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1 The main theorem

If the universe V of sets does not have within it very complicated canonical inner models
for large cardinal hypotheses, then it has a canonical inner model K that in some sense
is as large as possible. K is absolutely definable, its internal structure can be analyzed in
fine-structural detail, and yet it is close to the full universe V in various ways.

If 0] does not exist1, then K = L. Set forcing cannot add 0] or change L, so KV =
KV [G] = L whenever G is set-generic over V . The fine-structure theory of [6] produces a
detailed picture of the first order theory of L. Jensen’s Covering Theorem ([7]) describes
one of the most important ways L is close to V : any uncountable X ⊆ L has a superset Y
of the same cardinality such that Y ∈ L.

If 0] does exist, then L is quite far from V , and so K must be larger than L. Dodd and
Jensen developed a theory of K under the weaker hypothesis that there is no proper class
inner model with a measurable cardinal in [1], [2], and [3]. This hypothesis is compatible
with the existence of 0], and if 0] exists, then 0] in K, and hence K is properly larger than
L. Under this weaker anti-large-cardinal hypothesis, K is again absolutely definable, admits
a fine structure theory like that of L, and is close to V , in that every uncountable X ⊆ K
has a superset Y of the same cardinality such that Y ∈ K.

Several authors have extended the Dodd-Jensen work over the years. We shall recount
some of the most relevant history in the next section. In this paper, we shall prove a theorem
which represents its ultimate extension in one direction. Our discussion of the history will
be clearer if we state that theorem now.

Theorem 1.1 There are Σ2 formulae ψK(v) and ψΣ(v) such that, if there is no transitive
proper class model satisfying ZFC plus “there is a Woodin cardinal”, then

(1) K = {v | ψK(v)} is a transitive proper class premouse satisfying ZFC,

1One can think of 0] as a weak approximation to a canonical inner model with a measurable cardinal.
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(2) {v | ψΣ(v)} is an iteration strategy for K for set-sized iteration trees, and moreover
the unique such strategy,

(3) (Generic absoluteness) ψVK = ψ
V [g]
K , and ψVΣ = ψ

V [g]
Σ ∩V , whenever g is V -generic over

a poset of set size,

(4) (Inductive definition) K|(ωV1 ) is Σ1 definable over Jω1(R),

(5) (Weak covering) For any λ ≥ ωV2 such that λ is a successor cardinal of K, cof(λ) ≥ |λ|;
thus α+K = α+, whenever α is a singular cardinal of V .

It is easy to formulate this theorem without referring to proper classes, and so formulated,
the theorem can be proved in ZFC. The theorem as stated can be proved in GB.

For definiteness, we use here the notion of premouse from [23], although the theorem is
almost certainly also true if we interpret premouse in the sense of [9]. See the footnotes to
section 3.5 below.2 A proper class premouse is sometimes called an extender model. Such
models have the form (L[ ~E],∈, ~E), where ~E is a coherent sequence of extenders, and what
(1) says is that the distinguished extender sequence of K is definable over V by ψK . One
can show that K satisfies V = K.3

The hierarchy of an iterable premouse has condensation properties like those of the hier-
archy for L, and this enables one to develop their first order theories in fine-structural detail.
For example, since K is an iterable extender model, it satisfies � at all its cardinals. (See
[18] and [19].)

Items (1)-(4) say that K is absolutely definable. Notice that by items (3) and (4), for
any uncountable cardinal µ, K|µ is Σ1 definable over L(Hµ), uniformly in µ. This is the
best one can do if µ = ω1 (see [22, §6]), but for µ ≥ ω2 there is a much simpler definition of
K|µ due to Schindler (see [5]).

The weak covering property (5) is due to Mitchell and Schimmerling [13], building on [14].
The strong covering property can fail once K can be complicated enough to have measurable
cardinals. Weak covering says that K is close to V in a certain sense. There are other senses
in which K can be shown close to V ; for example, every extender which coheres with its
sequence is on its sequence ([17]), and if there is a measurable cardinal, then K is Σ1

3-correct
([22, §7]).

The hypothesis that there is no proper class model with a Woodin cardinal in Theorem 1.1
cannot be weakened, unless one simultaneously strengthens the remainder of the hypothesis,
i.e., ZFC. It is in this respect that Theorem 1.1 is the ultimate result in one direction. For
suppose δ is Woodin, that is, V is our proper class model with a Woodin. Suppose toward

2The authors are quite sure that there is at most one core model, but the project of translating between
the two types of premouse is not complete. See [4].

3This follows easily from [22][8.10], for example.
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contradiction we had a formula ψK(v) defining a class K, and that (3), (4), and (5) held.
Let g be V -generic for the full stationary tower below δ.4 Let

j : V →M ⊆ V [g],

where M<δ ⊆M holds in V [g]. We can choose g so that crit(j) = ℵVω+1. Let µ = ℵVω . Then

(µ+)K = (µ+)V < (µ+)M = (µ+)j(K) = (µ+)K ,

a contradiction. The first relation holds by (5), the second by the choice of j, the third by
(5) applied in M , and the last by (3) and (4), and the agreement between M and V [g].5

As a corollary to Theorem 1.1, we get

Corollary 1.2 If ZFC + “there is a pre-saturated ideal on ω1” is consistent, then ZFC +
“there is a Woodin cardinal” is consistent.

The corollary follows from the theorem via a straightforward transcription of the argu-
ment in section 7 of [22]. Shelah has proved the converse relative consistency result. The
proof of the corollary illustrates one of the main ways core model theory is applied: if there
is a pre-saturated ideal on ω1, then there cannot be a K as in the conclusion to 1.1, and
therefore there is a proper class model with a Woodin cardinal.

Core model theory can be used to produce inner models with more than one Woodin
cardinal. In this respect, 1.1 is not the end of the line. But so far, what takes its place are
relativizations of 1.1 that are proved by the same method. See [24] for one example of such
an argument.

2 Some history

Our theorem grows out of, and in some sense completes, a long line of research in core model
theory. In order to set the stage properly, we review some of this prior work.

Core model theory began in the mid-1970’s with the work of Dodd and Jensen, ([1],[2],[3]),
who proved Theorem 1.1 with its anti-large-cardinal hypothesis strengthened to “0† does not
exist”, and indeed reached much stronger conclusions regarding the covering properties of
K under that assumption.

The theory was further developed under the weaker anti-large-cardinal hypothesis that
there is no sharp for a proper class model of ZFC with a measurable κ of order κ++ by Mitchell

4The reader who is not familiar with stationary tower forcing needn’t worry, as we shall not use it in this
paper.

5The same proof shows there is no formula ψ such that (3) holds, and (5) holds in all set generic extensions
of V .
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([11],[12]). Mitchell’s work introduced ideas which have played a prominent role since then.
Of particular importance for us is the technique of constructing a preliminary model Kc

which is close enough to V to have weak covering properties, and yet is constructed from
extenders which have “background certificates”, so that one can prove the model constructed
is iterable. The weak covering properties of Kc are then used to obtain the true, generically
absolute K as a certain Skolem hull of Kc.

In 1990, Steel extended Mitchell’s work so that it could be carried out under the weaker
anti-large-cardinal hypothesis that there is no proper class model with a Woodin cardinal.
He needed, however, to assume that there is a measurable cardinal Ω. Under that hypothesis,
he could develop the basic theory of KVΩ , including proofs of (1)-(4) of Theorem 1.1. (See
[22].) At this level, the iterability of Kc required a stronger background condition than
the one Mitchell had used, which had just been countable completeness. Steel introduced
such a condition, and used it to prove iterability, but he was not able to prove that his
preliminary Kc computed any successor cardinals correctly without resorting to the ad hoc
assumption that there is a measurable cardinal in V . As a result, one could not obtain sharp
relative consistency results at the level of one Woodin cardinal, such as Corollary 1.2, using
the theory Steel developed. Our work here removes the ad hoc assumption that there is a
measurable cardinal, and thereby remedies this defect.

In 1991–94 Mitchell, Schimmerling, and Steel proved weak covering for the one-Woodin
K Steel had constructed in [22]. See [14] and [13]. The techniques of [14] will be important
for us here, as we shall use them in a measurable-cardinal-free proof of weak covering for
one of our preliminary versions of K. Thus by 1994 all parts of our main theorem had been
proved, but in the theory Kelley-Morse augmented by a predicate µ, with axioms stating
that µ is a normal, non-principal ultrafilter on the class Ω of all ordinals.

The first step toward eliminating the measurable cardinal from the theory of [22] was
to find a background condition weaker than Steel’s which would suffice to prove iterability.
This was first done in early 2001 by Mitchell and Schindler. They showed that if Ω ≥ ω2

is regular, and 2<Ω = Ω then (provided all mice are tame), there is an iterable mouse W of
height Ω which is universal, in the sense that no premouse of height Ω iterates past W . The
existence of such Ω follows from GCH, but it is not provable in ZFC alone. Subsequently,
in 2003, Jensen ([8]) found a probably weaker6 background condition, showed it suffices for
iterability, and showed without any GCH assumptions that it allows enough extenders on
the sequence of Kc that Kc is universal. The reader should see [10] for further discussion
of these background certificate conditions, their relationships, and the resulting universal
models.

