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Motivating Question

» How large is the automorphism group of a variety?
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» How large is the automorphism group of a variety?
» The answer reveals an interesting trichotomy.

» We will be guided by the principle: the more symmetry the better.
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How large is the automorphism group of a variety?

The answer reveals an interesting trichotomy.

We will be guided by the principle: the more symmetry the better.
Start with the line R. x — ax+ b, a#0, be R.
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How large is the automorphism group of a variety?

The answer reveals an interesting trichotomy.

We will be guided by the principle: the more symmetry the better.
Start with the line R. x — ax+ b, a#0, be R.

The automorphisms of the polynomial ring R[x].
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How large is the automorphism group of a variety?

The answer reveals an interesting trichotomy.

We will be guided by the principle: the more symmetry the better.
Start with the line R. x — ax+ b, a#0, be R.

The automorphisms of the polynomial ring R[x].

Replace R with C. z — az+ b, a#0, b € C.
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The answer reveals an interesting trichotomy.
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How large is the automorphism group of a variety?

The answer reveals an interesting trichotomy.

We will be guided by the principle: the more symmetry the better.
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The automorphisms of the polynomial ring R[x].
Replace R with C. z — az+ b, a#0, b € C.
The automorphisms of the polynomial ring C[z].
Replace C with the Riemann sphere C U {o0}.
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Motivating Question

How large is the automorphism group of a variety?

The answer reveals an interesting trichotomy.

We will be guided by the principle: the more symmetry the better.
Start with the line R. x — ax+ b, a#0, be R.

The automorphisms of the polynomial ring R[x].

Replace R with C. z — az+ b, a#0, b € C.

The automorphisms of the polynomial ring C[z].

Replace C with the Riemann sphere C U {o0}.
az+b

z — 2222 ad — bc # 0, € C, the group of Mabius transformations.

cz+d’

10/112



Projective space

» Pl is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.
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» Pl is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.

» GLy(C) acts on P!, Trivial action of scalar matrices.

Aut(P') = PGL,(C) = { t ﬂ lad —bc #0€ C}

2 x 2 matrices modulo scalars;



Projective space

» Pl is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.
» GLy(C) acts on P!, Trivial action of scalar matrices.

Aut(P') = PGL,(C) = { E ﬂ lad —bc #0€ C}

2 x 2 matrices modulo scalars; the Galois group Gal(C(x), C);
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Projective space

» Pl is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.

» GLy(C) acts on P!, Trivial action of scalar matrices.
Aut(P') = PGL,(C) = { t 3} lad —bc #0€C}

2 x 2 matrices modulo scalars; the Galois group Gal(C(x), C); the group of
Mobius transformations.
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Projective space

» Pl is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.

» GLy(C) acts on P!, Trivial action of scalar matrices.
Aut(P') = PGL,(C) = { t 3} lad —bc #0€C}
2 x 2 matrices modulo scalars; the Galois group Gal(C(x), C); the group of

Mobius transformations.
» Aut(P!) is infinite, but the dimension is three=4-1.
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Projective space

P! is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.

GLy(C) acts on PL. Trivial action of scalar matrices.
Aut(P') = PGL,(C) = { t 3} |ad —bc#0€C}

2 x 2 matrices modulo scalars; the Galois group Gal(C(x), C); the group of
Mobius transformations.

Aut(PP1) is infinite, but the dimension is three=4-1.
P" is the set of lines through the origin of C"*1.
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Projective space

P! is the set of lines through the origin; equivalence classes [v] of non-zero vectors
v € C? mod scalars.

GLy(C) acts on PL. Trivial action of scalar matrices.
Aut(P') = PGL,(C) = { t 3} |ad —bc#0€C}

2 x 2 matrices modulo scalars; the Galois group Gal(C(x), C); the group of
Mobius transformations.

Aut(PP1) is infinite, but the dimension is three=4-1.
P" is the set of lines through the origin of C"*1.
Aut(P") = PGL,,1(C), dimension (n+1)? — 1.



Smooth plane curves

» Let C be a smooth plane curve of degree d in P2,
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» Let C be a smooth plane curve of degree d in P2,
» If d =1 then C =P! a line, Aut(P!) = PGL,(C).
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Smooth plane curves

» Let C be a smooth plane curve of degree d in P2,
» If d =1 then C =P! a line, Aut(P!) = PGL,(C).

