Measurability Problems for Boolean Algebras

Stevo Todorcevic

Berkeley, March 31, 2014

Outline

- 1. Problems about the existence of measure
- 2. Quests for algebraic characterizations
- 3. The weak law of distributivity
- 4. Exhaustivity versus uniform exhaustivity
- 5. Maharam's analysis: continuous submeasures
- 6. Horn-Tarski analysis: exhaustive functionals
- 7. Kelley's condition and Gaifman's example
- 8. Borel examples: T-orderings
- 9. Kalton-Roberts theorem and Talagrand's example
- 10. Horn-Tarski problem

A **finitely additive measure** on a field \mathcal{F} of subsets of some set X is a function

$$\mu: \mathcal{F} \to [0, \infty]$$

such that

- 1. $\mu(\emptyset) = 0$,
- 2. $\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n)$ for every finite sequence $A_1, ..., A_n$ of pairwise disjoint elements of \mathcal{F} .

 μ is σ -additive if

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$$

for every sequence (A_n) of elements of \mathcal{F} .

General Massproblem:

Are there measures on a given field \mathcal{F} of subsets of X that are **invariant** relative a given group action on X, or are **strictly** \mathcal{I} -**positive** relative to a given ideal $\mathcal{I} \subseteq \mathcal{F}$?

Remark

Note that the second version of the problems is really a problem about the existence of **strictly positive** measures on **Boolean algebras** $\mathbb B$ where in order to avoid trivialities we want **finite measures**, or more precisely, we want measures

$$\mu: \mathbb{B} \to [0,1].$$

such that $\mu(1) = 1$.

Tarski's theorem

Theorem (Tarski, 1938)

Suppose a group G acts on a set X. Then the following are equivalent for a subset Y of X:

- 1. There is a finitely additive G-invariant measure $\mu: \mathcal{P}(X) \to [0, \infty]$ such that $\mu(Y) = 1$.
- 2. There is no finite sequence $A_1, ..., A_m, B_1, ..., B_n$ of pairwise disjoint subsets of Y and a sequence $g_1, ..., g_m, h_1, ..., g_n$ of elements of G such that

$$\bigcup_{1}^{m} g_{i}(A_{i}) = \bigcup_{1}^{n} h_{j}(B_{j}) = Y.$$

Souslin's Massproblem

Problem (Souslin, 1920)

The following are equivalent for every Boolean algebra \mathbb{B} generated by a chain (interval algebra):

- 1. \mathbb{B} supports a finitely additive strictly positive measure.
- 2. every family of pairwise disjoint elements of \mathbb{B} is countable (the countable chain condition).

Remark

Souslin originally asked whether every ordered continuum satisfying the **countable chain condition** is **separable**, or equivalently, **matrizable**.

Von Neumann's Massproblem

Problem (Von Neumann, 1937)

Suppose that a σ -complete Boolean algebra $\mathbb B$ has the following properties:

- 1. B satisfies the countable chain condition,
- 2. B satisfies the weak countable distributive law, i.e.,

$$\bigwedge_{m} \bigvee_{n} a_{mn} = \bigvee_{f} \bigwedge_{m} a_{mf(m)}$$

for sequences (a_{mn}) such that $a_{mn} \leq a_{mn'}$ when $n \leq n'$.

Does \mathbb{B} support a strictly positive σ -additive measure?

Tarski's Massproblem

Problem (Tarski, 1939, 1945, 1948)

Suppose that a Boolean algebra $\ensuremath{\mathbb{B}}$ has one of the following properties

- 1. \mathbb{B} can be decomposed into a sequence (S_n) of subsets such that no S_n contain more than n pairwise disjoint elements $(\sigma$ -bounded chain condition).
- 2. \mathbb{B} can be decomposed into a sequence (S_n) of subsets none of which includes an infinite subset of pairwise disjoint elements $(\sigma$ -finite chain condition).
- 3. B satisfies the countable chain condition.

Does B support a strictly positive finitely additive measure?

Analysis of Tarski's Massproblem

A **functional** on \mathbb{B} is simply a function

$$f: \mathbb{B} \to [0, \infty)$$

such that f(0) = 0.

A functional $f: \mathbb{B} \to [0, \infty)$ is **exhaustive** whenever

$$\lim_{n\to\infty}f(a_n)=0$$

for every sequence (a_m) of pairwise disjoint elements of \mathbb{B} .

Example

Outher measures are exhaustive

Proposition

A Boolean algebra $\mathbb B$ satisfies σ -finite chain condition if and only of it supports a strictly positive exhaustive functional.