The construction of a “local Kc” of height some regular Ω, and universal among all
mice of ordinal height Ω, was an important advance. Previously, the universality of Kc

6The precise relationship between the two conditions is not known. There is a common weakening of the
two which seems to suffice for iterability, but this has not been checked carefully.
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and K had been generally understood, so far as their basic theory is concerned, in terms of
proper-class sized comparisons with proper-class sized competitors.7 However, once one gets
close to Woodin cardinals, it becomes possible that there are definable, proper-class sized
iteration trees on Kc (whatever Kc may be) which have no definable, cofinal branches. This
makes class-sized comparisons of class-sized premice pretty much useless, once one gets near
Woodin cardinals. In contrast, lemmas 2.3 and 2.4(b) of [22] easily imply

Theorem 2.1 Suppose there is no proper class model with a Woodin cardinal, and let M be
a countably iterable premouse of height Ω, where Ω is regular; then for any cardinal κ, there
is a unique (κ, κ)-iteration strategy for M .

If there is no proper class model with a Woodin cardinal, then Kc constructions of [15]
and [8] produce countably iterable premice, and hence by 2.1, they produce fully iterable
premice. Thus the fact that they produce mice which are universal at regular Ω is potentially
quite useful. In the context of ZFC, universality at a regular cardinal is much more useful
than universality at OR.

Nevertheless, universality at regular cardinals is not enough to implement Mitchell’s
method for obtaining true K as a Skolem hull of Kc. For that, one needs some form of weak
covering, and a corresponding notion of “thick hull”. Jensen took the key step forward here
in 2006, with his theory of stacking mice. Jensen’s results are described in section 3 of [10],
and we shall make heavy use of those results here. Jensen described this work to Steel in
early May of 2006, and after some ups and downs, in summer 2007 the two of them finished
the proof of Theorem 1.1.

Acknowledgement. The authors would like to thank the BordRestaurant on Deutsche Bahn’s
ICE 374 for its hospitality, during what proved to be a very pleasant trip from Offenburg to
Berlin on May 6, 2006.

3 Plan of the proof

Our main goal will be to construct mice which are universal at some regular cardinal because
they satisfy weak covering. Having done that, it will be a routine matter to adapt Mitchell’s
notion of thick sets to define local K’s, and show they fit together into a single K using the
local inductive definition of K from section 6 of [22].

We reach our main goal by proving:

7It is shown in [17] that K|Ω is universal vis-a-vis “stable” competitors of height Ω, whenever Ω is a
regular cardinal ≥ ω2. (Stability is defined in section 3.1 below. The need to restrict attention to stable
competitors was overlooked in [17].) However, this is “after the fact”, so to speak, in that one needs the
basic theory of K from [22] in order to prove it. In similar fashion, [14] and [13] imply that K|Ω is universal
vis-a-vis stable competitors of height Ω, whenever Ω is the successor of a singular cardinal, but the proof
uses the theory of [22].
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Theorem 3.1 Assume there is no proper class model with a Woodin cardinal. Let κ be a
singular strong limit cardinal; then there is an iterable mouse M such that (κ+)M = κ+.

Ordinarily, one would expect that the mouse M witnessing 3.1 would be K itself, and the
proof of 3.1 would involve the basic theory of K, as it does in [14]. Thus we would have no
way to get started. But we shall show that one need not go all the way to K to get the desired
M . Instead, the mouse M witnessing 3.1 will be a psuedo-K, constructed using versions of
thick sets and the hull and definablitity properties in which the measurable cardinal Ω of
[22] is replaced by a large regular cardinal. All of the new work lies in carrying over enough
of the [22] theory of K to psuedo-K; having done that properly, it will be completely routine
to adapt the proof of weak covering in [14].

The construction of psuedo-K goes roughly as follows. Let κ be as in 3.1, and let
κ < τ < Ω, where τ and Ω are regular, 2<τ < Ω, and ∀α < Ω(αω < Ω). Let

W = output of the robust-background-extender Kc-construction

up to Ω, with background extenders having

critical point of V -cofinality τ forbidden.

Jensen [8] shows that W is countably iterable. As there is no proper class with a Woodin
cardinal, W is fully iterable.

There are three cases:

Case 1. W has no largest cardinal.

In this case, Jensen [8] shows that W is universal, in that no mouse of height ≤ Ω iterates
past W . By the bicephalus argument, any robust extender that coheres with the sequence
of W is on the sequence of W . Let S(W ) be the stack over W as defined in section 3 of [10].
By the proof 8 of theorem 3.4 of [10], we have

cof(o(S(W )) ≥ Ω,

where we use the notation o(H) for H ∩OR. This enables us to define thick sets as τ -clubs
in o(S(W )). Mitchell’s arguments carry over, and one can then define our psuedo-K, call it
K̃(τ,Ω), as the intersection of all thick hulls of S(W ). Sharpening some arguments which in
[22] brought in the measurable cardinal again, we show that

τ ⊆ K̃(τ,Ω).

8This is very nearly the statement of 3.4 of [10], but unfortunately, a superfluous instance of GCH crept
into the definition of “certified Kc” given there.
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This is done in 4.31 below. It is not hard then to show that K̃(τ,Ω)|τ satisfies the
inductive definition of K in section 6 of [22]. So in this case, our psuedo-K, up to τ , is the
real K. In particular, the proof of weak covering in [14] easily shows that M = K̃(τ,Ω)
witnesses the truth of Theorem 3.1.9

Case 2. W has a largest cardinal γ, and W |= cof(γ) is not measurable.

This case is much easier. It is easy to see that W is universal. We now just take thick
sets to be τ -clubs in Ω, and define K̃(τ,Ω) to be the intersection of all thick hulls of W .
Again, K̃(τ,Ω)|τ is true K in the sense of the local inductive definition, and witnesses the
truth of 3.1.

Case 3. W has a largest cardinal γ, and W |= cof(γ) is measurable.

The trouble here is that if µ is a measure of W on cof(γ)W , then Ult(W,µ) has ordinal
height > Ω. So W is “unstable”, making the notion of universality for it problematic. So
what we do is replace W by

W ∗ = Ult(W,µ)|Ω,
where µ is the order zero measure of W on cof(γ)W . It is not hard to see γ is also the largest
cardinal of W ∗, and not of measurable cofinality in W ∗. So W ∗ is stable, and universal
vis-a-vis other stable mice of height ≤ Ω. We can then use the procedure of case 2 to derive
K̃(τ,Ω) from W ∗. We won’t have that K̃(τ,Ω)|τ is true K in this case, however, because
replacing W by W ∗ may have gotten rid of some measures at ordinals of V -cofinality η, where
η is the V -cofinality of γ, which are in true K. Nevertheless, the proof of weak covering for
K in [14] goes through for K̃(τ,Ω) with only minor changes, so that again, K̃(τ,Ω) witnesses
the truth of 3.1.

We now turn to the details. Section 4 is devoted to constructing K̃(τ,Ω). Section 4.5
shows that τ ⊆ K̃(τ,Ω). Section 5 contains the routine adaptation of [14] needed in case 3,
and there by completes the proof of Theorem 3.1. Finally, in section 6 we prove Theorem
1.1.

4 Psuedo-K

We assume for the rest of this paper that there is no proper class model with a Woodin
cardinal.

We fix throughout this section a regular cardinal τ ≥ ω3, and a regular cardinal Ω such
that 2<τ < Ω, τ++ < Ω, and ∀α < Ω(αω < Ω). We shall construct a psuedo-K of ordinal

9In this case, we have already produced true K up to τ , so we don’t really need to prove 3.1, and produce
K|τ again by the procedure we outlined after the statement of 3.1.
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height τ . Psuedo-K will depend on τ and Ω, but there will be no other arbitrary choices
involved in its definition. We shall call it K̃(τ,Ω).

4.1 Stably universal weasels

Definition 4.1 A weasel is an iterable premouse of height Ω.

Definition 4.2 Let W be a weasel; then

(a) W is a mini-universe iff W |= “ there are unboundedly many cardinals”.

(b) W is a collapsing weasel iff W |= “there is a largest cardinal”. In this case, we let γW

be the largest cardinal of W , and ηW be the W -cofinality of γW .

(c) W is stable iff W is a mini-universe, or W is collapsing and ηW is not the critical
point of a total-on-W extender from the W -sequence.

(d) W is stably universal iff W is stable, and whenever R is a mouse such that o(R) < Ω,
or R is a stable weasel, then R does not iterate past W .

Farmer Schlutzenberg ([21]) has shown that for iterable 1-small mice M satisfy ing enough
of ZFC, M |= η is measurable iff η is the critical point of a total-on-M extender from the
M -sequence. So clause (c) above could be re-phrased as: ηW is not measurable in W . We
shall not use this fact, however.

Definition 4.3 A mouse M is stable iff o(M) < Ω, or M is a stable weasel.

With this definition, we can say W is stably universal iff W is a stable weasel, and no
stable mouse iterates past W . Moreover, if T is an iteration tree of length < Ω on a stable
mouse, then all models of T are stable.

Proposition 4.4 (1) If W is an unstable collapsing weasel, then Ult(W,U)|Ω is a stable
collapsing weasel, where U is the order zero measure of W on ηW .

(2) Any stable collapsing weasel is stably universal.

(3) If there is a collapsing weasel, then there is no universal mini-universe.

(4) If W and R are collapsing weasels, then γW and γR have the same V -cofinality.