» If d = 2 then C is a conic isomorphic to P! by stereographic projection and
Aut(C) = PGL,(C).
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If d =2 then C is a conic isomorphic to P! by stereographic projection and
Aut(C) = PGL,(C).

If d = 3 then C is a cubic, an elliptic curve.
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Let C be a smooth plane curve of degree d in P?.
If d =1 then C = P! a line, Aut(P') = PGL,(C).

If d =2 then C is a conic isomorphic to P! by stereographic projection and
Aut(C) = PGL,(C).

If d = 3 then C is a cubic, an elliptic curve.

C is a group with the rule three points sum to zero if they are collinear; the point
[0:1:0]is the identity if the line Z =0 is a flex line.
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Let C be a smooth plane curve of degree d in P?.

If d =1 then C = P! a line, Aut(P') = PGL,(C).

If d =2 then C is a conic isomorphic to P! by stereographic projection and
Aut(C) = PGL,(C).

If d = 3 then C is a cubic, an elliptic curve.

C is a group with the rule three points sum to zero if they are collinear; the point
[0:1:0]is the identity if the line Z =0 is a flex line.

C = C/Nis a curve of genus 1, Lie group St x S*.
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Smooth plane curves

Let C be a smooth plane curve of degree d in P?.

If d =1 then C = P! a line, Aut(P') = PGL,(C).

If d =2 then C is a conic isomorphic to P! by stereographic projection and
Aut(C) = PGL,(C).

If d = 3 then C is a cubic, an elliptic curve.

C is a group with the rule three points sum to zero if they are collinear; the point
[0:1:0] is the identity if the line Z =0 is a flex line.

C = C/Nis a curve of genus 1, Lie group St x S*.

C acts on itself by translation, and Aut(C) is a finite extension of C. The
dimension of Aut(C) is one.



Plane curves of d > 4

» Theorem: If C is a smooth plane curve of degree d > 4 then Aut(C) is finite.
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Plane curves of d > 4

» Theorem: If C is a smooth plane curve of degree d > 4 then Aut(C) is finite.
» Fix d. The maximum is achieved by
» The Fermat curve C = (x9 4+ y9 4+ z9 = 0). | Aut(C)| = 6d?, d # 4, 6.
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Plane curves of d > 4

Theorem: If C is a smooth plane curve of degree d > 4 then Aut(C) is finite.
Fix d. The maximum is achieved by

The Fermat curve C = (x? +y9 + z¢ = 0). |Aut(C)| = 6d?, d # 4, 6.

The Klein quartic C = (x3y + y3z + z3x = 0). Aut(C) = PGL3(IF,).

| Aut(C)| = 168.
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Plane curves of d > 4

Theorem: If C is a smooth plane curve of degree d > 4 then Aut(C) is finite.
Fix d. The maximum is achieved by

The Fermat curve C = (x? +y9 + z¢ = 0). |Aut(C)| = 6d?, d # 4, 6.

The Klein quartic C = (x3y + y3z + z3x = 0). Aut(C) = PGL3(IF,).

| Aut(C)| = 168.

The Wiman sextic C, given by
10x3y3 +9(x® + y°)z — 45x%y? 2% — 135xyz* + 272°.

Aut(C) = As. | Aut(C)| = 360.
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Birational automorphisms

» A rational map X --» Y is a map given by rational functions, defined on an open
subset.
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Birational automorphisms
» A rational map X --» Y is a map given by rational functions, defined on an open
subset. For example, x — 1/x defined away from x = 0.

» Category of dominant (composition ok) rational maps: isomorphism = birational
Bir(X). Equivalent to the category of fields. Rational means birational to P".



Birational automorphisms
» A rational map X --» Y is a map given by rational functions, defined on an open
subset. For example, x — 1/x defined away from x = 0.

» Category of dominant (composition ok) rational maps: isomorphism = birational
Bir(X). Equivalent to the category of fields. Rational means birational to P".

» One of the most interesting elements of Bir(P?) is

oi[x:1y:z]--»[1/x:1]y :1/z] = [yz : xz : xy].
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Birational automorphisms

A rational map X --» Y is a map given by rational functions, defined on an open
subset. For example, x — 1/x defined away from x = 0.

Category of dominant (composition ok) rational maps: isomorphism = birational
Bir(X). Equivalent to the category of fields. Rational means birational to P".

