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UNSOLVABILITY IN FINITE TERMS

What does it mean that an equation can not be solved explicitly?
One can fix a class of functions and say that an equation is solved ex-
plicitly if its solution belongs to this class. Different classes of functions
correspond to different notions of solvability.

A class of functions can be introduced by specifying:

a list of basic functions and

a list of admissible operations.

Given the two lists, the class of functions is defined as

the set of all functions that can be obtained from the
basic functions by repeated application of admissible op-
erations.
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CLASSICAL CLASSES OF FUNCTIONS

To define a classical class of functions we have to fix its list of basic
functions and its list of admissible operations.

Many of them use the list of basic elementary functions and the
list of classical operations.

LIST OF BASIC ELEMENTARY FUNCTIONS

All constants, x (or x1, . . . , xn);

exp, ln, x → xα;

sin, cos, tan;

arcsin, arccos, arctan.
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LIST OF CLASSICAL OPERATIONS

1) Composition: f, g ∈ L ⇒ f ◦ g ∈ L;

2) arithmetic operations: f, g ∈ L ⇒ f ± g, f × g, f/g ∈ L;

3) differentiation: f ∈ L ⇒ f ′ ∈ L;

4) integration: f ∈ L and y′ = f , i.e., y = C +
x∫
f (t)dt ⇒ y ∈ L;

5) extension by exponent of integral: f ∈ L and y′ = fy, i.e., y =

C exp
x∫
f (t)dt ⇒ y ∈ L;
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6) algebraic extension: f1, . . . , fn ∈ L and yn + f1y
n−1 + · · · + fn =

0 ⇒ y ∈ L;

7) exponent: f ∈ L and y′ = f ′y, i.e., y = C exp f ⇒ y ∈ L;

8) logarithm: f ∈ L and dy = df/f , i.e., y = C + ln f ⇒ y ∈ L;

9) meromorphic operation: if F : Cn → C is a meromorphic function,
f1 . . . , fn ∈ L, and y = F (f1, . . . , fn) ⇒ y ∈ L.

The operations 2) and 7) are meromorphic operations.
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RADICALS, QUADRATURES, etc.

I. Radicals. Basic functions: rational functions.

Operations: arithmetic operations and extensions by radicals.

II. Elementary functions. Basic functions: basic elementary func-
tions.
Operations: composition, arithmetic operations, differentiation.

III. Generalized elementary functions. The same as elementary
functions + algebraic extensions.

IV. Quadratures. Basic functions: basic elementary functions.
Operations: composition, arithmetic operations, differentiation and in-
tegration.
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IV′. “Liouville’s quadratures”. Basic functions: all complex con-
stants. Operations: the arithmetic operations, integration, extension
by the exponent of integral.

V. Generalized quadratures. The same as quadratures + alge-
braic extensions.

Liouville’s Theorem. Class of “Liouville’s quadratures” = class of
quadratures.

Liouville’s Theorem reduces the problem of solvability by quadratures
to differential algebra: a function representable by quadratures can be
constructed without use of highly non-algebraic operation of taking
composition of two given functions.

The similar result holds for all classical classes of functions.
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LIOUVILLE’S THEORY

Joseph Liouville (24.04.1809 – 8.09.1882, French mathematician)
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The First Liouville Theorem (1833)

The theorem provides conditions for integrability of elementary func-
tions in finite terms. For example, it shows that one can not write
elementary formulas for the following integrals:
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The First Liouville Theorem for algebraic functions. An
integral y(x) of an algebraic function is a generalized elementary
function if and only if

y(x) = A0(x) +

n∑
i=1

λi lnAi(x),

where λi ∈ C and Ai are algebraic functions.

Similarly Liouville answered on the following question:

Which generalized elementary function has antiderivative repre-
sentable by generalized elementary functions?

Slogan of Liouville’s theory:

“Sufficiently simple” equations have either “sufficiently
simple” explicit solutions or no explicit solutions at all.
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The Seconds Liouville Theorem (1841) over the field of
rational functions. An equation

y′′ + py′ + qy = 0,

where p, q are rational functions, is solvable by generalized quadra-

tures if and only if it has a solution y1(x) = exp
x∫
a(t)dt, where a(t)

is an algebraic function.

Example. The equation

y′′ + xy = 0

is unsolvable by generalized quadratures.

In fact, Liouville proved more generale criterion of solvability by gen-
eralized quadratures of a second order linear differential equation over
arbitrary differential field (not only over the field of rational functions).
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Theorem (Picard–Vessio 1910, M. Rosenlicht 1973, Kh.

2018). An equation L(y) = any
(n)+ · · ·+ a0y = 0, where ai belong

to a differential field K, is solvable by generalized quadratures over
K if and only if L(y) is representable in the form

L(y) = an
∏

1≤i≤n

Li(y),

where Li(y) = y′ − piy and the element pi is algebraic over K.

