George M. Bergman

Spring 2001, Math 53M

16 March, 2001

102 Lewis and 60 Evans

Second Midterm

10:10-11:00 AM

- 1. (66 points, 11 points apiece) Find the following. If an expression is undefined, say so.
- (a) $\frac{d}{dt}$ $F(t, 3t^2, 5)$, where F is a differentiable function of three variables. Express your answer in terms of the partial derivatives of F.
- (b) A unit normal vector to the surface $(x+y)^3 (y+z^2)^5 = 9$ at the point (4,-2,1).
- (c) $\int_{1}^{2} \int_{0}^{1/x} e^{xy} dy dx$.
- (d) $\iint_D (x/y^2) dA$, where D is the rectangle $-1 \le x \le 2$, $1 \le y \le 2$.
- (e) $\iint_E (x/y^2) dA$, where E is the rectangle $1 \le x \le 2$, $-1 \le y \le 2$.
- (f) $\int_0^2 \int_{x^2}^{2x} F(x, y) \, dy \, dx$, expressed as a double integral with the order of integration reversed (where F is a continuous function).
- 2. (20 points) Find the maximum and minimum values of the function $(x^2+2y^2)^{1/2}$ on the disk $D = \{(x, y) \mid (x-1)^2 + y^2 \le 9\}$, and the points at which they occur.
- 3. (14 points) Let R be the rectangle $\{(x,y) \mid a \le x \le b, c \le x \le d\}$, for real numbers a < b and c < d. Compute the average value of the function xy over this rectangle R, and show by computation that it is equal to the value of that function at the midpoint ((a+b)/2, (c+d)/2) of R.