One of the most interesting elements of Bir(P?) is

oi[x:1y:z]--»[1/x:1]y :1/z] = [yz : xz : xy].

Involution, sends coord lines to coordinate points.
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Birational automorphisms

A rational map X --» Y is a map given by rational functions, defined on an open
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Involution, sends coord lines to coordinate points. z=0
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Birational automorphisms
A rational map X --» Y is a map given by rational functions, defined on an open
subset. For example, x — 1/x defined away from x = 0.

Category of dominant (composition ok) rational maps: isomorphism = birational
Bir(X). Equivalent to the category of fields. Rational means birational to P".

One of the most interesting elements of Bir(P?) is

oi[x:1y:z]--»[1/x:1]y :1/z] = [yz : xz : xy].

_ QCP2XP22
SREITG

Involution, sends coord lines to coordinate points. z=0
Noether's Theorem: Bir(IP?) is generated by 1gAut(PP?) = PGL3(C) and o.
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Birational automorphisms
A rational map X --» Y is a map given by rational functions, defined on an open
subset. For example, x — 1/x defined away from x = 0.

Category of dominant (composition ok) rational maps: isomorphism = birational
Bir(X). Equivalent to the category of fields. Rational means birational to P".

One of the most interesting elements of Bir(P?) is

oi[x:1y:z]--»[1/x:1]y :1/z] = [yz : xz : xy].

_ QCP2XP22
SREITG

Involution, sends coord lines to coordinate points. z=0
Noether's Theorem: Bir(IP?) is generated by 1gAut(PP?) = PGL3(C) and o.
This Theorem is very deceptive.



Rational surfaces

2

» Minimal rational surfaces S (Mori fibre spaces): P2, or a P*-bundle over P!,

Frn = P(Op © Opi(n)).
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» Minimal rational surfaces S (Mori fibre spaces): P2, or a P*-bundle over P!,

Fn = P(Oﬂml D Opl(n)).
» Aut(F,) is an extension of Aut(P!) by matrices

egA,D =0,degB=n,degC = —n}.
?gdAD 0,deg B deg C
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Rational surfaces

2

» Minimal rational surfaces S (Mori fibre spaces): P2, or a P*-bundle over P!,

Fn = P(Oﬂml D Opl(n)).
» Aut(F,) is an extension of Aut(P!) by matrices

egA,D =0,degB=n,degC = —n}.
?gdAD 0,deg B deg C

» A=a, D = d scalars, C =0 and B has degree n.
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Rational surfaces

Minimal rational surfaces S (Mori fibre spaces): P?
Fn = P(Oﬂml D Opl(n)).

Aut(FF,,) is an extension of Aut(P!) by matrices

¢ D

. or a Pl-bundle over P!,

{|:A B:| |degA7D:O,degB:n’degC:_n}

A =a, D = d scalars, C =0 and B has degree n.
So the dimensionis3+1+14+n+1—1=n+5.
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Minimal rational surfaces S (Mori fibre spaces): P?

Fn = P(Oﬂml D Opl(n)).
Aut(FF,,) is an extension of Aut(P!) by matrices

. or a Pl-bundle over P!,

{|:A B:| |degA7D:O,degB:n’degC:_n}

¢ D

A =a, D = d scalars, C =0 and B has degree n.
So the dimensionis3+1+14+n+1—1=n+5.
Check: F1 = Bl, P2, dim Aut(F1) =8—-2=6.



Rational surfaces

2

Minimal rational surfaces S (Mori fibre spaces): P2, or a P!-bundle over P!,

Fn = P(Oﬂml D Opl(n)).
Aut(FF,,) is an extension of Aut(P!) by matrices

{ {? g} | deg A,D =0,deg B =n,deg C = —n}.
A =a, D = d scalars, C =0 and B has degree n.

So the dimensionis 3+1+1+n+1—-1=n+5.

Check: F1 = Bl, P2, dim Aut(F;) =8 — 2 = 6.

