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Motivating Question

I How large is the automorphism group of a variety?

I The answer reveals an interesting trichotomy.

I We will be guided by the principle: the more symmetry the better.

I Start with the line R. x −→ ax + b, a 6= 0, b ∈ R.

I The automorphisms of the polynomial ring R[x ].

I Replace R with C. z −→ az + b, a 6= 0, b ∈ C.

I The automorphisms of the polynomial ring C[z ].

I Replace C with the Riemann sphere C ∪ {∞}.
I z −→ az+b

cz+d , ad − bc 6= 0,∈ C, the group of Möbius transformations.
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5 / 112



Motivating Question

I How large is the automorphism group of a variety?

I The answer reveals an interesting trichotomy.

I We will be guided by the principle: the more symmetry the better.

I Start with the line R. x −→ ax + b, a 6= 0, b ∈ R.

I The automorphisms of the polynomial ring R[x ].

I Replace R with C. z −→ az + b, a 6= 0, b ∈ C.

I The automorphisms of the polynomial ring C[z ].

I Replace C with the Riemann sphere C ∪ {∞}.
I z −→ az+b

cz+d , ad − bc 6= 0,∈ C, the group of Möbius transformations.
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Projective space

I P1 is the set of lines through the origin; equivalence classes [v ] of non-zero vectors
v ∈ C2 mod scalars.

I GL2(C) acts on P1. Trivial action of scalar matrices.

Aut(P1) = PGL2(C) = {
[
a b
c d

]
| ad − bc 6= 0 ∈ C }

2× 2 matrices modulo scalars; the Galois group Gal(C(x),C); the group of
Möbius transformations.

I Aut(P1) is infinite, but the dimension is three=4-1.

I Pn is the set of lines through the origin of Cn+1.

I Aut(Pn) = PGLn+1(C), dimension (n + 1)2 − 1.

11 / 112



Projective space

I P1 is the set of lines through the origin; equivalence classes [v ] of non-zero vectors
v ∈ C2 mod scalars.

I GL2(C) acts on P1. Trivial action of scalar matrices.

Aut(P1) = PGL2(C) = {
[
a b
c d

]
| ad − bc 6= 0 ∈ C }

2× 2 matrices modulo scalars;

the Galois group Gal(C(x),C); the group of
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Möbius transformations.

I Aut(P1) is infinite, but the dimension is three=4-1.

I Pn is the set of lines through the origin of Cn+1.

I Aut(Pn) = PGLn+1(C), dimension (n + 1)2 − 1.

13 / 112



Projective space

I P1 is the set of lines through the origin; equivalence classes [v ] of non-zero vectors
v ∈ C2 mod scalars.

I GL2(C) acts on P1. Trivial action of scalar matrices.

Aut(P1) = PGL2(C) = {
[
a b
c d

]
| ad − bc 6= 0 ∈ C }

2× 2 matrices modulo scalars; the Galois group Gal(C(x),C); the group of
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Smooth plane curves

I Let C be a smooth plane curve of degree d in P2.

I If d = 1 then C = P1 a line, Aut(P1) = PGL2(C).

I If d = 2 then C is a conic isomorphic to P1 by stereographic projection and
Aut(C ) = PGL2(C).

I If d = 3 then C is a cubic, an elliptic curve.

I C is a group with the rule three points sum to zero if they are collinear; the point
[0 : 1 : 0] is the identity if the line Z = 0 is a flex line.

I C = C/Λ is a curve of genus 1, Lie group S1 × S1.

I C acts on itself by translation, and Aut(C ) is a finite extension of C . The
dimension of Aut(C ) is one.
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Plane curves of d ≥ 4

I Theorem: If C is a smooth plane curve of degree d ≥ 4 then Aut(C ) is finite.

I Fix d . The maximum is achieved by

I The Fermat curve C = (xd + yd + zd = 0). |Aut(C )| = 6d2, d 6= 4, 6.

I The Klein quartic C = (x3y + y3z + z3x = 0). Aut(C ) = PGL3(F2).
|Aut(C )| = 168.

I The Wiman sextic C , given by

10x3y3 + 9(x5 + y5)z − 45x2y2z2 − 135xyz4 + 27z6.

Aut(C ) = A6. |Aut(C )| = 360.
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Birational automorphisms

I A rational map X 99K Y is a map given by rational functions, defined on an open
subset.

For example, x −→ 1/x defined away from x = 0.

I Category of dominant (composition ok) rational maps: isomorphism = birational
Bir(X ). Equivalent to the category of fields. Rational means birational to Pn.

I One of the most interesting elements of Bir(P2) is

σ : [x : y : z ] 99K [1/x : 1/y : 1/z ] = [yz : xz : xy ].

I Involution, sends coord lines to coordinate points.

⊂ P2 × P2

P2

x = 0
y = 0

z = 0

P2

I Noether’s Theorem: Bir(P2) is generated by 1gAut(P2) = PGL3(C) and σ.