A functiional

$$f:\mathbb{B}\to [0,\infty)$$

is **uniformly exhaustive** whenever for every $\varepsilon>0$ there is integer $k(\varepsilon)$ such that

$$\min_{n < k(\varepsilon)} f(a_n) < \varepsilon$$

for every sequence $(a_n)_{n=1}^{k(\varepsilon)}$ of pairwise disjoint elements of \mathbb{B} .

Example

Inner measures are uniformly exhaustive.

Proposition

A Boolean algebra \mathbb{B} satisfies σ -bounded chain condition if and only of it supports a strictly positive uniformly exhaustive functional.

Analysis of Von Neumann's Massproblem

A **submeasure** on a Boolean algebra ${\mathbb B}$ is function

$$\nu: \mathbb{B} \to [0,1]$$

such that

- 1. $\nu(0) = 0$ and $\nu(1) = 1$,
- 2. $\nu(a) \leq \nu(b)$ whenever $a \leq b$,
- 3. $\nu(a \lor b) \le \nu(a) + \nu(b)$.

 ν is **strictly positive** on $\mathbb B$ if

$$\nu(a) > 0$$
 for $a \neq 0$.

 ν is **continuous** whenever

$$a_n \downarrow 0$$
 implies $\nu(a_n) \downarrow 0$.

Topology of sequential convergence

The topology of sequential convergence on a σ -complete Boolean algebra $\mathbb B$ is the largest topology on $\mathbb B$ in which algebraically convergent sequences are convergent, where

$$a_n \to a \text{ iff } a = \bigvee_m \bigwedge_{n \ge m} a_n = \bigwedge_m \bigvee_{n \ge m} a_n.$$

For a given subset A of \mathbb{B} , let

$$\overline{A} = \{ a \in \mathbb{B} : (\exists (a_n) \subseteq A) \ a_n \to a \}$$

Proposition (Maharam, 1947)

Suppose $\mathbb B$ is a complete Boolean algebra satisfying the **countable** chain condition and the weak countable distributive law. Then $A \mapsto \overline{A}$ is a closure operator giving the topology of sequential convergence on $\mathbb B$.

Theorem (Balcar, Glowczynski, Jech, 1998)

The following conditions are equivalent for a complete Boolean algebra \mathbb{B} satisfying the countable chain condition:

- 1. The topology of sequential convergence on \mathbb{B} is **Hausdorff**.
- 2. The topology of sequential convergence on \mathbb{B} is **metrizable**.

Theorem (Maharam, 1947)

The following are equivalent for a σ -complete Boolean algebra $\mathbb B$:

- 1. \mathbb{B} supports a strictly positive continuous submeasure.
- 2. The topology of sequential convergence on \mathbb{B} is **metrizable**.

Two Massproblems of Maharam

Problem (Maharam, 1947)

Suppose that a σ -complete Boolean algebra $\mathbb B$ has the following properties:

- 1. B satisfies the countable chain condition,
- 2. B satisfies the weak countable distributive law.

Does \mathbb{B} support a strictly positive continuous submeasure?

Problem (Maharam, 1947)

If a σ -complete Boolean algebra supports a strictly positive continuous submeasure does it also support a strictly positive σ -additive measure?

Remark

The second problem reappeared in some areas of functional analysis as the **Control Measure Problem**.

The Control Measure Problem

A function $\nu:\mathbb{B} \to [0,1]$ is **exhaustive** if for every $\varepsilon>0$ the set

$$\{a \in \mathbb{B} : \nu(a) \ge \varepsilon\}$$

contains no **infinite** sequence (a_n) such that $a_m \wedge a_n = 0$ for $m \neq n$.

Example

Continuous submeasures are exhaustive

A function $\nu:\mathbb{B}\to [0,1]$ is **uniformly exhaustive** if for every $\varepsilon>0$ there is $k(\varepsilon)\in\mathbb{N}$ such that the set

$$\{a \in \mathbb{B} : \nu(a) \ge \varepsilon\}$$

contains no sequence $(a_n)_{n=1}^{k(\varepsilon)}$ such that $a_m \wedge a_n = 0$ for $m \neq n$.

Example

Finitely additive measures are uniformly exhaustive

A submeasure ν_1 is **absolutely continuous** relative to a submeasure ν_2 whenever

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall a \in \mathbb{B})[\nu_2(a) < \delta \to \nu_1(a) < \varepsilon].$$

Problem

Is every **exhaustive submeasure** *absolutely continuous relative to a* **finitely additive measure**?

Theorem (Kalton-Roberts, 1983)

Every uniformly exhaustive submeasure is absolutely continuous relative to a finitely additive measure.

Problem

Is every exhaustive submeasure uniformly exhaustive?

Let X be a **metrizable topological vector space** and d be a translation invariant metric on X that defines the topology.