Bir(P?) is infinite dimensional; if we pick f: P? ——» FF,,, then

f~L Aut(F,)f C Bir(PP?).
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Cremona Group C,

» C, :Bir(P") = Gal(C(x1, x2, ..., x,)/C).
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Cremona Group C,

» C, :Bir(P") = Gal(C(x1, x2, - - ., Xn) /C).
» If f is a polynomial of degree d in x, y and z, the birational map ¢: P3 --» P3,
[x:y:z:t] — [x(t9+ ) 1 y(t9+ ) 2(t? + ) : ],

blows down the cone over C = (f = 0) C P2.
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Cremona Group C,
> C, :Bir(P") = Gal(C(x, x2, . . . , xn)/C).
» If f is a polynomial of degree d in x, y and z, the birational map ¢: P3 --» P3,
[x:y:z:t] — [x(t9+ ) 1 y(t9+ ) 2(t? + ) : ],

blows down the cone over C = (f = 0) C P2.

» If ¥ € M is any curve of genus g, first embed ¥ into P” and project down to
C C P2
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Cremona Group C,

Cy : Bir(P") = Gal(C(x1, %2, . . . , ) /C).
If f is a polynomial of degree d in x, y and z, the birational map ¢: P3 --» P3,

[x:y:z:t]—>[x(td—|—f):y(td—|—f):z(td—i—f):tf],

blows down the cone over C = (f = 0) C P2.

If ¥ € My is any curve of genus g, first embed X into P” and project down to

C C P2

If the set R generates C, then R must contain an element which blows down the
cone over C.
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Cremona Group C,

Cy : Bir(P") = Gal(C(x1, %2, . . . , ) /C).
If f is a polynomial of degree d in x, y and z, the birational map ¢: P3 --» P3,

[x:y:z:t]—>[x(td—|—f):y(td—|—f):z(td—i—f):tf],

blows down the cone over C = (f = 0) C P2.

If ¥ € My is any curve of genus g, first embed X into P” and project down to

C C P2

If the set R generates C, then R must contain an element which blows down the
cone over C.

Any generating set is infinite dimensional, it must contain a copy of Ug M,,
dim My = 3g — 3.
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Jordan Property

> A group G is Jordan if there is a constant J such that if H C G is any finite
subgroup then there is an abelian subgroup K C H of index at most J.
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> A group G is Jordan if there is a constant J such that if H C G is any finite
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» Examples: finite groups; abelian groups; subgroups and products of Jordan.
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> A group G is Jordan if there is a constant J such that if H C G is any finite
subgroup then there is an abelian subgroup K C H of index at most J.

» Examples: finite groups; abelian groups; subgroups and products of Jordan.
» Theorem: (Jordan) GL,(C) is Jordan.
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Jordan Property

A group G is Jordan if there is a constant J such that if H C G is any finite
subgroup then there is an abelian subgroup K C H of index at most J.

Examples: finite groups; abelian groups; subgroups and products of Jordan.
Theorem: (Jordan) GL,(C) is Jordan.
Corollary: Aut(P") is Jordan.
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Jordan Property

A group G is Jordan if there is a constant J such that if H C G is any finite
subgroup then there is an abelian subgroup K C H of index at most J.

Examples: finite groups; abelian groups; subgroups and products of Jordan.
Theorem: (Jordan) GL,(C) is Jordan.

Corollary: Aut(P") is Jordan.

Proof: Aut(P") = PGL,+1(C) C GLn(C).
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Jordan Property

A group G is Jordan if there is a constant J such that if H C G is any finite
subgroup then there is an abelian subgroup K C H of index at most J.

Examples: finite groups; abelian groups; subgroups and products of Jordan.
Theorem: (Jordan) GL,(C) is Jordan.

Corollary: Aut(P") is Jordan.

Proof: Aut(P") = PGL,+1(C) C GLn(C).

Conjecture: (Serre) Bir(P") is Jordan.
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The MMP and the Jordan Property

» Theorem (Birkar; BCHM; Prokhorov and Shramov): C, is Jordan.
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The MMP and the Jordan Property

» Theorem (Birkar; BCHM; Prokhorov and Shramov): C, is Jordan.

> In fact we will prove this if X is rationally connected, meaning any two points are
connected by a rational curve. We will also show there is a finite (or better
bounded) index subgroup which fixes a point.
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The MMP and the Jordan Property

» Theorem (Birkar; BCHM; Prokhorov and Shramov): C, is Jordan.

> In fact we will prove this if X is rationally connected, meaning any two points are
connected by a rational curve. We will also show there is a finite (or better
bounded) index subgroup which fixes a point.