I This Theorem is very deceptive.
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Rational surfaces

I Minimal rational surfaces S (Mori fibre spaces): P2, or a P1-bundle over P1,
Fn = P(OP1 ⊕OP1(n)).

I Aut(Fn) is an extension of Aut(P1) by matrices

{
[
A B
C D

]
| degA,D = 0, degB = n, degC = −n }.

I A = a, D = d scalars, C = 0 and B has degree n.

I So the dimension is 3 + 1 + 1 + n + 1− 1 = n + 5.

I Check: F1 = Blp P2, dim Aut(F1) = 8− 2 = 6.

I Bir(P2) is infinite dimensional; if we pick f : P2 99K Fn, then
f −1 Aut(Fn)f ⊂ Bir(P2).
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Cremona Group Cn

I Cn : Bir(Pn) = Gal(C(x1, x2, . . . , xn)/C).

I If f is a polynomial of degree d in x , y and z , the birational map φ : P3 99K P3,

[x : y : z : t] −→ [x(td + f ) : y(td + f ) : z(td + f ) : tf ],

blows down the cone over C = (f = 0) ⊂ P2.

I If Σ ∈ Mg is any curve of genus g , first embed Σ into Pn and project down to
C ⊂ P2.

I If the set R generates Cn then R must contain an element which blows down the
cone over C .

I Any generating set is infinite dimensional, it must contain a copy of
⋃

g Mg ,
dimMg = 3g − 3.
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Jordan Property

I A group G is Jordan if there is a constant J such that if H ⊂ G is any finite
subgroup then there is an abelian subgroup K ⊂ H of index at most J.

I Examples: finite groups; abelian groups; subgroups and products of Jordan.

I Theorem: (Jordan) GLn(C) is Jordan.

I Corollary: Aut(Pn) is Jordan.

I Proof: Aut(Pn) = PGLn+1(C) ⊂ GLN(C).

I Conjecture: (Serre) Bir(Pn) is Jordan.
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The MMP and the Jordan Property

I Theorem (Birkar; BCHM; Prokhorov and Shramov): Cn is Jordan.

I In fact we will prove this if X is rationally connected, meaning any two points are
connected by a rational curve. We will also show there is a finite (or better
bounded) index subgroup which fixes a point.

I Sketch of Proof: If G ⊂ Bir(X ) is finite then replace X by a model G ⊂ Aut(X ).

I Y = X/G , X ′ normalisation of Y in K (X )/K (Y ), replace X ′ by G -equivariant
resolution.

I Run the G -equivariant MMP. Construct a sequence of birational maps
Xi 99K Xi+1, flips and divisorial contractions. End product X = Xk is a Mori fibre
space.

I G ⊂ Aut(X ), X −→ Z , Z smaller dimension.
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Boundedness and Mori fibre space

I Two cases

I dimZ > 0. Z is rationally connected. Let z ∈ Z be a point fixed by a finite index
subgroup of image of G in Aut(Z ). Let F be the fibre over z . Reduce to the case
G ⊂ Aut(F ) and apply induction on the dimension.

I dimZ = 0. −KX is ample, X is Fano.

I Theorem: Birkar Fix n = dimX . Then X is bounded. In particular X ⊂ PN , N
fixed.

I This was a conjecture due to Borisov, Alexeev and Borisov.

I G ⊂ Aut(X ) ⊂ Aut(PN), which is Jordan.
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Quartic Threefolds

Let me end the section on KX -negative case with a celebrated result due to Iskvoskih
and Manin:

Theorem If X ⊂ P4 is a smooth quartic threefold, then

Bir(X ) = Aut(X ) = Aut(X ,P4)

is finite

In particular X is irrational.
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Finite generation

I If X is a smooth projective variety, then Aut(X ) is a group scheme. In particular a
topological group.

I Let Aut0(X ) be the connected component of the identity. If X is not ruled then
Aut0(X ) is an abelian variety of dimension q(X ) = h1(X ,OX ).

I Call the quotient Aut(X )/Aut0(X ) the discrete part of the automorphism group
(aka π0(Aut(X ))).

I Theorem: Lesieutre There are examples of smooth projective varieties X whose
discrete part is not finitely generated.
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Curves of genus g ≥ 2

Theorem: If C is a smooth curve of genus g ≥ 2, then |Aut(C )| ≤ 42(2g − 2).

Proof: G = Aut(C ) is finite. Let

π : C −→ B = C/G ,

be the quotient map.
Riemann-Hurwitz:

KC = π∗(KB + ∆),

where

∆ =
∑
b∈B

rb − 1

rb
b.
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The degree

Taking the degree of both sides we get

2g − 2 = |G | deg(KB + ∆).

Let δ = deg(KB + ∆) > 0. Then

|G | =
1

δ
(2g − 2) and δ = 2h − 2 +

k∑
i=1

ri − 1

ri
.

Objective Bound δ from below.
Case by case analysis. (r1, r2, r3) = (2, 3, 7) and h = 0 achieves bound 1/42.