Proof. This is all straightforward. �

We shall adopt the terminology of CMIP concerning phalanxes, and iteration trees on
phalanxes. See [22, 9.6,9.7,6.6]. Here is definition 9.6 of [22], slightly revised.10

10Clause 2 is now a bit stronger.
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Definition 4.5 A phalanx is a pair of sequences Φ = (〈(Mβ, kβ) | β ≤ γ〉, 〈(νβ, λβ) | β < γ〉),
such that for all β ≤ γ

(1) Mβ is a protomouse (possibly a premouse),

(2) if β < α < γ, then νβ < να and λβ ≤ να,

(3) if β < α ≤ γ, then λβ is the least η ≥ νβ such that Mα |= η is a cardinal, and moreover,
ρkα(Mα) > λβ,

(4) λβ ≤ o(Mβ), and

(5) if β < α ≤ γ, then Mβ agrees with Mα (strictly) below λβ.

We say Φ has length γ + 1, and call Mγ the last model of Φ. Roughly speaking, the
λβ measure the agreement of Mβ with later models, while the νβ tell you which model to
go back to when forming normal trees on Φ.11 We demand that λβ be a cardinal in Mα,
whenever β < α. The kβ bound the degrees of ultrapowers taken of models lying above Mβ

in a tree on Φ, in the case one has not dropped reaching that model.
If T is a normal iteration tree of length γ + 1, then Φ(T ) is the phalanx of length γ + 1

with Mβ = MT
β , kβ = degT (β), νβ = ν(ETβ ), and λβ = lh(ETβ ) if ETβ is of type II, while

λβ = ν(ETβ otherwise.
If Φ is a phalanx, and 〈M,k, ν, λ〉 is a 4-tuple such that lengthening each sequence in Φ

by the corresponding entry of 〈M,k, ν, λ〉 yields a phalanx, then we write

Φ_〈M,k, ν, λ〉

for this new phalanx.
The phalanxes with which we deal are mostly of the form Φ(T )_〈M,k, ν, λ〉 for T some

normal iteration tree on a mouse, or generated from such a phalanx by lifting it up via a
family of extender ultrapowers.

Normal (i.e. ω-maximal) iteration trees on phalanxes are defined in [22, 6.6]. One thing
to notice is that we require lh(ETξ ) ≥ λΦ

β whenever these are defined. Thus MΦ
β agrees with

all non-root models of T up to λβ.

Remark 4.6 Suppose Φ_〈M,k, ν, λ〉 is a phalanx, and ν is the sup of all the νΦ
β . Then

no normal iteration tree on Φ_〈M,k, ν, λ〉 ever visits the last model of Φ, so for iteration
purposes, one can think of M as having replaced the last model of Φ.

We need a notion of stability for phalanxes as well.

11λβ is determined by νβ and Mβ+1, as the least cardinal of Mβ+1 which is ≥ νβ .
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Definition 4.7 A phalanx (〈(Pξ, kξ) | ξ ≤ α〉, 〈(νξ, λξ) | ξ < α) is stable iff

(1) each Pξ is stable, and

(2) if ξ < α and Pξ is a collapsing weasel such that for η = ηPξ , we have (η+)Pξ ≤ λξ, then
for all γ ≥ ξ, ηPξ is not a measurable cardinal of Pγ.

Lemma 4.8 Let Φ be a stable phalanx, and T an iteration tree on Φ such that lh(T ) is a
successor ordinal < Ω; then Φ(T ) is stable. In particular, all models of T have ordinal height
≤ Ω.

Proof. Let Φ(T ) = (〈(Pξ, kξ) | ξ ≤ γ〉, 〈(νξ, λξ) | ξ < γ). Clause (2) of stability is an easy
consequence of the agreement of models in an iteration tree. For let ξ < γ and Pξ be a
collapsing weasel such that for η = ηPξ , we have (η+)Pξ ≤ λξ. Suppose that η is measurable
in Pγ, say via the normal measure U . Let α+ 1 = lh(Φ). If α ≤ ξ, the agreement of models
in an iteration tree gives U ∈ Pξ, contrary to the stability of Pξ. If ξ < γ ≤ α, we have
a contradiction to our assumption about Φ. Finally, if ξ < α < γ, then U ∈ Pα by the
agreement properties of T , noting that its first extender has length at least λξ. But this
then contradicts our assumption on Φ.

Clause 1 of stability now reduces to: o(Pξ) ≤ Ω for all ξ ≤ γ. We prove this by induction
on γ. The base case of the induction is Φ(T ) = Φ, and is given by hypothesis.

Assume first that γ is a limit ordinal. We must see that o(Pγ) ≤ Ω. But suppose not,
and let Ω = iTη,γ(µ), where η < γ. By induction, iη,ν(µ) < Ω for all ν <T γ. But letting
Xν = iν,γ“(iη,ν(µ)), we have Ω =

⋃
η<T ν<T γ

Xν . Thus Ω is a union of γ sets of size < Ω,
contrary to Ω being regular.

Now let γ = α+ 1. Let ξ = predT (γ), and Pγ = Ultk(Q,E), where QE Pξ and E = ETα .
If o(Pγ) > Ω, then Pξ is a collapsing weasel and ηPξ = crit(E). Since Pα is stable, we must
have ξ < α and crit(E) < ν(ETξ ) ≤ λξ. Moreover, α + 1 6∈ DT , so (ηPξ)+,Pξ ≤ λξ. So ηPξ is
measurable in Pα, contrary to the fact that Φ(T � γ) satisfies clause 2. �

4.2 Thick sets and Kc

The efficient Kc constructions give stably universal weasels, with universality insured by
thick sets. To see this in the case that our Kc is a mini-universe, we need some results on
stacking mice from [10]. We now briefly recall them.

Lemma 4.9 Let W be a countably iterable mini-universe, and let W EM , where M is a
countably iterable k-sound mouse, with k < omega such that ρk(M) = Ω; then

(a) ρω(M) = Ω, and
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(b) if also W E N , where N is countably iterable, i-sound, and ρi(N) = Ω, then either
M EN or N EM .

Proof. For (a), suppose A is a bounded, M -definable subset of Ω such that A /∈ W . Let
π : H → Vθ with θ large, and crit(π) = α < Ω, and π(α) = Ω, and π(M̄) = M . By
condensation (see [16, §8]), we have M̄ EW . But A is definable over M̄ by the elementarity
of π, so A ∈ W , a contradiction.

The proof of (b) is similar: we reflect the incomparability of M and N to the incom-
parability of some M̄ and N̄ , where M̄ and N̄ are both initial segments of W . This is a
contradiction. �

So if W is a mini-universe, we can stack all mice extending W and projecting exactly to
Ω into a single mouse S(W ) extending W .

Definition 4.10 Let W be a mini-universe; then S(W ) is the stack of all sound mice M
extending W such that for some k, ρk(M) = Ω. If W is a collapsing weasel, then we set
S(W ) = W .

The following observation is useful:

Proposition 4.11 Let W be a mini-universe, and M a premouse such that W EM , and
ρk(M) = Ω where k < ω. The following are equivalent:

(1) M E S(W ),

(2) for club many α < Ω, HM(α ∪ pk(M))EW ,

(3) for stationary many α < Ω, HM(α ∪ pk(M))EW .

Proof. (1) implies (2) by condensation. To see (3) implies (1), we must show M is countably
iterable. But this follows from (3) and the fact that W is countably iterable. �

We call S(W ) the completion of W . If W is a mini-universe, we also call S(W ) the stack
over W . Notice that in either case, S(W ) has a largest cardinal.

Lemma 4.12 Let W be stably universal, and M be a countably iterable premouse such that
S(W ) is a cutpoint initial segment of M ; then ρω(M) ≥ o(S(W )).
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Proof. This is easy if W is a stable collapsing weasel, so assume W is a mini-universe. Let
M be a minimal counterexample. If ρω(M) = Ω, then M is one of the mice stacked in S(W ),
contradiction. So let ρ = ρω(M) < Ω. Let M̄ be the transitive collapse of X, where X ≺M
with X ∩ Ω = Ω̄ with ρ < Ω̄ < Ω. Thus M̄ agrees with W up to Ω̄. Using condensation
applied to the proper initial segments of S(W ) which are in X, we get M̄ agrees with W up
to the collapse of o(S(W )). But M̄ has the collapse of o(S(W )) as a cutpoint, so using the
universality of W , we get that M̄ is an initial segment of W . This implies the new subset of
ρ defined over M is actually in M , a contradiction. �

Remark 4.13 So far as we can see, there could be a mouse M such that M |Ω is a universal
mini-universe, but ρω(M) < Ω. One could not have Ω = ρk(M) for some k, however, by 4.9.

Corollary 4.14 Let W be stably universal; then L[S(W )] |= o(S(W )) is a cardinal.

Definition 4.15 Let W be a weasel, and let C ⊆ o(S(W )); then we say C is strongly
W -thick iff

(a) cof(o(S(W ))) ≥ Ω, and C is τ -club in o(S(W )), and

(b) for all η ∈ C, cof(η)S(W ) is not the critical point of a total-over-W extender from the
W -sequence.

We say a set Γ ⊆ S(W ) is W -thick iff Γ has a strongly W -thick subset.

It might be more natural to say that C is strongly (τ,W )-thick, but we have fixed τ for
this section.

Proposition 4.16 Let W be a weasel.

(a) The intersection of < Ω strongly W -thick sets is strongly W -thick.

(b) If S(W ) is W -thick, then W is universal, and the collection of all W -thick sets consti-
tutes an Ω-complete filter.

Let us say a Kc construction forbids critical points of cofinality in X iff whenever F is the
last extender of some level Nγ of the construction, then crit(F ) does not have V -cofinality in
X. We say a construction is X-maximal iff it puts on extenders whenever possible, subject
to this restriction, and to whatever background condition the construction employs.