» Sketch of Proof: If G C Bir(X) is finite then replace X by a model G C Aut(X).
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The MMP and the Jordan Property

Theorem (Birkar; BCHM; Prokhorov and Shramov): C, is Jordan.

In fact we will prove this if X is rationally connected, meaning any two points are
connected by a rational curve. We will also show there is a finite (or better
bounded) index subgroup which fixes a point.

Sketch of Proof: If G C Bir(X) is finite then replace X by a model G C Aut(X).

Y = X/G, X' normalisation of Y in K(X)/K(Y), replace X’ by G-equivariant
resolution.
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The MMP and the Jordan Property

Theorem (Birkar; BCHM; Prokhorov and Shramov): C, is Jordan.

In fact we will prove this if X is rationally connected, meaning any two points are
connected by a rational curve. We will also show there is a finite (or better
bounded) index subgroup which fixes a point.

Sketch of Proof: If G C Bir(X) is finite then replace X by a model G C Aut(X).
Y = X/G, X' normalisation of Y in K(X)/K(Y), replace X’ by G-equivariant
resolution.

Run the G-equivariant MMP. Construct a sequence of birational maps

Xi ==+ Xiy1, flips and divisorial contractions. End product X = Xj is a Mori fibre
space.
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The MMP and the Jordan Property

Theorem (Birkar; BCHM; Prokhorov and Shramov): C, is Jordan.

In fact we will prove this if X is rationally connected, meaning any two points are
connected by a rational curve. We will also show there is a finite (or better
bounded) index subgroup which fixes a point.

Sketch of Proof: If G C Bir(X) is finite then replace X by a model G C Aut(X).
Y = X/G, X' normalisation of Y in K(X)/K(Y), replace X’ by G-equivariant
resolution.

Run the G-equivariant MMP. Construct a sequence of birational maps
Xi ==+ Xiy1, flips and divisorial contractions. End product X = Xj is a Mori fibre
space.

G C Aut(X), X — Z, Z smaller dimension.
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Boundedness and Mori fibre space

» Two cases
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Boundedness and Mori fibre space

» Two cases

» dimZ > 0. Z is rationally connected. Let z € Z be a point fixed by a finite index
subgroup of image of G in Aut(Z). Let F be the fibre over z. Reduce to the case
G C Aut(F) and apply induction on the dimension.



Boundedness and Mori fibre space

» Two cases

» dimZ > 0. Z is rationally connected. Let z € Z be a point fixed by a finite index
subgroup of image of G in Aut(Z). Let F be the fibre over z. Reduce to the case
G C Aut(F) and apply induction on the dimension.

» dimZ = 0. —Kx is ample, X is Fano.

63 /112



v

v

v

Boundedness and Mori fibre space

Two cases

dim Z > 0. Z is rationally connected. Let z € Z be a point fixed by a finite index
subgroup of image of G in Aut(Z). Let F be the fibre over z. Reduce to the case
G C Aut(F) and apply induction on the dimension.

dimZ =0. —Kx is ample, X is Fano.
Theorem: Birkar Fix n = dim X. Then X is bounded. In particular X C PN N
fixed.
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Boundedness and Mori fibre space

Two cases

dim Z > 0. Z is rationally connected. Let z € Z be a point fixed by a finite index
subgroup of image of G in Aut(Z). Let F be the fibre over z. Reduce to the case
G C Aut(F) and apply induction on the dimension.

dimZ =0. —Kx is ample, X is Fano.

Theorem: Birkar Fix n = dim X. Then X is bounded. In particular X C PN N
fixed.

This was a conjecture due to Borisov, Alexeev and Borisov.
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Boundedness and Mori fibre space

Two cases

dim Z > 0. Z is rationally connected. Let z € Z be a point fixed by a finite index
subgroup of image of G in Aut(Z). Let F be the fibre over z. Reduce to the case
G C Aut(F) and apply induction on the dimension.

dimZ =0. —Kx is ample, X is Fano.

Theorem: Birkar Fix n = dim X. Then X is bounded. In particular X C PN N
fixed.

This was a conjecture due to Borisov, Alexeev and Borisov.