For n = 2, the above theorem is equivalent to the Second Liouville
Theorem.

To prove the above Theorem Picard and Vessio developed the differen-
tial Galois theory. Rosenlicht used the valuation theory. My proof is
based on the original ideas due to Liouville.
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GALOIS THEORY

Évariste Galois (25.10.1811 – 31.04.1832, French mathematician)
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Camille Jordan (5.01.1838 – 22.01.1922, French mathematician)
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Galois discovered a criterion on solvability of an algebraic equation over
a field K. He considered a field extension K ⊂ F of K obtained by
adjoining to K all roots of the algebraic equation. The Galois group
G of the algebraic equation is the group of automorphisms of the pair
(K,F ) which fix the field K. Galois showed that the equation is
solvable by radicals over K if and only if its Galois group
G is solvable.

Actually Galois was killed when he was too young. He had no time to
complete his theory. It was mainly developed by C. Jordan.

In particular, Jordan understood that the Galois group of an al-
gebraic equation over the field of rational has topological
meaning: it is equal to the monodromy group of the alge-
braic function, defined by thee equation.
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PICARD–VESSIOT THEORY

Émile Picard (24.07.1856 – 11.12.1941, French mathematician)

Ernest Vessiot (8.03.1865 – 17.10.1952, French mathematician)
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Picard discovered a similarity between linear differential equations and
algebraic equations. He considered a differential field extension K ⊂ F
of K obtained by adjoining to K all solutions of the linear differential
equation. The Galois group G of the linear differential equation is
the group of automorphisms of the pair (K,F ) which fix K.

Theorem (Picard–Vessiot, 1910). A linear differential equa-
tion over a differential field K is solvable by quadratures if and
only if its Galois group is solvable. It is solvable by generalized
quadratures if and only if the connected component of the identity
in its Galois group is solvable.

Picard–Vessiot theory has many applications. For example, for an equa-
tion whose coefficients are rational functions with integral coefficients,
it allows to determine explicitly is the equation solvable by generalized
quadratures or not.
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TOPOLOGICAL GALOIS THEORY

Theorem (C. Jordan). The Galois group of an algebraic equation
over the field of rational functions in several complex variables is isomor-
phic to the monodromy group of the (multivalued) algebraic function
defined by the same equation.

Jordan’s theorem implies that the Galois group of an algebraic equation
over the field of rational functions in several complex variables has a
pure topological meaning.

One-dimensional topological Galois theory deals with functions in one
variable.

There is also a multidimensional version of topological Galois theory,
but we will not talk about it now.
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CONSTRUCTING TOPOLOGICAL

GALOIS THEORY

Program:

I. Find a wide class of functions which is closed under classical opera-
tions, such that for all functions from the class the monodromy group
is well defined.

II. Use the monodromy group within this class instead of the Galois
group.
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CLASS OF S-FUNCTIONS

A multivalued analytic function of one complex variable is called S-
function if the set of its singular points is at most countable.

Theorem. The class of S-functions is closed under:

1) composition;

2) arithmetic operations;

3) differentiation;

4) integration;

5) meromorphic operations;

6) solving algebraic equations;

7) solving linear differential equations.
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Corollary. A function, representable by generalized quadratures,
is S-function.
Thus, a function having an uncountable number of singular points
can not be expressed by generalized quadratures.

Example. Consider a function

f = ln(

n∑
i=1

λi ln(x− ai)).

If n ≥ 3, λi are generic, and ai ̸= aj if i ̸= j, then:

1) the monodromy group of f contains continuum elements;

2) the set of singular points of f is everywhere dense on the complex
line.
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SOLVABLE MONODROMY GROUP

Theorem. The class of S-functions, whose monodromy group is
solvable, is closed under:

1) integration;

2) differentiation;

3) composition;

4) meromorphic operations
(in particular, arithmetic operations).



23

Theorem. If the monodromy group of a function f is unsolvable,
then f cannot be represented via meromorphic functions using inte-
gration, differentiation, composition and meromorphic operations.

Corollary. If the monodromy group of an algebraic equation whose
coefficients are rational functions is unsolvable, then its solutions
cannot be represented via meromorphic functions using integration,
differentiation, composition, and meromorphic operations.

Corollary. If the monodromy group of a linear differential equa-
tion (or a system of linear differential equations), whose coeffi-
cients are rational functions, is unsolvable, then its solutions can-
not be represented via meromorphic functions using integration,
differentiation, composition and meromorphic operations.
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SOLUTIONS OF ALGEBRAIC EQUATIONS AND OF
FUCHS-TYPE DIFFERENTIAL EQUATIONS

A linear differential equation (or a system of linear differential equa-
tions), whose coefficients are rational functions, is of Fuchs-type if
its solutions have a polynomial growth when the argument approaches
poles of the coefficients along a smooth curve.