A **vector messure** on a Boolean Algebra $\mathbb B$ is a map

$$\tau: \mathbb{B} \to X$$

such that

- 1. $\tau(0) = 0$, and
- 2. $\tau(a \lor b) = \tau(a) + \tau(b)$ whenever $a \land b = 0$.

We say that a vector measure $\tau : \mathbb{B} \to X$ is **exhaustive** whenever

$$\lim_{n\to\infty}\tau(a_n)=0$$

for all sequences (a_n) of pairwise disjoint elements of \mathbb{B} . A finitely additive measure $\mu: \mathbb{B} \to [0,1]$ is a **control measure** of a vector measure $\tau: \mathbb{B} \to X$ if

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall a \in \mathbb{B})[\mu(a) < \delta \rightarrow d(0, \tau(a)) < \varepsilon].$$

Problem

Is every vector measure on a given Boolean algebra $\mathbb B$ controlled by a finitely additive measure on $\mathbb B$?

Theorem (Talagrand, 2006)

There is an exhaustive measure on the countable free Boolean algebra which is not uniformly exhaustive.

Corollary (Talagrand, 2006)

There is a σ -complete Boolean algebra which supports a strictly positive continuous submeasure but it does not support any strictly positive measure.

The Horn-Tarski Problem

Problem (Horn and Tarski, 1948)

Are the following two conditions equivalent for a given Boolean algebra \mathcal{B} ?

- 1. \mathbb{B} supports a strictly positive **exhaustive** function $\nu : \mathbb{B} \to [0,1]$.
- 2. \mathbb{B} supports a strictly positive uniformly exhaustive function $\nu: \mathbb{B} \to [0,1]$.

Equivalently, are the following conditions equivalent for a given Boolean algebra \mathcal{B} ?

- 1. \mathbb{B} satisfies the σ -finite chain condition.
- 2. \mathbb{B} satisfies the σ -bounded chain condition.

Kelley's criterion and Gaifman's example

Theorem (Kelley, 1959)

A Boolean algebra supports a strictly positive finitely additive measure if and only if it can be decomposed into a sequence of subsets having **positive intersection numbers**.

The **intersection number** of a subset S of $\mathbb{B} \setminus \{0\}$ is defined as

$$I(S) = \inf\{\frac{|X|}{|Y|} : X, Y \in [S]^{<\omega}, X \subseteq Y, \bigwedge X \neq 0\}.$$

Theorem (Gaifman, 1963)

There is a Boolean algebra \mathbb{B} satisfying the σ -bounded chain condition which does not support a strictly positive finitely additive measure.

An algebraic characterization

Theorem (T., 2004)

A σ -complete Boolean algebra $\mathbb B$ supports a strictly positive continuous submesure if and only if,

- 1. \mathbb{B} satisfies the σ -finite chain condition, and
- 2. B satisfies the weak countable distributive law.

Remark

The proof shows that we can weaken the σ -finite chain condition to the effectively provable countable chain condition. We shall explore this idea below.

Borel theory

The field of **Borel subsets** of a topological space X is the smallest σ -field of subsets of X that contains all open subsets of X.

A base of a Boolean algebra \mathbb{B} is any set $\mathbb{P} \subseteq \mathbb{B}^+ = \mathbb{B} \setminus \{0\}$ such that for every $b \in \mathbb{B}^+$ we can find $a \in \mathbb{P}$ such that $a \leq b$.

A base $\mathbb P$ is **Borel** if it can be represented as a **Borel structure** on some of the standard spaces such as $\mathbb R$, [0,1], $\{0,1\}^\mathbb N$, $\mathbb N^\mathbb N$, etc.

Theorem (T., 2004)

A σ -complete Boolean algebra $\mathbb B$ with a Borel base supports a strictly positive **continuous submeasure** if and only if

- 1. B satisfies the countable chain condition, and
- 2. B satisfies the weak countable distributive law.

The functor \mathbb{T}

Fix a topological space X. For $D \subseteq X$, let

 $D^{(1)}$ = the set of non-isolated points of D.

Let $\mathbb{T}(X)$ be the collection of all partial functions

$$p: X \rightarrow 2$$

such that:

- 1. $|dom(p)| \leq \aleph_0$,
- 2. $|p^{-1}(1)| < \aleph_0$,
- 3. $(dom(p))^{(1)} \subseteq p^{-1}(1)$.

The ordering on $\mathbb{T}(X)$ is the reverse inclusion.

 $\mathbb{T}(X)$ is a base of a complete Boolean algebra denoted by $\mathbb{B}(X)$.