G C Aut(X) C Aut(P"), which is Jordan.
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Quartic Threefolds

Let me end the section on Kx-negative case with a celebrated result due to Iskvoskih
and Manin:
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Quartic Threefolds

Let me end the section on Kx-negative case with a celebrated result due to Iskvoskih
and Manin:

Theorem If X C P* is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P*)

is finite
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Quartic Threefolds

Let me end the section on Kx-negative case with a celebrated result due to Iskvoskih
and Manin:

Theorem If X C P* is a smooth quartic threefold, then
Bir(X) = Aut(X) = Aut(X,P*)
is finite

In particular X is irrational.
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Finite generation

» If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a
topological group.
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Finite generation

» If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a
topological group.

» Let Aut®(X) be the connected component of the identity. If X is not ruled then
Aut®(X) is an abelian variety of dimension g(X) = h*(X, Ox).
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» If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a
topological group.

» Let Aut®(X) be the connected component of the identity. If X is not ruled then
Aut®(X) is an abelian variety of dimension g(X) = h*(X, Ox).

» Call the quotient Aut(X)/ Aut®(X) the discrete part of the automorphism group
(aka mo(Aut(X))).
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Finite generation

If X is a smooth projective variety, then Aut(X) is a group scheme. In particular a
topological group.

Let Aut®(X) be the connected component of the identity. If X is not ruled then
Aut®(X) is an abelian variety of dimension g(X) = h*(X, Ox).

Call the quotient Aut(X)/ Aut®(X) the discrete part of the automorphism group
(aka mo(Aut(X))).

Theorem: Lesieutre There are examples of smooth projective varieties X whose
discrete part is not finitely generated.
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Curves of genus g > 2

Theorem: If C is a smooth curve of genus g > 2, then | Aut(C)| < 42(2g — 2).
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Curves of genus g > 2

Theorem: If C is a smooth curve of genus g > 2, then | Aut(C)| < 42(2g — 2).
Proof: G = Aut(C) is finite. Let
. C— B=C/G,

be the quotient map.
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Curves of genus g > 2

Theorem: If C is a smooth curve of genus g > 2, then | Aut(C)| < 42(2g — 2).

Proof: G = Aut(C) is finite. Let
7 C— B=C/G,

be the quotient map.
Riemann-Hurwitz:

Kc = W*(KB + A),

rb—l

A= .

> b
beB

where
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The degree

Taking the degree of both sides we get

2g — 2 =|G|deg(Kg + A).
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The degree

Taking the degree of both sides we get
2g — 2 =|G|deg(Kg + A).

Let 6 = deg(Kg + A) > 0. Then

k
]G\:%(Qg—Z) and §=2h-2+%"

r
i=1 !

r,-—1
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The degree

Taking the degree of both sides we get
2g — 2 =|G|deg(Kg + A).

Let 6 = deg(Kg + A) > 0. Then

k
]G\:%(Qg—Z) and §=2h-2+%"

r
i=1 !

Objective Bound § from below.

r,-—1
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The degree

Taking the degree of both sides we get
2g — 2 =|G|deg(Kg + A).
Let 6 = deg(Kg + A) > 0. Then

k
]G\:%(Zg—Z) and 5:2h—2+zr’_1.

r
i=1 !

Objective Bound § from below.

Case by case analysis. (r1,r,r3) = (2,3,7) and h = 0 achieves bound 1/42.
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When do we get equality?

» For which genera g, can we find C such that |Aut(C)| = 42(2g — 2)?
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When do we get equality?

» For which genera g, can we find C such that |Aut(C)| = 42(2g — 2)?
> The Klein quartic has genus 3 and 168 = 42 - 4.

82 /112



When do we get equality?

» For which genera g, can we find C such that |Aut(C)| = 42(2g — 2)?
> The Klein quartic has genus 3 and 168 = 42 - 4.

» There are infinitely many g s.t. we get equality and infinitely many g s.t.
[Aut(C)| < 8(g +1).
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When do we get equality?

For which genera g, can we find C such that | Aut(C)| = 42(2g — 2)?
The Klein quartic has genus 3 and 168 = 42 - 4.

There are infinitely many g s.t. we get equality and infinitely many g s.t.
|Aut(C)| < 8(g +1).

Note that this question is entirely topological. Can we find a topological cover
ramified over 0, 1 and oo to order 2, 3 and 77
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When do we get equality?

For which genera g, can we find C such that | Aut(C)| = 42(2g — 2)?
The Klein quartic has genus 3 and 168 = 42 - 4.

There are infinitely many g s.t. we get equality and infinitely many g s.t.
|Aut(C)| < 8(g +1).