77 / 112



The degree

Taking the degree of both sides we get

2g − 2 = |G | deg(KB + ∆).

Let δ = deg(KB + ∆) > 0. Then

|G | =
1

δ
(2g − 2) and δ = 2h − 2 +

k∑
i=1

ri − 1

ri
.

Objective Bound δ from below.
Case by case analysis. (r1, r2, r3) = (2, 3, 7) and h = 0 achieves bound 1/42.

78 / 112



The degree

Taking the degree of both sides we get

2g − 2 = |G | deg(KB + ∆).

Let δ = deg(KB + ∆) > 0. Then

|G | =
1

δ
(2g − 2) and δ = 2h − 2 +

k∑
i=1

ri − 1

ri
.

Objective Bound δ from below.

Case by case analysis. (r1, r2, r3) = (2, 3, 7) and h = 0 achieves bound 1/42.

79 / 112



The degree

Taking the degree of both sides we get

2g − 2 = |G | deg(KB + ∆).

Let δ = deg(KB + ∆) > 0. Then

|G | =
1

δ
(2g − 2) and δ = 2h − 2 +

k∑
i=1

ri − 1

ri
.

Objective Bound δ from below.
Case by case analysis. (r1, r2, r3) = (2, 3, 7) and h = 0 achieves bound 1/42.

80 / 112



When do we get equality?

I For which genera g , can we find C such that |Aut(C )| = 42(2g − 2)?

I The Klein quartic has genus 3 and 168 = 42 · 4.

I There are infinitely many g s.t. we get equality and infinitely many g s.t.
|Aut(C )| ≤ 8(g + 1).

I Note that this question is entirely topological. Can we find a topological cover
ramified over 0, 1 and ∞ to order 2, 3 and 7?

I Can we find an appropriate representation on the free group on two letters?

I Question: Is the Wiman sextic the curve with the maximum number of
automorphisms, amongst all smooth curves of genus 10?
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I Question: Is the Wiman sextic the curve with the maximum number of
automorphisms, amongst all smooth curves of genus 10?

86 / 112



Higher dimensions

I Definition: The volume of a divisor D on a variety X is

vol(X ,D) = lim sup
m→∞

n!h0(X ,mD)

mn
.

I If D is nef then vol(X ,D) = Dn.

I D is big if and only if vol(X ,D) > 0.

I Theorem (Hacon- – -Xu): Fix n. There is a constant c such that if X is a smooth
projective variety of general type, then

|Bir(X )| ≤ c · vol(X ,KX )

I If X = C is a smooth curve, then C is of general type if and only if g ≥ 2 and
vol(C ,KC ) = 2g − 2.
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Optimal value for c?

I n = 1, c = 42.

I n = 2, c = (42)2. Alexeev+Xiao Take S = C × C , where C achieves maximum.
KS = p∗KC + q∗KC is ample, vol(S ,KS) = 2(2g − 2)2 and
|Aut(S)| = (42)22(2g − 2)2.

I Stupid Question: Is c = (42)n?

I No, let X = (X d
0 + X d

1 + · · ·+ X d
n+1 = 0) ⊂ Pn+1.

I KX = (d − n − 2)H, ample if and only if d ≥ n + 3. Take d = n + 3.

I |Aut(X )| = (n + 3)n+2(n + 2)! and vol(X ,KX ) = (n + 3), ratio is
(n + 3)n+1(n + 2)! which beats (42)n (n = 5 will do).
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Review of finite simple groups

I Let V = Fm
q2 . There is a sesquilinear pairing

V × V −→ Fq2 given by
∑

ai b̄i ,

where x̄ = xq, so that ¯̄x = xq
2

= x .

I The natural group is Um(q), the unitary group fixing this pairing.

I Um(q) fixes the null cone, ∑
aq+1
i = 0.

I Um(q) is simple, one of the groups of Lie type.
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Characteristic p?

I Aut(X ) = Un+2(q), X the Fermat of degree q + 1.

I |Un+2(q)| =
1

(n + 2, q + 1)
q(n+2

2 )
n+2∏
i=2

(qi − (−1)i ).

I Roughly like qα, α =

(
n + 2

2

)
+

(
n + 3

2

)
− 1.

I Volume goes like qn+1.

I n = 1, g ∼ q2, |Aut(C )| ∼ q8. |Aut(C )| ≤ c · g4.

I Question: Are there constants c , d such that

|Bir(X )| ≤ c vol(X ,KX )d .
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Birational boundedness

Definition: Let D be a divisor on a normal projective variety X .

H0(X ,D) = { f | (f ) + D ≥ 0 }.
There is a positive integer r such that

φm(KX +∆) : X 99K P(H0(X ,m(KX + ∆))∗) = PN ,

is birational onto its image W , for all m ≥ r .
vol(X , r(KX + ∆)) ≥ vol(W ,H) = 1, so that
vol(X ,KX + ∆) ≥ 1/rn.
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