, defines a subspace

L = ⊕αEα ⊗ xα

of ET which is T -invariant and finite dimensional.

Conversely, any finite dimensional T -invariant L ⊂ ET can be
defined by some set {Eα}.
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MAIN PROBLEM OF THE THEORY

The rank of L is the dimension of the space E = ⊕α{Eα}.

For f ∈ L, let Y (f) ⊂ T be the variety defined by the vector
equation f(x) = 0.

Problem 2. For generic f ∈  L, determine the discrete invariants
of the variety Y (f) in terms of the discrete invariants of the T -
invariant space L.

If {Eα} contains only coordinate subspaces of E (with respect to
some bases), then Problem 2 is equivalent to Problem 1. Other-
wise, it provides its wide generalization.

We’ll start with discrete invariants of L.
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CHARACTERISTIC SEQUENCE OF L

Let L be a space of the rank r defined by the set {Eα}.

An i-tuple (α1, . . . , αi) of integral points is admissible for L if
one can pick

ej ∈ Eαj 1 ≤ j ≤ i,

such that {e1, . . . , ei} is linearly independent.

For 1 ≤ i ≤ r, the characteristic polyhedron ∆i is the
convex hull of all points α representable as the sum α1 + · · · + αi
of elements of an admissible i-tuple for L.

The sequence ∆1, . . . ,∆r of characteristic polyhedra form the
characteristic sequence of L. Its role for Problem 2 is similar
to the role of the set of Newton polyhedra for Problem 1′.
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SUPPORT FUNCTION OF L

Let L be the space defined by a set {Eα}. For ξ ∈ (Rn)∗ and
c ∈ R, let Eξ,c be the space defined by the following identity:

⊕⟨ξ,α⟩≤cEα = Eξ,c.

For fixed ξ ∈ (Rn)∗, the spaces Eξ,c form a filtration in E.
A number c0 is critical of multiplicity k(c0) for ξ if

dimCEξ,c0
/⊕c<c0 Eξ,c0

= k(c0) > 0.

For each ξ ̸= 0, we have
∑

c0∈R k(c0) = r = dimCE.

A value of r-valued support function hL of L at ξ is the
multiset of critical numbers c0 of ξ, where c0 are repeated k(c0)
times.

16



REPRESENTATION OF SUPPORT FUNCTION

A sequence h1, . . . , hr of piecewise linear functions represents an
r-valued support function hL if for each ξ the multisets

{hi(ξ)} and h(ξ)

coincide. A sequence h1, . . . , hr, representing hL, is not unique,
but many invariants of such sequences are equal.

Example. If the rank r of L is equal to n, then one can define
mixed volume Vn(h) of the space L as the mixed volume of a
sequence of virtual polyhedra whose support functions h1, . . . , hn
represent hL.

One can show that the mixed volume of hL is well-defined, i.e.,
is independent of a choice of the sequence {h1, . . . , hn} which
represents hL.
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DISCRETE INVARIANTS OF A SPACE L

The characteristic sequence ∆1, . . . ,∆r and the support function
hL of L carry the same discrete information about the space L.

The support function hL of a space L of rank r has a unique
representation as a sequence h1(L), . . . , hr(L) of increasing
piecewise linear functions, i.e., h1(L) ≤ · · · ≤ hr(L).

Theorem. The increasing sequence h1(L), . . . , hr(L) of piece-
wise linear functions representing the support function hL of
a space L of rank r can be defined as follows:

hi(L) = h∆i
− h∆i−1

,

where h∆i
for 1 ≤ i ≤ r is the support function of the charac-

teristic polyhedron ∆i, and h∆0
= 0.
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TORIC VARIETY MF CONVENIENT FOR L

A toric variety MF ⊃ T is convenient for L if its fan F is a
subdivision of the normal fan ∆⊥ of

∆ = ∆1 + · · · + ∆r,

where ∆1, . . . ,∆r is the characteristic sequence for the space L.