Note that this question is entirely topological. Can we find a topological cover
ramified over 0, 1 and oo to order 2, 3 and 77

Can we find an appropriate representation on the free group on two letters?
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When do we get equality?

For which genera g, can we find C such that | Aut(C)| = 42(2g — 2)?

The Klein quartic has genus 3 and 168 = 42 - 4.

There are infinitely many g s.t. we get equality and infinitely many g s.t.

| Aut(C)]| < 8(g +1).

Note that this question is entirely topological. Can we find a topological cover
ramified over 0, 1 and oo to order 2, 3 and 77

Can we find an appropriate representation on the free group on two letters?

Question: Is the Wiman sextic the curve with the maximum number of
automorphisms, amongst all smooth curves of genus 107
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Higher dimensions

» Definition: The volume of a divisor D on a variety X is

n!h%(X, mD)

mn

vol(X, D) = limsup

m—00
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Higher dimensions

» Definition: The volume of a divisor D on a variety X is

n!h%(X, mD)

mn

vol(X, D) = limsup

m—00

» If D is nef then vol(X, D) = D".
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Higher dimensions

» Definition: The volume of a divisor D on a variety X is

n!h%(X, mD)

mn

vol(X, D) = limsup

m—00

» If D is nef then vol(X, D) = D".
» D is big if and only if vol(X, D) > 0.
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Higher dimensions

Definition: The volume of a divisor D on a variety X is

lhO(X, mD
vol(X, D) = limsup "-1-X-mD).

n
m—o00 m

If D is nef then vol(X, D) = D".
D is big if and only if vol(X, D) > 0.

Theorem (Hacon- — -Xu): Fix n. There is a constant ¢ such that if X is a smooth
projective variety of general type, then

| Bir(X)| < ¢ - vol(X, Kx)
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Higher dimensions

Definition: The volume of a divisor D on a variety X is

lhO(X, mD
vol(X, D) = limsup "-1-X-mD).

n
m—o00 m

If D is nef then vol(X, D) = D".
D is big if and only if vol(X, D) > 0.

Theorem (Hacon- — -Xu): Fix n. There is a constant ¢ such that if X is a smooth
projective variety of general type, then

| Bir(X)| < ¢ - vol(X, Kx)

If X = C is a smooth curve, then C is of general type if and only if g > 2 and
vol(C,Kc) = 2g — 2.
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> n:l,C:42.

Optimal value for c?
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Optimal value for c?

> n:l,C:42.

» n=2, c=(42)%. Alexeev+Xiao Take S = C x C, where C achieves maximum.
Ks = p*Kc + q*Kc is ample, vol(S, Ks) = 2(2g — 2)? and
| Aut(S)| = (42)%2(2g — 2)%.
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Optimal value for c?

> n:l,C:42.

» n=2, c=(42)%. Alexeev+Xiao Take S = C x C, where C achieves maximum.
Ks = p*Kc + q*Kc is ample, vol(S, Ks) = 2(2g — 2)? and
| Aut(S)| = (42)%2(2g — 2)%.

» Stupid Question: Is ¢ = (42)"7
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Optimal value for c?

n=1, c=42.

n=2, c = (42). Alexeev+Xiao Take S = C x C, where C achieves maximum.
Ks = p*Kc + q*Kc is ample, vol(S, Ks) = 2(2g — 2)? and

| Aut(S)| = (42)%2(2g — 2)2.

Stupid Question: Is ¢ = (42)"7

No, let X = (X§ + X7 + -+ X2, =0) c P"L.
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Optimal value for c?

n=1, c=42.

n=2, c = (42). Alexeev+Xiao Take S = C x C, where C achieves maximum.

Ks = p*Kc + q*Kc is ample, vol(S, Ks) = 2(2g — 2)? and

| Aut(S)| = (42)%2(2g — 2)2.

Stupid Question: Is ¢ = (42)"7

No, let X = (X§ + X7 + -+ X2, =0) c P"L.

Kx = (d — n—2)H, ample if and only if d > n+ 3. Take d = n+ 3.
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Optimal value for c?

n=1, c=42.

n=2, c = (42). Alexeev+Xiao Take S = C x C, where C achieves maximum.

Ks = p*Kc + q*Kc is ample, vol(S, Ks) = 2(2g — 2)? and

| Aut(S)| = (42)%2(2g — 2)2.

