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A finitely additive measure on a field F of subsets of some set X
is a function

µ : F → [0,∞]

such that

1. µ(∅) = 0,

2. µ(A1 ∪ · · · ∪ An) = µ(A1) + · · ·+ µ(An) for every finite
sequence A1, ...,An of pairwise disjoint elements of F .

µ is σ-additive if

µ(
∞⋃
n=1

An) =
∞∑
n=1

µ(An)

for every sequence (An) of elements of F .



General Massproblem:

Are there measures on a given field F of subsets of X that are

invariant relative a given group action on X , or are

strictly I-positive relative to a given ideal I ⊆ F?

Remark
Note that the second version of the problems is really a problem
about the existence of strictly positive measures on
Boolean algebras B where in order to avoid trivialities we want
finite measures, or more precisely, we want measures

µ : B→ [0, 1].

such that µ(1) = 1.



Tarski’s theorem

Theorem (Tarski, 1938)

Suppose a group G acts on a set X . Then the following are
equivalent for a subset Y of X :

1. There is a finitely additive G-invariant measure
µ : P(X )→ [0,∞] such that µ(Y ) = 1.

2. There is no finite sequence A1, ...,Am,B1, ...,Bn of pairwise
disjoint subsets of Y and a sequence g1, ..., gm, h1, .., gn of
elements of G such that

m⋃
1

gi (Ai ) =
n⋃
1

hj(Bj) = Y .



Souslin’s Massproblem

Problem (Souslin, 1920)

The following are equivalent for every Boolean algebra B generated
by a chain (interval algebra):

1. B supports a finitely additive strictly positive measure.

2. every family of pairwise disjoint elements of B is countable
(the countable chain condition).

Remark
Souslin originally asked whether every ordered continuum satisfying
the countable chain condition is separable, or equivalently,
matrizable.



Von Neumann’s Massproblem

Problem (Von Neumann, 1937)

Suppose that a σ-complete Boolean algebra B has the following
properties:

1. B satisfies the countable chain condition,

2. B satisfies the weak countable distributive law, i.e.,∧
m

∨
n

amn =
∨
f

∧
m

amf (m)

for sequences (amn) such that amn ≤ amn′ when n ≤ n′.

Does B support a strictly positive σ-additive measure?



Tarski’s Massproblem

Problem (Tarski, 1939, 1945, 1948)

Suppose that a Boolean algebra B has one of the following
properties

1. B can be decomposed into a sequence (Sn) of subsets such
that no Sn contain more than n pairwise disjoint elements
(σ-bounded chain condition).

2. B can be decomposed into a sequence (Sn) of subsets none of
which includes an infinite subset of pairwise disjoint elements
(σ-finite chain condition).

3. B satisfies the countable chain condition.

Does B support a strictly positive finitely additive measure?



Analysis of Tarski’s Massproblem

A functional on B is simply a function

f : B→ [0,∞)

such that f (0) = 0.
A functiional f : B→ [0,∞) is exhaustive whenever

lim
n→∞

f (an) = 0

for every sequence (am) of pairwise disjoint elements of B.

Example

Outher measures are exhaustive

Proposition

A Boolean algebra B satisfies σ-finite chain condition if and only
of it supports a strictly positive exhaustive functional.



A functiional
f : B→ [0,∞)

is uniformly exhaustive whenever for every ε > 0 there is integer
k(ε) such that

min
n<k(ε)

f (an) < ε

for every sequence (an)
k(ε)
n=1 of pairwise disjoint elements of B.

Example

Inner measures are uniformly exhaustive.

Proposition

A Boolean algebra B satisfies σ-bounded chain condition if and
only of it supports a strictly positive uniformly exhaustive
functional.



Analysis of Von Neumann’s Massproblem

A submeasure on a Boolean algebra B is function

ν : B→ [0, 1]

such that

1. ν(0) = 0 and ν(1) = 1,

2. ν(a) ≤ ν(b) whenever a ≤ b,

3. ν(a ∨ b) ≤ ν(a) + ν(b).

ν is strictly positive on B if

ν(a) > 0 for a 6= 0.

ν is continuous whenever

an ↓ 0 implies ν(an) ↓ 0.



Topology of sequential convergence

The topology of sequential convergence on a σ-complete
Boolean algebra B is the largest topology on B in which
algebraically convergent sequences are convergent, where

an → a iff a =
∨
m

∧
n≥m

an =
∧
m

∨
n≥m

an.

For a given subset A of B, let

A = {a ∈ B : (∃(an) ⊆ A) an → a}

Proposition (Maharam, 1947)

Suppose B is a complete Boolean algebra satisfying the countable
chain condition and the weak countable distributive law.
Then A 7→ A is a closure operator giving the topology of sequential
convergence on B.