Theorem B. If a toric variety MF is smooth and convenient
for the space L, then for generic vector-function f ∈ L, the clo-
sure in MF of the variety Y (f) ⊂ T is smooth and transversal
to all orbits of MF .

Theorem B relates vector-valued Laurent polynomials with the
theory of toric varieties. It has a version which can be stated in
terms of T -equivariant vector bundles over toric varieties.
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T -EQUIVARIANT TORIC VECTOR BUNDLES

Theorem C. If MF is convenient for L, then there is a unique
T -equivariant vector bundle E over MF , such that:

1) any f ∈ L corresponds to a section of E over T which can
be extended to the global regular section s(f) of E;
2) for any x ∈ MF and any vector v in the fiber over x, there
is f ∈ L such that v = s(f)(x);

3) the multi-valued function associated to the T -invariant vec-
tor bundle E in the Klyachko’s classification is equal to hL.

Corollary. The equivariant Chern roots of the vector bundle
E over MF from the previous theorem are represented by the
functions {h1, . . . , hr}.
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GENERALIZATION OF THE BKK THEOREM

Theorem (generalized BKK theorem). Assume that the
space L has rank r = n. Then, for generic vector-function
f ∈ L, all points in Y (f) are non-degenerate and their number
is equal to n!MVn(hL).

In particular, it is equal to

n!MVn(∆1,∆2 − ∆1, . . . ,∆n − ∆n−1).

Corollary. Assume that L has rank r ≤ n. Then, for generic
f ∈ L, one can obtain an explicit formula for the class of the
variety Y (f) in the ring of conditions of the torus T in terms of
the support function hL.
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HYPERPLANES ARRANGEMENT

Let {H1, . . . , HN} be a hyperplane arrangement in the projective
space Pn, where N > n. Each hyperplane Hi is defined by ui = 0,
where ui is a linear function in the homogeneous coordinates in Pn.

A Lauret polynomial P in u1, . . . , uN whose monomials have de-
gree zero is a rational function on Pn which is regular on Pn\∪Hi.

Problem 3. How many solutions has a generic system

P1 = · · · = Pn = 0

in Pn \ ∪Hi, where Pi are Laurent polynomials in u1, . . . , uN ,
whose Newton polyhedra ∆̃1, . . . , ∆̃n ⊂ RN lye in thee hyper-
plane

x1 + · · · + xN = 0.
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CHARACTERISTIC SEQUENCE FOR {H1, . . . , HN}

A subsets J ⊂ {1, . . . , N} is i-admissible for some i, such that
1 ≤ i < N−n if it contains i elements and the following condition
holds:

∩j /∈JHj = ∅.

For an i-admissible set J , let AJ ∈ RN be the point with the
coordinate xj(AJ) = 1 if j ∈ J , and xj(AJ) = 0 if j /∈ J .

The characteristic sequence for H1, . . . , HN is the sequence of
polyhedra ∆1, . . . ,∆N−n−1 ⊂ RN , where ∆i is the convex hull
of the set of points AJ for all i-admissible sets J . The poly-
hedron ∆i lies in the hyperplane

x1 + · · · + xN = i.
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SOLUTION TO PROBLEM 3

Theorem. The number of solutions of a generic system

P1 = · · · = Pn = 0

in Pn \ ∪Hi, where Pi are Laurent polynomials in u1, . . . , uN ,
whose Newton polyhedra ∆̃1, . . . , ∆̃n ⊂ RN lye in thee hyper-
plane x1 + · · · + xN = 0, is equal to:

m!Vm(∆1,∆2 − ∆1, . . . ,∆m−n − ∆m−n−1, ∆̃1, . . . , ∆̃n),

where m = N − 1 and ∆1, . . . ,∆N−n−1 is the characteristic
sequence for the hyperplanes arrangement.

Mixed volume in the formula makes sense, since all involved poly-
hedra belong to affine spaces which are parallel to the (N − 1)-
dimensional space x1 + · · · + xN = 0.
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