Theorem. If the monodromy group of an algebraic function is
solvable, then by Galois theory it can be represented by radicals.

If the monodromy group of a Fuchs-type linear differential equa-
tion (or of a system of Fuchs-type linear differential equations) is
solvable, then this equation or this system of equations is solvable
by quadratures.
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INTEGRABILITY CONDITIONS FOR FUCHS-TYPE
SYSTEMS WITH SMALL MATRICIDES Ai

Theorem. Consider a system

y′ =
∑ Ai

x− ai
y,

where y is n-vector, and Ai are n×n matrices with constant entries.

Assume that the matrices Ai have sufficiently small entries. Then
the system can be solved by quadratures if and only if all the ma-
trices Ai are triangular in some basis.

Moreover, if such system is not triangular in some basic, one can
not write an finite formula for its generic solution which uses ar-
bitrary meromorphic functions, compositions, integrations and so-
lutions of algebraic equations.
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AMAP FROMABALL TO A POLYGONWHOSE SIDES
ARE ARCS OF CIRCLES AND SEGMENTS

Let G be a polygon on the Riemann sphere bounded by arcs of circles
and by segments. Let fG : B1 → G be a Riemann map from a unit
ball onto G. One can classify all polygons G such that the function fG
is representable by generalized quadratures.

Below we present such classification up to a fraction-linear transforma-
tion of the complex line.

If a polyhedronG is not listed in the classification, then the function fG
cannot be represented by a finite formula which uses arbitrary mero-
morphic functions, compositions, integrations and solutions of algebraic
equations.
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On the left: First case of integrability: all sides of G pass
through one point (on the diagram this point is ∞.

On the right: Second case of integrability: there are two
points such that a side of G either passes through the points, or the
points are symmetric about the side (on the diagram this points are ∞
and zero).
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THIRD CASE OF INTEGRABILITY
The sides of the polygon G are located on finite nets of circles obtained
by the stereographic projection of a finite net of great circles, such that
the group generated by reflections in these circles is finite.
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Symmetries of regular tetrahedron
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Symmetries of regular cube regular octahedron
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Symmetries of regular dodecahedron – regular icosahe-
dron
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POLYNOMIALS INVERTIBLE IN k-RADICALS

Theorem (J.F. Ritt 1922). A polynomial is invertible in radicals
if and only if it is a composition of the power polynomials z → zn,
Chebyshev polynomials, and polynomials of degree ≤ 4.

Theorem (Yu. Burda, Kh. 2012). A polynomial is invertible
in k-radicals, i.e, is invertible in radicals and solutions of equations
of degree at most k, if and only if is a composition of power poly-
nomials, Chebyshev polynomials, polynomials of degree at most k
and if k ≤ 14, certain exceptional polynomials (a complete list of
such polynomials is known).

The proof is based on classification of finite simple groups and results
on primitive polynomials obtained by Muller and many other authors.
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13-th HILBERT’S PROBLEM

The general degree n algebraic function x(a0, . . . , an−1) is the solu-
tion of the equation xn + an−1x

n−1 + · · · + a0 = 0.

Problem (D. Hilbert). Find the smallest H(n), such that x
can be represented by composition of algebraic functions of H(n)
variables.

More generally: Which algebraic functions of n variables can be rep-
resented by composition of algebraic functions of m < n variables?

Actually, the problem on compositions was formulated by Hilbert for
continuous functions, not for algebraic functions.

Theorem (Kolmogorov, Arnold 1957). Any continuous func-
tion of n variables can be represented as the composition of func-
tions of a single variable with the help of addition.
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ALGEBRAIC FUNCTIONS OF ONE VARIABLE

In Kolmogorov–Arnold Theorem, one cannot replace continuous func-
tions by entire algebraic functions.

Theorem (Kh. 1969). If an algebraic function can be repre-
sented as a composition of polynomials and entire algebraic func-
tions of one variable, then its local monodromy group at each point
is solvable.

Sketch of the proof. At each point, the local monodromy group of
an algebraic function of one variable is a cyclic group. The operation of
division that destroys locality is not an allowed operation in Theorem.
Now Theorem follows from the Galois theory type arguments.
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COROLLARY AND OPEN PROBLEM

Corollary. The function y(a, b), defined by equation

y5 + ay + b = 0,

cannot be expressed in terms of entire algebraic functions of a sin-
gle variable by means of composition, addition and multiplication,
since its local monodromy group at the origin is the unsolvable
group S(5) of all permutations of five elements.

It is easy to see that y(a, b) = g(b/
4√
a5) 4

√
a, where g(u) is defined by

equation g5 + g + u = 0.

Problem (still open!) Show that there is an algebraic function of
two variables which cannot be expressed in terms of algebraic func-
tions of a single variable by means of composition and arithmetic
operations.
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