Theorem (T., 1991)

- 1. If X is a metric space $\mathbb{T}(X)$ satisfies the countable chain condition.
- 2. If X is a Polish space, $\mathbb{T}(X)$ is a Borel partially ordered set.
- 3. If X is a Polish space with no isolated points, $\mathbb{T}(X)$ fails to satisfy the σ -finite chain condition.
- 4. $\mathbb{B}(X)$ does not support a strictly positive finitely additive measure unless X is countable.

Theorem (Balcal, Pazák, Thümmel, 2012)

- 1. X and Y are homeomorphic iff $\mathbb{T}(X)$ and $\mathbb{T}(Y)$ are isomorphic.
- 2. $\mathbb{B}([0,1])$ and $\mathbb{B}((0,1))$ are isomorphic.
- 3. $\mathbb{B}([0,1])$ is homogeneous.

Problem

Are $\mathbb{B}([0,1])$ and $\mathbb{B}([0,1]\times[0,1])$ isomorphic?

Two solutions to the Horn-Tarski problem

Theorem (Thümmel, 2012)

There is a first countable topological space X such that

- 1. $\mathbb{T}(X)$ satisfies the σ -finite chain condition, but
- 2. $\mathbb{T}(X)$ does not satisfy the σ -bounded chain condition.

Theorem (T., 2013)

There is a **Borel** first contable topological space X such that

- 1. $\mathbb{T}(X)$ is a Borel partially ordered set,
- 2. $\mathbb{T}(X)$ satisfies the σ -finite chain condition, but
- 3. $\mathbb{T}(X)$ does not satisfy the σ -bounded chain condition.

Control Submeasure Problem

Problem

Suppose that a complete Boolean algebra \mathbb{B} supports a strictly positive **continuous submeasure**.

Does \mathbb{B} *satisfy the* σ **-bounded chain condition**?

Equivalently, suppose that a Boolean algebra $\mathbb B$ supports a strictly positive **exhaustive submeasure**

$$\nu: \mathbb{B} \to [0,1].$$

Does $\mathbb B$ necessarily support a strictly positive uniformly exhaustive functional

$$f: \mathbb{B} \to [0,1]$$
?

P-Ideal Dichotomy and the Massproblem

Definition

An ideal \mathcal{I} of countable subsets of some set S is a **P-ideal** if for every sequence $(a_n) \subseteq \mathcal{I}$ there is $b \in \mathcal{I}$ such that

 $a_n \setminus b$ is finite for all n.

Definition

The **P-ideal dichotomy** is the statement that for every P-ideal \mathcal{I} of countable subsets of some index-set S, either

- 1. there is uncountable set $T \subseteq S$ such that \mathcal{I} includes **all** countable subsets of T, or
- 2. S can be decomposed into a sequence (S_n) of subsets such that no S_n contains an infinite subset belonging to \mathcal{I} .

Theorem (T., 1985, 2000)

The P-Ideal Dichotomy is consistent relative to the consistency of a supercompact cardinal.

Moreover, PID is consistent with GCH.

Theorem (T., 2000)

PID imples $\mathfrak{b} \leq \aleph_2$.

Theorem (T., 2000)

PID implies that \square_{κ} fails for all cardinals $\kappa \geq \omega_1$.

Theorem (Viale 2008)

PID implies the Singular Cardinals Hypothesis.

Problem

Does PID imply $2^{\aleph_0} \leq \aleph_2$?

P-ideal of converging sequences

For a σ -complete Boolean algebra \mathbb{B} , let

$$\mathcal{I}_{\mathbb{B}} = \{(a_n) \subseteq \mathbb{B} \setminus \{0\} : a_n \to 0\}.$$

Then

- 1. $\mathcal{I}_{\mathbb{B}}$ is a **P-ideal** iff \mathbb{B} satisfies the **weak distributive law**.
- 2. If $\mathbb B$ satisfies the countable chain condition then the first alternative of PID is false, i.e., there is no uncountable $T\subseteq \mathbb B$ such that $\mathcal I_{\mathbb B}$ includes all countable subsets of T.

Theorem (Maharam 1947; Balcar, Jech, Pazák, 2003)

The following conditions are equivalent for a complete Boolean algebra $\mathbb B$:

- 1. \mathbb{B} supports a strictly positive continuous submeasure.
- 2. The topology of sequential convergence on \mathbb{B} is **metrizable**.
- 3. 0 is a G_{δ} -point relative the topology of sequential convergence on \mathbb{B} .

Theorem (Balcar, Jech, Pazák, 2003)

Assume PID. A σ -complete Boolean algebra \mathbb{B} supports a strictly positive **continuous submeasure** if and only if

- 1. B satisfies the countable chain condition, and
- 2. B satisfies the weak countable distributive law.