We shall use robustness as our background condition on the extenders added in a Kc-
construction. See [8], or [10, 2.5] for the definition. Robustness follows from being hull-
certified in the following sense.
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Definition 4.17 Let M be an active premouse with last extender F , where κ = crit(F ) and
ν = ν(F ). We say M (or sometimes, F ) is hull-certified by π iff

(1) π : H → Hξ is elementary, H is transitive, H and Hξ are closed under ω-sequences,
and M |(κ+)M ∈ H, and

(2) F � ν = (Eπ � ν)∩M ; that is, F is the (trivial completion of) the (κ, ν)-extender over
M induced by π.

This is close to the notion of being certified by a collapse in [10, 2.2], but unfortunately
that definition required ξ be regular and 2<ξ = ξ, which is too much GCH. One still has, by
a straightforward proof:

Lemma 4.18 Let M be hull-certified; then M is robust.

Proof. See [10, Lemma 2.6]. �

The following is a preliminary weak covering theorem for the robust Kc. It is essentially
Theorem 3.4 of [10], although unfortunately that theorem had the superfluous hypothesis
that 2<Ω = Ω.

Theorem 4.19 Let R be the output of the {τ}-maximal Kc-construction of length Ω all of
whose levels are robust. Suppose R is a mini-universe; then S(R) is R-thick.

Proof sketch. Let C = {α < o(S(R)) | cof(α) = τ}. We claim that C is strongly R-thick.
Clause (b) in the definition of strong R-thickness follows easily from the fact that critical
points of cofinality τ were forbidden in the construction of R. For clause (a), we need to see
that

cof(o(S(R))) ≥ Ω.

This is proved exactly as in the proof of 3.4 of [10], using “hull-certified” in place of “certified
by a collapse” everywhere.12 �

Preliminary weak covering in the collapsing weasel case is easier:

Theorem 4.20 Suppose there is a collapsing weasel W , and let η be the V -cofinality of ηW .
Let R be the output of the {τ, η}-maximal Kc-constructions of length Ω, all of whose levels
are robust. Then R is a stable collapsing weasel, and Ω is R-thick.

12It is at this point that we use τ++ < Ω, which gives us two regular cardinals that are allowed as
cofinalities of critical points in the construction of R.
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Proof. If W |= ηW is measurable, let W ∗ = Ult(W,µ)|Ω. where µ is the order zero measure
on ηW . Otherwise, let W ∗ = W . By part (1) of proposition 4.4, W ∗ is a stable collapsing
weasel, whose largest cardinal has V -cofinality η.

By [8], if R is a mini-universe, it must be universal. (This also follows from 4.19 and
4.24 below.) But that contradicts proposition 4.4, part (3). Thus R is a collapsing weasel.
We claim that R is stable. If not, letting γ = cof(ηR)V , we have γ = η by part (4) of
proposition 4.4. But critical points of V -cofinality η were not allowed in the construction of
R, contradiction. Thus R is stable. Letting C = {α < o(S(R)) | cof(α) = τ}, it is clear that
C is strongly R-thick. �

Combining 4.19 and 4.20 we have

Corollary 4.21 There is a stably universal weasel W such that S(W ) is W -thick.

4.3 Preservation of thickness under hulls and iterations

For iterations, we have:

Lemma 4.22 Let Φ be a stable phalanx, let W be a weasel on Φ, and suppose i : W → R
is an iteration map coming from a normal iteration tree U of length ≤ Ω + 1 on Φ, and
that i”Ω ⊆ Ω. Let E be the long extender of of length Ω over W derived from i; then
Ult(S(W ), E) = S(R).

Proof. This is trivial if W is a collapsing weasel, so assume W is a mini-universe, and that
4.22 fails for W . Let π : H → Vθ be elementary, where H is transitive, crit(π) = α < Ω,
π(α) = Ω, and everything relevant is in ran(π). Let

π(Ū) = U , π(N̄) = N, π(S(W )) = S(W ),

where U is the tree giving rise to i, and N is the first collapsing level of S(R) above
Ult(S(W ), E).

Now N̄ is a level of R projecting to α by condensation. Thus N̄ is an initial segment of
MU

α . Also Ult(S(W ), Ē) is a proper initial segment of N̄ . It follows that there is a first level
W |γ of W such that W |γ projects to α, and S(W ) is an initial segment of W |γ.

But then

N̄ = Ult(W |γ, Ē),

so we get W |γ in H as Ē and N̄ are there. (Note that W |γ is the transitive collapse of
HN̄
n (i“α∪ pn(N̄), and Ē determines i � α.) But α is a cardinal of W , so ρω(W |γ) = α. Thus

W |γ witnesses that S(W ) is not the maximal stack over W |α in H. This contradicts the
elementarity of π. �
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Theorem 4.23 Let Φ be a stable phalanx, let W be a model of Φ such that S(W ) is W -thick,
and suppose i : W → R is an iteration map coming from a normal iteration tree U of length
≤ Ω + 1 on Φ, and that i”Ω ⊆ Ω. Let E be the long extender of length Ω over W derived
from i, and let i∗ : S(W )→ Ult(S(W ), E) be the canonical extension of i; then

(1) Ult(S(W ), E) = S(R),

(2) {α | i∗ is continuous at α} is W -thick, and

(3) ran(i∗) is R-thick.

We show now that the universality of a mini-universe is determined by the cofinality of
the stack over it.

Theorem 4.24 Let W be a mini-universe; then W is universal iff cof(o(S(W ))) ≥ Ω.

Proof. Suppose first that W is a universal mini-universe. Let R be the robust Kc of Theorem
4.19. Then R is also universal, and by 4.23 and 4.9, the comparison of W with R is in fact
a comparison of S(W ) with S(R), and yields iteration maps

i : S(W )→ S(Q) and j : S(R)→ S(Q).

It follows from the continuity of i and j at o(S(W ) and o(S(R)) that

Ω ≤ cof(o(S(R))) = cof(o(S(Q))) = cof(o(S(W ))),

as desired.
Conversely, suppose W is not universal, and let M be a mouse of height ≤ Ω that iterates

past W . Let T and U be the comparison trees on the W and M respectively. Let R be the
last model of T , and N =MU

Ω be the last model of U , so that W -to-R does not drop, and
REN . Let

j : S(W )→ S(R)

be the iteration map, extended to S(W ) via 4.23.

Claim 1. S(R)EN.

Proof. If not, we have P such that P E S(R), ρω(P ) = Ω, and P 6E N . Let

π : H → Vθ

be elementary, with everything relevant in ran(π), and

π(α) = Ω, for α = crit(π).
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For notational simplicity, let us assume T has been padded so as to keep pace with U , which
has length Ω because M is iterating past W . We then have

α = crit(iUα,Ω) ≤ crit(iUα,Ω),

and
MU

α |(α+)M
U
α =MT

α |(α+)M
T
α = R|(α+)R,

by standard arguments. But let π(P̄ ) = P ; then by condensation, P̄ER, and hence P̄EMU
α .

But π(MU
α) =MU

Ω = N , so P EN , contradiction. �

Claim 2. S(R) = N |(Ω+)N .

Proof. Otherwise, noting that Ω is a cardinal of N , we get that S(R) is not the full stack
over R, a contradiction. �

Now let α < Ω be large enough that i = iUα,Ω : MU
α → N is defined. Let i(κ) = Ω. Then i

maps (κ+)M
U
α cofinally into (Ω+)N = o(S(R)). Thus o(S(R)) has cofinality < Ω. But j maps

o(S(W )) cofinally into o(S(R)), contradiction. This completes the proof of 4.24. �

For hulls we have the following. Let Γ ⊆ S(W ); then we put

HS(W )(Γ) = {x | x is definable over S(W ) from parameters in Γ }.
Then

Lemma 4.25 Let Γ be W -thick, and let π : N ∼= HS(W )(Γ) ≺ S(W ), where N is transitive;
then

(a) HS(W )(Γ) is cofinal in Ω,

(b) N = S(N |Ω),

(c) {α < o(N) | π(α) = supπ“α} is N-thick

(d) N |Ω is universal.

Proof. (a) is clear if W is a collapsing weasel. Suppose W is a mini-universe, but HS(W )(Γ)
is bounded in Ω. It is clear then that N is a collapsing weasel. This contradicts part (3) of
proposition 4.4.

For (b), it is clear that N E S(N |Ω). Suppose that P is least such that P E S(N |Ω) and
P 6 EN and ρω(P ) = Ω). We can form

Q = Ultk(P,Eπ|Ω),

and we have that ρk(Q) = Ω, and Q properly extends S(W ) because Γ is cofinal in o(S(W )).
But for club many α < Ω, HullQk (α ∪ pk(Q)) E W , so Q E S(W ) by proposition 4.11, a
contradiction.

Part (c) is clear, and (d) follows from (c) and Theorem 4.24. �
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4.4 The hull property

The proof from [22] that Kc has the hull property at club many α < Ω does not generalize
to our current situation. However, there is in fact a much simpler proof.

Definition 4.26 Let S(W ) be W -thick, and suppose α < Ω; then we say W has the hull
property at α iff whenever Γ is W -thick, then P (α)W is contained in the transitive collapse
of HS(W )(Γ ∪ α).

Lemma 4.27 Suppose S(W ) is W -thick; then there are club many α < Ω such that W has
the hull property at α.