Theorem (Balcar, Glowczynski, Jech, 1998)

The following conditions are equivalent for a complete Boolean
algebra B satisfying the countable chain condition:

1. The topology of sequential convergence on B is Hausdorff.

2. The topology of sequential convergence on B is metrizable.

Theorem (Maharam, 1947)

The following are equivalent for a σ-complete Boolean algebra B :

1. B supports a strictly positive continuous submeasure.

2. The topology of sequential convergence on B is metrizable.



Two Massproblems of Maharam

Problem (Maharam, 1947)

Suppose that a σ-complete Boolean algebra B has the following
properties:

1. B satisfies the countable chain condition,

2. B satisfies the weak countable distributive law.

Does B support a strictly positive continuous submeasure?

Problem (Maharam, 1947)

If a σ-complete Boolean algebra supports a strictly positive
continuous submeasure does it also support a strictly positive
σ-additive measure?

Remark
The second problem reappeared in some areas of functional
analysis as the Control Measure Problem.



The Control Measure Problem
A function ν : B→ [0, 1] is exhaustive if for every ε > 0 the set

{a ∈ B : ν(a) ≥ ε}

contains no infinite sequence (an) such that am ∧ an = 0 for
m 6= n.

Example

Continuous submeasures are exhaustive

A function ν : B→ [0, 1] is uniformly exhaustive if for every
ε > 0 there is k(ε) ∈ N such that the set

{a ∈ B : ν(a) ≥ ε}

contains no sequence (an)
k(ε)
n=1 such that am ∧ an = 0 for m 6= n.

Example

Finitely additive measures are uniformly exhaustive



A submeasure ν1 is absolutely continuous relative to a
submeasure ν2 whenever

(∀ε > 0)(∃δ > 0)(∀a ∈ B)[ν2(a) < δ → ν1(a) < ε].

Problem
Is every exhaustive submeasure absolutely continuous relative to
a finitely additive measure?

Theorem (Kalton-Roberts, 1983)

Every uniformly exhaustive submeasure is absolutely continuous
relative to a finitely additive measure.

Problem
Is every exhaustive submeasure uniformly exhaustive?



Let X be a metrizable topological vector space and d be a
translation invariant metric on X that defines the topology.

A vector messure on a Boolean Algebra B is a map

τ : B→ X

such that

1. τ(0) = 0, and

2. τ(a ∨ b) = τ(a) + τ(b) whenever a ∧ b = 0.

We say that a vector measure τ : B→ X is exhaustive whenever

lim
n→∞

τ(an) = 0

for all sequences (an) of pairwise disjoint elements of B.
A finitely additive measure µ : B→ [0, 1] is a control measure of
a vector measure τ : B→ X if

(∀ε > 0)(∃δ > 0)(∀a ∈ B)[µ(a) < δ → d(0, τ(a)) < ε].



Problem
Is every vector measure on a given Boolean algebra B controlled by
a finitely additive measure on B?

Theorem (Talagrand, 2006)

There is an exhaustive measure on the countable free Boolean
algebra which is not uniformly exhaustive.

Corollary (Talagrand, 2006)

There is a σ-complete Boolean algebra which supports a strictly
positive continuous submeasure but it does not support any strictly
positive measure.



The Horn-Tarski Problem

Problem (Horn and Tarski, 1948)

Are the following two conditions equivalent for a given Boolean
algebra B?

1. B supports a strictly positive exhaustive function
ν : B→ [0, 1].

2. B supports a strictly positive uniformly exhaustive function
ν : B→ [0, 1].

Equivalently, are the following conditions equivalent for a given
Boolean algebra B?

1. B satisfies the σ-finite chain condition.

2. B satisfies the σ-bounded chain condition.



Kelley’s criterion and Gaifman’s example

Theorem (Kelley, 1959)

A Boolean algebra supports a strictly positive finitely additive
measure if and only if it can be decomposed into a sequence of
subsets having positive intersection numbers.

The intersection number of a subset S of B \ {0} is defined as

I (S) = inf{ |X |
|Y |

: X ,Y ∈ [S ]<ω,X ⊆ Y ,
∧

X 6= 0}.

Theorem (Gaifman, 1963)

There is a Boolean algebra B satisfying the σ-bounded chain
condition which does not support a strictly positive finitely
additive measure.



An algebraic characterization

Theorem (T., 2004)

A σ-complete Boolean algebra B supports a strictly positive
continuous submesure if and only if,

1. B satisfies the σ-finite chain condition, and

2. B satisfies the weak countable distributive law.

Remark
The proof shows that we can weaken the σ-finite chain condition
to the effectively provable countable chain condition. We shall
explore this idea below.