Stupid Question: Is ¢ = (42)"7

No, let X = (X§ + X7 + -+ X2, =0) c P"L.

Kx = (d — n—2)H, ample if and only if d > n+ 3. Take d = n+ 3.
| Aut(X)| = (n 4 3)™2(n+2)! and vol(X, Kx) = (n+ 3), ratio is
(n+3)"*1(n + 2)! which beats (42)" (n =5 will do).



Review of finite simple groups

> Let V = IF‘Z}. There is a sesquilinear pairing
VXV -—Fgep given by Z ajbj,

- = 2
where X = x9, so that x = x9 = x.
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Review of finite simple groups

> Let V = IF‘Z}. There is a sesquilinear pairing
VXV -—Fgep given by Z ajbj,

- = 2
where X = x9, so that x = x9 = x.

» The natural group is Un(q), the unitary group fixing this pairing.
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Review of finite simple groups

> Let V = IFZ}. There is a sesquilinear pairing
VXV -—Fgep given by Z ajbj,

- = 2
where X = x9, so that x = x9 = x.

» The natural group is Un(q), the unitary group fixing this pairing.

» Un(q) fixes the null cone,

Z a?“ =0.
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Review of finite simple groups

Let V = FZ}. There is a sesquilinear pairing
VXV -—Fgep given by Z ajbj,

- = 2
where X = x9, so that x = x9 = x.

The natural group is Un(q), the unitary group fixing this pairing.

Um(q) fixes the null cone,

Z a?“ =0.

Um(q) is simple, one of the groups of Lie type.
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Characteristic p?

» Aut(X) = Ups2(q), X the Fermat of degree g + 1.
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Characteristic p?

» Aut(X) = Ups2(q), X the Fermat of degree g + 1.

n+2
> |U"+2(q)|:(n+2—q+ )H (¢ — (=
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Characteristic p?

» Aut(X) = Ups2(q), X the Fermat of degree g + 1.

1 (n+2) nt2 .
> [Uni2(9)| = mq 2 ,1:12(q —(-1)).

2 3
> Roughly like g%, a = <";r ) + <"J2r ) ~1

104 /112



v

v

v

Characteristic p?

Aut(X) = Un12(q), X the Fermat of degree g + 1.

]. n+2 nt2

wrzqry? L@ -C0)

i=2

2 3
Roughly like g%, o = <";r ) + <"J2r ) ~1

Volume goes like g1

|Unt2(q)| =
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Characteristic p?

Aut(X) = Un12(q), X the Fermat of degree g + 1.

]. n+2 nt2

wrzqry? L@ -C0)

i=2

2 3
Roughly like g%, o = <";r > + <"J2r ) ~1

[Unt2(q)| =

Volume goes like g1
n=1,g~q? |Aut(C)| ~ ¢® |Aut(C)| < c-g*

106 /112



v

v

v

v

v

Characteristic p?

Aut(X) = Un12(q), X the Fermat of degree g + 1.

]. n+2 nt2

wrzqry? L@ -C0)

i=2

2 3
Roughly like g%, o = <";r > + <"J2r ) ~1

Volume goes like g1
n=1,g~q? |Aut(C)| ~ ¢® |Aut(C)| < c-g*
Question: Are there constants ¢, d such that

[Unt2(q)| =

| Bir(X)| < cvol(X, Kx)“.



Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.
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Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.
H(X,D) = {f|(f)+D>0}.
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Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.
H(X,D) = {f|(f)+D>0}.
There is a positive integer r such that

Omikyra): X —=> P(HO(X, m(Kx + A))*) = PV

is birational onto its image W, for all m > r.
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Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.
H(X,D) = {f|(f)+D>0}.
There is a positive integer r such that

Omikyra): X —=> P(HO(X, m(Kx + A))*) = PV

is birational onto its image W, for all m > r.
vol(X, r(Kx + A)) > vol(W, H) =1, so that
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Birational boundedness

Definition: Let D be a divisor on a normal projective variety X.
H(X,D) = {f|(f)+D>0}.
There is a positive integer r such that

Omikyra): X —=> P(HO(X, m(Kx + A))*) = PV

is birational onto its image W, for all m > r.
vol(X, r(Kx + A)) > vol(W, H) =1, so that
vol(X, Kx + A) > 1/r".