Proof. Since L[S(W )] |= Ω is not Woodin, we can pick A ∈ S(W ) least such that no κ < Ω
is A-reflecting in Ω in L[S(W )]. Thus there are club many α < Ω such that whenever κ < α
and E is on the W -sequence and crit(E) = κ, then

iE(A) ∩ α 6= A ∩ α.

We claim that W has the hull property at any such α.
To see this, let Γ be W -thick, and let π : S(H) ∼= HS(W )(Γ ∪ α) ≺ S(W ), where H is

transitive. Note A ∈ ran(π). We now compare (W,H, α) with W . By Dodd-Jensen, the
comparison ends up above H on the phalanx side, and yields iteration maps

i : H → P,

and
j : W → P,

such that crit(i) ≥ α. We can extend i and j so they act on S(H) and S(W ), and since A
is definable over L[S(W )], we have that

i(π−1(A)) = j(A).

But then if crit(j) = κ < α, we would have that the first extender used in j witnesses that
κ is A-reflecting up to α in W . So crit(j) ≥ α. But then

P (α) ∩W = P (α) ∩ P = P (α) ∩H,

which is what we need to show. �

Remark. For the duration of this remark, we drop our assumption that there is no proper
class model with a Woodin cardinal. Indeed, suppose instead that Ω is Woodin in V , that VΩ

is fully iterable. Let N be the output of the full background extender Kc construction of VΩ.
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Our iterability assumption implies that this construction does not halt before Ω, so that N is
a mini-universe, and that N is fully iterable. Lemma 11.1 of [25] shows that N is universal.
In fact, the proof of 4.24 goes over to this situation, and one has that cof(o(S(N)) ≥ Ω. We
can thus define τ -thick sets, for example with τ = Ω. If we could show that N has the hull
property at club many α < Ω, we could go on to define true K up to Ω as the intersection
of all thick hulls of S(N). This could be very useful, for example, in proving the Mouse Set
Conjecture. ( See [25].)

Unfortunately, our proof of Lemma 4.27 used very heavily that Ω was not Woodin in
L[S(W )]! This certainly fails for L[S(N)]. It is open whether N has the hull property at
club many α < Ω.

4.5 K̃(τ,Ω) contains τ

We now define our psuedo-K, and show it contains τ .

Definition 4.28 Suppose S(W ) is W -thick; then we set

DefW =
⋂
{HS(W )(Γ) | Γ is W -thick }.

Lemma 4.29 Suppose S(W ) is W -thick and S(R) is R-thick; then (DefW ,∈) ∼= (DefR,∈).

Proof. Comparing W with R, we get i : W → Q and j : R→ Q, iteration maps to a common
weasel. By 4.23, these give rise to i∗ : S(W )→ S(Q) and j∗ : S(R)→ S(Q). It is easy then
to use 4.23 to see (i∗)” DefW = DefQ = (j∗)” DefR. �

Our psuedo-K is

Definition 4.30 K̃(τ,Ω) is the common transitive collapse of all DefW , for W such that
S(W ) is W -thick.

The proof in [22] of the counterpart to the following lemma used the measurable cardinal
a second time.

Lemma 4.31 K̃(τ,Ω) has ordinal height at least τ .

Proof. The collapsing weasel case is easy: let W be any stable collapsing weasel, and γ its
largest cardinal. For each ξ < γ, let Γξ be strongly W thick and such that

ξ 6∈ HW (Γξ),
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with Γξ = Ω if there is no thick hull omitting ξ. Let

Γ =
⋂
ξ<γ

Γξ.

So Γ is strongly W -thick, and

HW (Γ) ∩ γ = DefW ∩γ.

But then
HW (Γ) = DefW ,

because if Λ ⊆ Γ is strongly W -thick, and ξ ∈ HW (Γ), we can find a function f ∈ HW (Λ)
with domain γ such that ξ ∈ ran(f). But then ξ = f(µ) for µ ∈ HW (Γ), so ξ = f(µ) for
µ ∈ DefW , so ξ ∈ HW (Λ). Since HW (Γ) = DefW , we have Ω ⊆ K̃(τ,Ω), which is more than
we claimed.

Now let W = Kc
τ be the output of the robust Kc-construction of length Ω, and suppose

W is a mini-universe. Suppose toward contradiction that DefW ∩Ω has order type β < τ .
As above, we can find a strongly W -thick set Γ0 such that HW (Γ0) ∩ Ω has DefW for its
first β elements. Let b0 be least in HW (Γ0) ∩ Ω \ DefW . Now pick a decreasing sequence
〈Γν | ν < Ω〉 such that letting

bν = least ordinal in HW (Γν) \DefW ,

we have that ν < ξ ⇒ bν < bξ, for all ν, ξ < Ω.
The proof of the following claim is due to Mitchell ([12]).

Claim . There is no ν < Ω such that ∀ξ < ν(bξ < ν) and ν ∈ HW (ν ∪ Γν+1).

Proof. Fix such a ν. We can then find c < ν and d ∈ (Γν+1)<ω, and a Skolem term τ , such
that ν = τW [c, d]. But then we have ξ < ν such that c < bξ, so

HW (Γξ) |= ∃c < bξ(bξ < τ [c, d] < bν+1).

But the witness e to the existential quantifier here is in HW (Γξ)∩ bξ, and hence in DefW . It
follows that

bξ < τW [e, d] < bν+1,

and τW [e, d] ∈ HW (Γν+1), a contradiction. �

Because the lemma fails, we have an τ+-club C ⊆ Ω such that for all ν ∈ C, cof(ν) = τ+,
and

(1) ξ < ν ⇒ bξ < ν
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(2) ν 6∈ HW (ν ∪ Γν),

(3) W has the hull property at ν.

For ν ∈ C, let
σν : Nν

∼= HW (ν ∪ Γν+1) ≺ W,

where Nν is transitive, and let Fν be the (ν, σν(ν)) extender of σν . Note Fν measures all sets
in W , by the hull property at ν. Fν coheres with W , and not all of its initial segments are
of type Z, on the W -sequence, or an ultrapower away. (Otherwise W has reached a Shelah
cardinal.) So we have some β such that (W |β, Fν � β) is a non-type-Z premouse, but is not
robust. (Note here that ν is not forbidden as a critical point.) Let β(ν) be the least such
β.13 14

So for each ν ∈ C, we pick a witness Uν that Fν � βν is not robust with respect to W |βν .
This means the following: for any β, let Cβ,ξ be the ξth level of the Chang model built
over W |β. (See [8] or [10].) Let L0 be the common language of the Cβ,ξ. If U ⊆ W |β and
sup(U ∩ Ω) = β, put

Sat(U) = {(ϕ, x) | x ∈ Uω and

ϕ is a Σ1 formula of L0 and Cβ,Ω |= ϕ[x]}.

If U ⊆ W |β and ψ : U → W |γ, with sup(ran(ψ) ∩ Ω = γ), we set

Sat(U, ψ) = {(ϕ, x) | x ∈ Uω and

ϕ is a Σ1 formula of L0 and Cγ,Ω |= ϕ[π ◦ x]}.

Then our counterexample Uν to robustness has the following properties:

(1) Uν is a countable subset of W |β(ν),

(2) there is no map ψ : Uν → W |ν with the properties that, setting β = sup(Uν ∩ β(ν))
and β̄ = sup(ψ“β), we have

13In fact, β is unique by the initial segment condition. At this moment, in order to be accurate with the
details, one must choose between using λ-indexing as in [9], and using ms-indexing, as in [16] and [23]. No
doubt either would do, but we shall be following the weak covering proof of [14], which uses ms-indexing,
so we have chosen it. This means that the iterability and universality arguments using robustness of [8]
have to be translated to ms-indexing, so as to prove that theorems 4.19 and 4.20 do indeed hold with the
ms-indexing. We see no difficulty in doing this, and it may be less work than re-doing the weak covering
proof of [14] in λ-indexing. Schindler [20] proves weak covering in λ-indexing for a Kc with many strong
cardinals, but no one has written up a full analog of [14].

14In any case, one could avoid re-doing the robustness work in ms-indexing by forcing 2<Ω = Ω, using [15]
(which is done in ms-indexing) wherever we are using [8] in this paper, thereby obtaining K̃(τ,Ω) in the
generic extension, and then arguing that K̃(τ,Ω) is in V by homogeneity.
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(i) ψ � Uν ∩ ν is the identity,

(ii) Sat(U) = Sat(U, ψ), and

(iii) for all a ∈ [Uν ∩ β(ν)]<ω and all X ⊆ [ν]|a| such that X ∈ Uν , we have a ∈
σν(X)⇔ ψ(a) ∈ X.

Since ∀α < Ω(αω < Ω), we can simultaneously fix ω-many regressive ordinal valued
functions on a τ+-stationary set. In particular, we can fix Uν ∩ ν on an τ+-stationary set.
Let S0 ⊆ C be τ+-stationary, and yn for n < ω such that

Uν ∩ ν = {yn | n < ω}

for all ν ∈ S0.
Let us pick enumerations

• 〈zνn | n < ω〉 of Uν ,

• 〈aνn | n < ω〉 of [Uν ∩ β(ν)]<ω,

• 〈Xν
n | n < ω〉 of Uν ∩

⋃
n<ω P ([ν]n).

Let γν = sup(Uν ∩ βν). Let L1 be the expansion of L0 with constant symbols żn, ȧn, Ẋn, ẏn,
for all n < ω, as well as constant symbols ḟ for all f ∈ ωω. Let U∗ν be the obvious expansion
of Cβν ,Ω to a structure for L1, where we interpret ḟ by the function h(n) = zνf(n). (So U∗ is a

structure for a language of size 2ω.) Then, let S1 ⊆ S0 be τ+ stationary, and such that the
first order theory of U∗ν is constant on S1.