Borel theory

The field of Borel subsets of a topological space X is the smallest
σ-field of subsets of X that contains all open subsets of X .

A base of a Boolean algebra B is any set P ⊆ B+ = B \ {0} such
that for every b ∈ B+ we can find a ∈ P such that a ≤ b.

A base P is Borel if it can be represented as a Borel structure on
some of the standard spaces such as R, [0, 1], {0, 1}N, NN, etc.

Theorem (T., 2004)

A σ-complete Boolean algebra B with a Borel base supports a
strictly positive continuous submeasure if and only if

1. B satisfies the countable chain condition, and

2. B satisfies the weak countable distributive law.



The functor T

Fix a topological space X . For D ⊆ X , let

D(1) = the set of non-isolated points of D.

Let T(X ) be the collection of all partial functions

p : X → 2

such that:

1. |dom(p)| ≤ ℵ0,
2. |p−1(1)| < ℵ0,
3. (dom(p))(1) ⊆ p−1(1).

The ordering on T(X ) is the reverse inclusion.

T(X ) is a base of a complete Boolean algebra denoted by B(X ).



Theorem (T., 1991)

1. If X is a metric space T(X ) satisfies the countable chain
condition.

2. If X is a Polish space, T(X ) is a Borel partially ordered set.

3. If X is a Polish space with no isolated points, T(X ) fails to
satisfy the σ-finite chain condition.

4. B(X ) does not support a strictly positive finitely additive
measure unless X is countable.



Theorem (Balcal, Pazák, Thümmel, 2012)

1. X and Y are homeomorphic iff T(X ) and T(Y ) are
isomorphic.

2. B([0, 1]) and B((0, 1)) are isomorphic.

3. B([0, 1]) is homogeneous.

Problem
Are B([0, 1]) and B([0, 1]× [0, 1]) isomorphic?



Two solutions to the Horn-Tarski problem

Theorem (Thümmel, 2012)

There is a first countable topological space X such that

1. T(X ) satisfies the σ-finite chain condition, but

2. T(X ) does not satisfy the σ-bounded chain condition.

Theorem (T., 2013)

There is a Borel first contable topological space X such that

1. T(X ) is a Borel partially ordered set,

2. T(X ) satisfies the σ-finite chain condition, but

3. T(X ) does not satisfy the σ-bounded chain condition.



Control Submeasure Problem

Problem
Suppose that a complete Boolean algebra B supports a strictly
positive continuous submeasure.
Does B satisfy the σ-bounded chain condition?

Equivalently, suppose that a Boolean algebra B supports a strictly
positive exhaustive submeasure

ν : B→ [0, 1].

Does B necessarily support a strictly positive
uniformly exhaustive functional

f : B→ [0, 1]?



P-Ideal Dichotomy and the Massproblem

Definition
An ideal I of countable subsets of some set S is a P-ideal if for
every sequence (an) ⊆ I there is b ∈ I such that

an \ b is finite for all n.

Definition
The P-ideal dichotomy is the statement that for every P-ideal I
of countable subsets of some index-set S , either

1. there is uncountable set T ⊆ S such that I includes all
countable subsets of T , or

2. S can be decomposed into a sequence (Sn) of subsets such
that no Sn contains an infinite subset belonging to I.



Theorem (T., 1985, 2000)

The P-Ideal Dichotomy is consistent relative to the consistency of
a supercompact cardinal.
Moreover, PID is consistent with GCH.

Theorem (T., 2000)

PID imples b ≤ ℵ2.

Theorem (T., 2000)

PID implies that �κ fails for all cardinals κ ≥ ω1.

Theorem (Viale 2008)

PID implies the Singular Cardinals Hypothesis.

Problem
Does PID imply 2ℵ0 ≤ ℵ2?



P-ideal of converging sequences

For a σ-complete Boolean algebra B, let

IB = {(an) ⊆ B \ {0} : an → 0}.

Then

1. IB is a P-ideal iff B satisfies the weak distributive law.

2. If B satisfies the countable chain condition then the
first alternative of PID is false, i.e., there is no uncountable
T ⊆ B such that IB includes all countable subsets of T .



Theorem (Maharam 1947; Balcar, Jech, Pazák, 2003)

The following conditions are equivalent for a complete Boolean
algebra B :

1. B supports a strictly positive continuous submeasure.

2. The topology of sequential convergence on B is metrizable.

3. 0 is a Gδ-point relative the topology of sequential
convergence on B.

Theorem (Balcar, Jech, Pazák, 2003)

Assume PID. A σ-complete Boolean algebra B supports a strictly
positive continuous submeasure if and only if

1. B satisfies the countable chain condition, and

2. B satisfies the weak countable distributive law.