Now let ξ, ν ∈ S1 be such that βξ < ν. There is a bijection ψ between Uν and Uξ given
by

ψ(zνn) = zξn.

Since U∗ξ and U∗ν are elementarily equivalent, we have that Sat(Uν) = Sat(Uν , ψ). Also,
ψ � Uν ∩ ν is the identity. So we just have to see that for a proper choice of ξ and ν, ψ
satisfies the “typical object” condition (iii) above.

For each ν ∈ S1, and n < ω, we can write

σν(X
ν
n) = τ νn [ανn, d

ν
n],

where τ νn is a Skolem term, ανn < ν, and dνn ∈ Γ<ων+1. By Fodor again, we can thin S1 to a τ+

stationary set S2 such that we have τn and αn for n < ω with

τ νn = τn and ανn = αn

for all ν ∈ S2.
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For ν ∈ S2, let
f(ν) = {〈n, k〉 | aνn ∈ σν(Xν

n)}.

We thin S2 to a τ+-stationary S3 such that f is constant on S3.
Finally, for ν ∈ S3, put

Rν(n, θ, µ)⇔ θ ∈ τn[µ, dνn]W and θ, µ ∈ DefW .

We thin S3 to an τ+-stationary S4 such that Rν is constant for ν ∈ S4. This is where we use
2<τ < Ω.

Now let ξ, ν ∈ S4 be such that σξ(ξ) < ν. Let ψ(zνn) = zξn. It will be enough to show that
ψ satisfies the typical object condition (iii) above. This amounts to showing that for all n, k

aνn ∈ σν(Xν
k )⇔ aξn ∈ Xν

k .

But because we are in S3, we have aνn ∈ σν(Xν
k )⇔ aξn ∈ σξ(X

ξ
k). Thus it is enough to show

σξ(X
ξ
k) = Xν

k ∩ [σξ(ξ)]
<ω,

for all k. Suppose this fails for k. Notice now that σξ(ξ) ≤ bξ+1, since the latter is above ξ
and in HW (Γξ+1). Then we get

W |= ∃θ < bξ+1∃µ < bξ+1(θ ∈ τk[µ, dξk]⇔ θ 6∈ τk[µ, dνk]).

The displayed formula is a fact about elements of HW (Γξ+1), so there are witnesses θ, µ to
it in HW (Γξ+1). Since θ, µ < bξ+1, we must have θ, µ ∈ DefW . But this implies Rξ 6= Rν , a
contradiction which completes the proof of lemma 4.31. �

5 The weak covering proof

In this section, we prove Theorem 3.1. From this point on, the proof is so much like that in
[14] that there is no point in writing it all down again. We shall describe here the relatively
minor changes needed, assuming that the reader has [14] in hand. We begin at the beginning
of §3 of [14].

Let κ be singular strong limit cardinal. Let Ω be a regular cardinal large enough that
K̃(κ+,Ω) has height at least κ+. We now adopt the terminology regarding stable weasels,
thick sets, and so forth given above, associated to τ = κ+ and our choice of Ω. We shall
show that K̃(κ+,Ω) computes κ+ correctly.

Fix a very soundness witness W0 for K̃(κ+,Ω)|κ+; that is, let W0 be such that S(W0)
is W0-thick, and κ+ ⊆ DefW0 . Suppose toward contradiction that (κ+)W0 < κ+. Set λ =
(κ+)W0 .
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Remark 5.1 The proof in [14, §3] delays the moment where one enters a proof by contra-
diction, and so could we, but we won’t.

If W0 is a mini-universe, or W0 is a collapsing weasel with cof(γW0)V > κ, set W = W0.
If W0 is a collapsing weasel, and cof(ηW0)V < κ, we say W0 is phalanx-unstable. In this

case, W0 is not suitable for the role of the weasel W in [14]. The reason is that although ηW0

is not measurable in W0, nevertheless the phalanxes which show up in the weak covering
proof may not be stable. Let us set

ν = cof(ηW0)V .

What we need for W is a weasel none of whose measurable cardinals below κ+ have V -
cofinality ν. We obtain W by linearly iterating W0 via normal measures: letting Wα be the

αth model of this iteration, we set

Wα+1 = Ult(Wα, U),

where U is the order zero measure of Wα on the least measurable cardinal µ of Wα such that
µ < κ+ and cof(µ)V = ν. If there is no such µ, the iteration is over. The critical points
in the iteration are increasing, so it is normal, and ends in ≤ κ+ steps. Let W be its final
model. Note that in this phalanx-unstable case

(1) W is a stable collapsing weasel, and cof(γW )V = ν,

(2) W has the hull property at all µ < κ+,

(3) for µ < κ+, W has the definability property at µ15 iff µ was not a critical point in the
iteration; in particular, W has the definability property at all µ such that cof(µ)V 6= ν,
and

(4) if µ < κ+ and cof(µ)V = ν, then W |= µ is not measurable.

This completes our definition of the weasel W . It is easy to see that in either case,
(κ+)W = (κ+)W0 . So we have (κ+)W < κ+.

Now let
π : N → VΩ+ω

be such that N is transitive, |N | < κ, ran(π) is cofinal in λ, everything of interest is in
ran(π), and N is closed under ω-sequences. We further demand that if W is collapsing, and
ν = cof(ηW )V < κ, then N is closed under ν sequences.

15This means that µ ∈ HS(W )(µ ∪ Γ), for all W -thick sets Γ.
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We have now reached the top of page 233 in our transcription of [14]. As there, we now
compare W with W̄ , and the main thing we have to show is that W̄ does not move in this
comparison. Here, we find it convenient to depart a bit from the way [14] is organized:
we shall organize our argument as an induction on the cardinals of W̄ , rather than as an
induction on the cardinals of the last model above W̄ in its comparison with W . Of course,
if W̄ does not move, these two models are the same.

So let
κα = αth infinite cardinal of W̄

enumerate the cardinals of W̄ . Let
π(κθ) = κ+.

Thus κκ̄ = κ̄, κκ̄+1 = λ̄, and κ̄+ 2 ≤ θ. We shall prove by induction on α:

Iα: There is a normal iteration tree on W whose last model agrees with W̄ below κα + 1.

Main Lemma 5.2 Iα holds, for all α ≤ θ + 1.

Remark 5.3 Iκ̄+1 is all we really need.

Proof of 5.2.

Claim 5.4 I0 holds, and if α ≤ θ is a limit ordinal such that Iβ holds for all β < α, then
Iα holds.

Proof. Let Tβ be a normal tree of minimal length witnessing Iβ. Then β < γ implies Tγ
extends Tβ. Let T be the union of the Tβ for β < γ, extended by adding the direct limit
along its unique cofinal wellfounded branch if this union has limit length. Let P be the
last model of T , so that P |κα = W̄ |κα. The tree witnessing Iα is T if P |κα is passive, and
otherwise it is T extended by using the extender from P with index κα. �

We now work towards showing Iα ⇒ Iα+1.

Claim 5.5 Assume α ≤ θ, Iα holds, and let T be the normal tree of minimal length on W
which witnesses Iα; then Φ(T )_〈W̄ , ω, κα, κα〉 is a stable phalanx.

Proof. We first check that Φ(T )_〈W̄ , ω, κα, κα〉 is a phalanx. By assumption, W̄ agrees
with the last model of T below κα + 1, and κα is a cardinal in W̄ . If ξ < lh(T ) − 1, then
lh(ETξ ) ≤ κα, and lh(ETξ ) is a cardinal in the last model of T , so lh(ETξ ) is a cardinal of W̄ ,
and W̄ agrees with MT

ξ below lh(ETξ ).
By 4.8, Φ(T ) is stable. Thus if Ψ = Φ(T )_〈W̄ , ω, κα, κα〉 is unstable, we must have some

ξ ≤ lh(T ) − 1 such that MΨ
ξ is a collapsing weasel, and for η = ηM

Ψ
ξ , (η+)M

T
ξ ≤ λΨ

ξ and
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W̄ |= η is measurable.16 But then ηW ≤ η < o(W̄ ) < κ (our singular cardinal), so we are
in the phalanx-unstable case in the definition of W . Letting ν = cof(ηW )V , we have that
iT0,ξ is continuous at points of cofinality ν, so that ν = cof(η). But also, π is continuous at
points of cofinality ν, so ν = cof(π(η)). But then π(η) is not measurable in W , while η is
measurable in W̄ , contradiction. �

Claim 5.6 Assume α ≤ θ, Iα holds, and let T be the normal tree of minimal length on W
which witnesses Iα. Suppose also that the phalanx Φ(T )_〈W̄ , ω, κα, κα〉 is iterable; then Iα+1

holds.

Proof. We compare Φ(T ) with Φ(T )_〈W̄ , ω, κα, κα〉. Note the two last models agree below
κα + 1, so all extenders used are at least that long. We think of the tree on Φ(T ) as a tree U
on W extending T . Let V be the tree on Φ(T )_〈W̄ , ω, κα, κα〉. Let N be the last model of U
and P the last model of V ; then PEN because W stably universal, and Φ(T )_〈W̄ , ω, κα, κα〉
is stable.

Claim. P is above W̄ in V , and the branch W̄ -to-P does not drop.

Proof. If W0 is not phalanx unstable, the proof is completely standard. But we must take a
little care with the phalanx unstable case.

Suppose P is above M = MT
ξ instead. By stable universality of W , we get that the

branches W -to-M and M -to-P do not drop, and that P = N . Let E be the first extender
used in M -to-P , and µ = crit(E), so that µ < κα. Using the fact that W has the hull
property everywhere, we see that P has the hull property at µ, and fails to have the hull
property at all cardinals ρ in the interval (µ, κα).

Suppose first (µ+)W̄ < κα. Then looking at the pattern of the hull property in N
determined by the branch W -to-N of U , we see there is an extender F with critical point
µ used in this branch. F is also applied to M in this branch of U . Letting i : M → P
and j : M → N be the embeddings given by V and U , we have ran(i) ∩ ran(j) is thick in
N = P . Standard arguments with the hull property at µ then show E is compatible with
F , contradiction.

Suppose then that (µ+)W̄ = κα. We claim that M has the definability property at
µ. This is well-known in the case that W0 is not phalanx unstable. Suppose instead that
ν = cof(γW ) < κ. In this case, W has the the hull property everywhere. This implies by a
well-known induction that M has the definability property at all points ρ ≥ sup({ν(ETδ ) |
δ + 1 <T ξ}) except those of the form i0,ξ(δ), where the definability property fails in W at
δ. Each such δ has cofinality ν, and since i0,ξ is then continuous at δ, i0,ξ(δ) has cofinality ν.
Now µ ≥ sup({ν(ETδ ) | δ + 1 <T ξ}) because E was applied to M and T is normal. Thus if

16At this point we are using that κα is a cardinal in the full W̄ .
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the definability property fails at µ in M , then cof(µ)M = ν. However, W̄ |= µ is measurable,
so cof(µ) 6= ν.

Since crit(E) = µ, P = N does not have the definability property at µ. This implies that
the first extender F used in the branch M -to-N of U has critical point µ. Again, the hull
property at µ in M yields E is compatible with F , contradiction. �

Thus P is above W̄ in V . By the universality of W , we get that W̄ -to-P does not drop,
and P EN . All critical points in W̄ -to-P are ≥ κα, so

W̄ |κα+1 E P EN.

Letting MT
γ be the last model of T , lh(ETξ ) > κα for all ξ ≥ γ, and thus

W̄ |κα+1 EMT
γ .

The tree which witnesses Iα+1 is then T ifMT
γ |κα+1 is passive, and the normal extension of

T via the extender of MT
γ with index κα+1 otherwise. �

The claim in the proof of 5.6 gives:

Corollary 5.7 Assume α ≤ θ, Iα holds, and let T be the normal tree of minimal length on
W which witnesses Iα. Suppose also that the phalanx Φ(T )_〈W̄ , ω, κα, κα〉 is iterable; then
there is a normal iteration tree U extending T , and an initial segment P of the last model
of U , and an embedding j : W̄ → P such that crit(j) ≥ κα.

So our proof of the Main Lemma 5.2 is done when we show:

Claim 5.8 Let T be the normal tree of minimal length on W which witnesses Iα; then the
phalanx Φ(T )_〈W̄ , ω, κα, κα〉 is iterable.

To prove this, it helps to re-organize Φ(T ), and in doing this, we shall rejoin the notation
established on page 233 of [14]. For β < α, set

η(β) = least ξ < lh(T )− 1 such that ν(ETξ ) > κβ,

= lh(T )− 1, if there is no such ξ,

λβ = κβ+1,

Pβ = MT
η(β)|γ, where γ is least s.t. ρω(MT

η(β)|γ) < λβ,

= MT
η(β), if there is no such γ,
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and

kβ = largest k ≤ ω such that λβ < ρk(Pβ).

Notice here that for β < α, MT
η(β) agrees with the last model of T , and hence with

W̄ , below λβ. (If η(β) < lh(T ) − 1, then lh(Eη(β)) is a cardinal of the last model of T
and lh(Eη(β)) ≤ κα, so λβ = κβ+1 ≤ Eη(β)), and we have the desired agreement. If η(β) =
lh(T ) − 1, then the fact that λβ ≤ κα gives the desired agreement.) Thus our definition of
Pβ makes sense, and Pβ agrees with W̄ below λβ. It is possible that λβ is active in Pβ, in
which case Pβ disagrees with W̄ at λβ, and λβ = o(Pβ).

Note also that for ξ + 1 ∈ [0, η(β)]T , we have ν(ETξ ) ≤ κβ. This easily yields

Claim 5.9 Let β < α; then either

(1) kβ < ω, ρkβ+1(Pβ) ≤ κβ < ρkβ(Pβ), and Pβ is κβ-sound, or

(2) kβ = ω, Pβ is a weasel such that S(Pβ) is Pβ-thick, Pβ has the hull property at all
µ ≥ κβ, and for all µ ≥ κβ, either Pβ has the definability property at µ, or W0 was
phalanx unstable, and cof(µ) = cof(ηW ).

Note that in a normal tree U on Φ(T )_〈W̄ , ω, κα, κα〉, if an extender E = EUη with
crit(E) < κα is used, then we have a β < α such that crit(E) = κβ, and η(β) is the U -
predecessor of η+1, andMU

η+1 = Ultkβ(Pβ, E). Thus normally iterating Φ(T )_〈W̄ , ω, κα, κα〉
is equivalent to normally iterating the phalanx Φα, where

Definition 5.10 For any ξ ≤ α, Φξ is the phalanx (〈(Pβ, kβ) | β ≤ ξ〉_〈W̄ , ω〉, 〈(λβ, λβ) |
β < ξ〉).

Our proof of 5.5 shows

Claim 5.11 For all ξ ≤ α, Φξ is stable.

We shall show by induction on ξ ≤ α:

(4)ξ Φξ is iterable.

(The numbering here corresponds to the numbering of inductive hypotheses in [14, p.
236].)

Simultaneously, we show the iterability of some phalanxes associated to Φξ. First, set for
β < α:

Rβ = Ultkβ(Pβ, Eπ � π(κβ)),
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and let
πβ : Pβ → Rβ

be the ultrapower map, and
Λβ = πβ(λβ) = sup(π“λβ).

Note that Rβ agrees with W below Λβ, since Pβ agrees with W̄ below λβ. It is possible
that some of the Rβ are protomice, but not premice.

We need

Claim 5.12 For all β < α, o(Rβ) ≤ Ω.

Proof. In the case that o(Pβ) < Ω, or Pβ is a mini-universe, this is easy. So suppose that
Pβ is a collapsing weasel. Let γ = γPβ be its largest cardinal. We are done if we show the
ultrapower map from Pβ to Rβ is continuous at γ. Assume not; then we have a finite set
a ⊆ π(κβ) and a function f : [µ]|a| → γ, where [µ]|a| is the space of (Eπ)a, such that f is not
bounded on any set of (Eπ)a measure one. But then

cof(γ) ≤ µ ≤ κ̄ < κ.

Set ν = cof(γ), and note
cof(γW )V = cof(γPβ)V = ν,

by 4.23. We are then in the phalanx-unstable case, so that N is closed under ν-sequences.
Because of this, (Eπ)a is ν-complete: if Xξ ∈ (Eπ)a for all ξ < ν, then a ∈

⋂
ξ<ν π(Xξ) =

π(
⋂
ξ<ν Xξ), so V |= π(

⋂
ξ<ν Xξ) 6= ∅, so N |=

⋂
ξ<ν Xξ 6= ∅.

But pick 〈µξ | ξ < ν〉 cofinal in γ, and for ξ < ν, let

Xξ = {u | f(u) > µξ}.

Clearly, each Xξ is in (Eπ)a, but the intersection is empty. �

Definition 5.13 For ξ ≤ α, let Ψξ be the phalanx (〈(Rβ, kβ) | β ≤ ξ〉_〈W,ω〉, 〈(Λβ,Λβ) |
β < ξ〉).

We need to modify the definitions to do with special phalanxes, definitions 2.4.5, 2.4.6,
and 2.4.7 of [14]. The reason is that in the phalanx-unstable case, the class parameter and
class projectum defined on p. 226 of [14] do not behave properly. What we have is

Claim 5.14 For any ξ ≤ α, Ψξ satisfies all clauses in the definition of very special phalanx
of protomice except those to do with the class parameter and projectum (i.e (iv) of 2.4.5 and
the first item in 2.4.6) from [14]. Moreover, Ψξ is stable.
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Proof. Stability is proved just as it was for Φξ. The rest is easy. �

The soundness properties of Ψξ replacing those to do with the class parameter and
projectum are just:

Claim 5.15 Let β < α; then either

(1) kβ < ω, ρkβ+1(Rβ) ≤ π(κβ) < ρkβ(Rβ), and Rβ is π(κβ)-sound, or

(2) kβ = ω, Rβ is a weasel such that S(Rβ) is Rβ-thick, Rβ has the hull property at all
µ ≥ π(κβ), and for all µ ≥ π(κβ), either Rβ has the definability property at µ, or W0

was phalanx unstable, and cof(µ) = cof(γW ).

This is easy to prove.
Along with (4)ξ, we show by induction

(5)ξ Ψξ is iterable, with respect to special iteration trees.

See [14, 2.4.6] for the definition of “special”. It demands one consequence of normality,
and it demands that when an extender is applied to Rβ, its critical point should be π(κβ).

Lemma 5.16 For any ξ ≤ α, (5)ξ ⇒ (4)ξ.

See [14, 3.17] for a proof.
The fact that the Rβ may not be premice complicates our argument. We persevere by

introducing premice Sβ which in some sense replace them, along with premice Qβ downstairs
replacing Pβ in parallel fashion. These are defined on page 234 of [14]. The construction
insures that Sβ agrees with Rβ, and hence with W , below Λβ. Let kβ = n(Pβ, π(κβ)).

Definition 5.17 For ξ ≤ α, let Ψ∗ξ = (〈(Sβ, kβ) | β ≤ ξ〉_〈W,ω〉, 〈(Λβ,Λβ) | β < ξ〉).

Again, we have

Claim 5.18 For any ξ ≤ α, Ψ∗ξ satisfies all clauses in the definition of very special phalanx
of premice except those to do with the class parameter and projectum (i.e (iv) of 2.4.5 and
the first item in 2.4.6) from [14]. Moreover, Ψ∗ξ is stable.

The soundness properties of the models in Ψ∗ξ are given by

Claim 5.19 Let β < α; then either

(1) kβ < ω, ρkβ+1(Sβ) ≤ π(κβ) < ρkβ(Rβ), and Sβ is π(κβ)-sound, or
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(2) kβ = ω, Sβ is a weasel such that S(Sβ) is Sβ-thick, and there is a finite set t of ordinals
such that

(a) Sβ has the t hull property at all µ ≥ π(κβ), and

(b) for all µ ≥ π(κβ), either Sβ has the t definability property at µ, or W0 was phalanx
unstable, and cof(µ) = cof(γW ).

See [14, 3.5, 3.6] for a proof.17 In that paper, the parameter t in part (2) is identified
using the definability property over Sβ. In the phalanx-unstable case, we are not able to
characterize t this way. However, this does not matter for our argument, as we will never
actually compare Ψ∗ξ , or any other phalanx having Sβ as a backup model, with another
phalanx.

It will be enough to prove

(6)ξ: The phalanx Ψ∗ξ is iterable.

Claim 5.20 For any ξ ≤ α, if Ψ∗ξ is iterable, then Ψξ is iterable.

This is lemma 3.18 in [14]. No changes in that proof are needed here.
To prove (6)ξ, we use

(2)β: (〈(W,ω), (Sβ, kβ)〉, (π(κβ), π(κβ))) is iterable.

Claim 5.21 Let ξ ≤ α, and suppose that (2)β holds, for all β < ξ; then (6)ξ holds.

This is lemma 3.19 of [14], and its proof does not change. It represents the fundamental
step in the inductive definition of K from [22].18

To prove (2)β for β < ξ we use

(3)β: The phalanx (〈(W̄ , ω), (Qβ, kβ)〉, (κβ, κβ)) is iterable.

Claim 5.22 For any β < α, (3)β implies (2)β.

This is lemma 3.13 of [14], and again, the proof does not change. The proof uses the count-
able completeness ofEπ to realize countable elementary submodels of (〈(W,ω), (Sβ, kβ)〉, (π(κβ), π(κβ)))
back in (〈(W̄ , ω), (Qβ, kβ)〉, (κβ, κβ)).

Finally, we close the circle with

17The parameter t witnessing (2) of 5.19 is the accumulation of the Dodd parameters of extenders used in
getting from Pβ to Qβ , lifted up by πβ .

18Comparing (〈(W,ω), (Sβ , kβ)〉, (π(κβ), π(κβ))) with W , we get jβ : Sβ → Nβ with crit(jβ) ≥ π(κβ) and
Nβ and initial segment of the last model of an iteration tree on W . One can then use the jβ to lift a tree on
Ψ∗
ξ to a tree on a W -generated phalanx.
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Claim 5.23 Assume (4)γ holds for all γ < β; then (3)β holds.

This is lemma 3.16 of [14]. No changes are needed. It is the fundamental step in the
inductive definition of K once more, but this time downstairs.

This completes our proof of the Main Lemma 5.2. �

We now complete the proof of 3.1. Fix α = κ̄+ 1, and for β < α, let Pβ, Rβ, Qβ, Sβ, etc.,
be defined as above in our proof that Φα is iterable. We have by (2)κ̄ that (simplifying our
phalanx notation for readability) (W,Sκ̄, κ) is iterable. We also have that Sκ̄ agrees with W
below Λκ̄. Let us compare (W,Sκ̄, κ) with W . As in the proof of 5.21, we get an iteration
tree U on W , and and embedding j : Sκ̄ → H, where H is an initial segment of the last
model of U , and crit(j) ≥ κ.

Note that Sκ̄ agrees with W below Λκ̄ < (κ+)W . Thus

P (κ)Sκ̄ = P (κ)W = P (κ)H .

Case 1. Sκ̄ is not a weasel.

Then by 5.19, Sκ̄ is κ-sound and projects to κ. This implies by standard arguments that
Sκ̄ ∈ W , contrary to P (κ)W ⊆ Sκ̄.

Case 2. Sκ̄ is a weasel.

Then Qκ̄ is a weasel, and from its construction, we have an iteration map

i : W → Qκ̄.

Moreover, if crit(i) < crit(π) and W0 was phalanx-unstable, then cof(crit(i)) 6= cof(ηW ).
But also

Sκ̄ = Ult(Qκ̄, Eπ � κ),

and letting k : Qκ̄ → Sκ̄ be the canonical embedding, crit(k) = crit(π). Letting

µ = crit(k ◦ i),

it follows that µ ≤ crit(π), and in the phalanx-unstable case, cof(µ) 6= cof(ηW ).
Since Sκ̄ is a weasel, and S(Sκ̄) is Sκ̄-thick, we see that H is the last model of U , and

there was no dropping in U from W to H. Further, ran(j ◦ k ◦ i) is H-thick, so H does not
have the definability property at µ. Letting H =MU

γ , and using that W has the definability
property at µ, we get

crit(iU0,γ) < κ.

By 5.19, there is a finite set t of ordinals such that Sκ̄ has the t hull property at κ. Since
crit(j) ≥ κ, this implies that H has the j(t) hull property at κ. We can now pull this back
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to the first model after W on the branch [0, γ]U : letting η + 1 be least in [0, γ]U , we have a
finite set s of ordinals such that MU

η has the s hull property at κ. (See [14, p. 239], claim
1.)

Let E = EUη , so that crit(E) < κ. Let a ⊆ ν(E) be such that s = [a, f ]E for some f ∈ W .
Now let

σ : Ult(W,E � (κ+ 1) ∪ {a})→ Ult(W,E)

be the factor map, so that crit(σ) > κ and s ∈ ran(σ). We have P (κ)W ⊆ P (κ)H ⊆ P (κ)M
U
η ,

and since ran(σ) is MU
η -thick, we get that

P (κ) ∩W = P (κ) ∩ Ult(W,E � (κ+ 1) ∪ {a}).

But now notice that E � (κ + 1) ∪ {a} is coded by some C ⊆ κ in MU
η . By the agreement

properties of iteration trees, C ∈ W . This implies P (κ) ∩ W has cardinality κ in W , a
contradiction.

This finishes the proof of the weak covering theorem. �

6 Proof of the main theorem

We can now prove Theorem 1.1. Suppose for the rest of this section that there is no proper
class model with a Woodin cardinal. We obtain the class K witnessing the truth of this
theorem by piecing together the approriate K̃(τ,Ω). To do that, we use

Lemma 6.1 Let µ be a singular strong limit cardinal, τ = cof(µ), and Ω = µ+; then
K̃(τ,Ω)|τ satisfies the local inductive definition of K given in [22, §6].

Proof. By Theorem 3.1 and the proof of Proposition 4.4, there is a stable collapsing weasel
W such that µ is the largest cardinal of W . By lemma 4.31, we can choose W so that
also τ ⊆ DefW , and hence W |τ = K̃(τ,Ω)|τ . So we must see that W |τ satisfies the local
inductive definition. It is easy to see that the proof in [22, §6] that DefK

c

satisfies this
inductive definition works in our situation, provided we can show:

Claim. Let α be a cardinal of W such that α ≤ τ , and suppose that the phalanx (W,M,α)
is iterable, where |M | < Ω and ρk(M) ≥ α. Then there is an iteration tree T on W with
last model P , and such that all extenders used in T have length at least α, and a fully
elementary

π : M → P ,
such that π � α = identity.

Proof. To reconcile our notation with that of definition 4.5: the phalanx we refer to here is
〈(W,ω), (M,k)〉 paired with 〈(α, α)〉.
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We prove the claim as usual, by comparing Φ = (W,M,α) with W . The key point is
that both are stable! In the case of W , this is simply by construction. In the case of Φ, we
need to check clause (2) of definition 4.7. But ηW ≥ τ , as µ is the largest cardinal of W ,
and its V -cofinality τ is ≤ its cofinality inside W . Thus clause (2) is vacuously true.

Since τ ⊆ DefW , standard arguments show the comparison ends above M on the Φ-side,
and that this gives us the desired π. �

This proves 6.1. �

Corollary 6.2 Let µ and ν be singular strong limit cardinals, with V -cofinalities τ and σ,
where τ ≤ σ; then K̃(τ, µ+)|τ = K̃(σ, ν+)|τ .

Proof. This follows from 6.1, noting that the inductive definition in question is independent
of τ and µ. �

This leads to

Definition 6.3 K is the unique proper class premouse W such that for any singular strong
limit cardinal µ, W | cof(µ) = K̃(cof(µ), µ+)| cof(µ).

What is left in the proof of Theorem 1.1 is already present in the literature.
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