
Problem 1A. Score:

Suppose that x, y, p, q are real numbers with x ≥ 0, y ≥ 0, p > 1, 1/p+ 1/q = 1. Prove
Young’s inequality

xy ≤ xp

p
+
yq

q
.

Solution: Fix y and consider xy−xp/p−yq/q as a function of x. It is at most zero for x = 0
and for x large, so it is enough to check it is at most zero at all critical points. Differentiation
shows that the only critical point is x = yp−1 when it is 0.

Problem 2A. Score:

Suppose f : [0, 1]→ R is a continuous function with∫ 1

0

xnf(x)dx = 0

for all integers n with 1 ≤ n <∞. Prove that f is identically 0.

Solution: We can say that f(x) is identically 0.

Let F (x) =
∫ 1

x
f(s)ds, so that ∫ 1

0

xmF (x)dx = 0

by integration by parts (since F (1) = 0) for all m ≥ 0. By linearity of the integral, F is
orthogonal to polynomials: ∫ 1

0

P (x)F (x)dx = 0

whenever P is a polynomial. Let ε > 0 and let P be a polynomial which approximates f
within ε on the interval [0, 1], by the Weierstrass approximation theorem. Then

∫ 1

0

F (x)2dx =

∫ 1

0

F (x)P (x)dx+

∫ 1

0

F (x)(F (x)−P (x))dx ≤

√∫ 1

0

F (x)2dx

√∫ 1

0

(F (x)− P (x))2dx



by orthogonality and the Cauchy-Schwarz inequality. By choice of P ,∫ 1

0

F (x)2dx ≤ ε

√∫ 1

0

F (x)2dx.

Cancelling a square root factor shows that∫ 1

0

F (x)2dx ≤ ε2

and since ε > 0 was arbitrary we have∫ 1

0

F (x)2dx = 0.

Since F is continuous it must vanish identically, and then f(x) = −F ′(x) must vanish
identically as well.

Problem 3A. Score:

Suppose that X is an uncountable subset of the reals. Prove that there is a point of X
that is a limit of a sequence of distinct points of X.

Solution: If not, then for every point of x ∈ X we can find an integer nx such that no
point of X is within 1/nX of x. Since X is uncountable, there is some integer n with an
uncountable number of points such that nx = n. But any 2 points of this set must be at
distance at least 1/n, so there are only countable number of them.

Problem 4A. Score:

(a). Show that there is a function f(z), holomorphic (analytic) near z = 0, such that

f(z)10 =
1

cos(z5 + 2z7)
− 1

for all z in a neighborhood of z = 0.
(b). Find the radius of convergence of its power series about z = 0. Your answer may

involve a root of an explicitly given polynomial.

Solution:



(a). From the power series for the cosine function, we have

cos(z5 − z7) = 1− (z5 − z7)2

2!
+ · · · = 1− z10

2
+ z12 + . . .

and therefore
1

cos(z5 − z7)
= 1 +

z10

2
+ . . . .

Therefore 1
cos(z5+2z7)

− 1 has a zero of order 10 at z = 0, and so

1

cos(z5 + 2z7)
− 1 = z10g(z)

near z = 0, where g extends to a holomorphic function near z = 0 which does not vanish at
z = 0. We may then let

f(z) = exp

(
log g(z))

10

)
,

and this is holomorphic at z = 0.
(b). We have cos z = 0 only at odd integer multiples of π/2, and cos z = 1 only if

sin z = 0, which happens only at integer multiples of π. Having removed the singularity at
z = 0, we have that f is holomorphic on the set where |z5 + 2z7| < π/2, so the largest radius
of convergence is the positive root r of x5 + 2x7 = π/2, since |z| < r implies |z5 + 2z7| ≤
|z|5 + 2|z|7 < r5 + 2r7 = π/2, and cos(z5 + 2z7) = 0 when z = r.

Problem 5A. Score:

Let f(z) be a function holomorphic on the whole complex plane C such that f(z) ∈ R
for all z ∈ R. Show that f(z) = f(z̄) for all z ∈ C.

Solution:
Let g(z) = f(z̄). By Cauchy-Riemann condition g(z) is holomorphic and therefore h(z) =

f(z) − g(z) is also holomorphic on C. One the other hand, h(z) = 0 for any z ∈ R. Again
Cauchy-Riemann equations imply that h(z) ≡ 0.

Problem 6A. Score:

Let T be a linear transformation of a vector space V into itself. Suppose that Tm+1 = 0,
Tm 6= 0 for some positive integer m. Show that there is a vector x such that x, Tx, . . . , Tmx
are linearly independent.



Solution:
Pick x so that Tmx 6= 0. If the points are linearly dependent, choose a relation akT

kx+
...+ amT

mx = 0 with ak 6= 0 and k as large as possible. Applying T gives a similar relation
with a larger k, contradiction.

Problem 7A. Score:

Suppose n is a positive integer and let f be the function f(x) = (1, x, x2, ...xn−1) from R
to Rn, Show that a hyperplane (of codimension 1) containing the points f(1), f(2), ..., f(n)
does not pass through the origin.

Solution: This is equivalent to showing that the points are linearly independent. So it is
enough to show that the determinant formed by their coordinates is nonzero. But this is a
Vandermonde determinant, which shows it is nonzero.

Problem 8A. Score:

Let A be an abelian group. Suppose that a ∈ A and b ∈ A have orders h and k, respectively,
and that h and k are relatively prime.

Let r and s be integers. Show that if ra = sb then ra = sb = 0.

Solution: Since h and k are relatively prime, they generate the unit ideal in Z, so there
exist integers x and y such that xh+ yk = 1. Therefore,

ra = (xh+ yk)ra = xh(ra) + yk(sb) = xr(ha) + ys(kb) = 0 ,

and therefore also sb = 0.

Problem 9A. Score:

Let F be a field and let X be a finite set. Let R(X,F) be the ring of all functions from
X to F, endowed with the pointwise operations. What are the maximal ideals of R(X,F)?

Solution:
Let R = R(X,F). For all x ∈ X and a ∈ F let φx,a : X → F be the function given by

φx,a(x) = a and φx,a(x
′) = 0 for all x′ 6= x.



Let I be an ideal of R, and let S ⊆ X be the set

S = {x ∈ X : f(x) 6= 0 for some f ∈ I} .

Then, for all x ∈ S, the ideal I contains the function φx,1 since I contains some element f
with f(x) 6= 0; then

φx,1 = φx,f(x)−1 · f ∈ I .

For any f : X → F that vanishes at all x /∈ S, we then have

f =
∑
x∈S

f(x)fx,1 ∈ I ;

therefore I = {f : X → F : f(x) = 0 for all x /∈ S}.
Conversely, for any S ⊆ X the set of all functions X → F supported on S is an ideal of

R. This therefore gives a bijection between the set of subsets of X and the set of ideals of
R.

Therefore the set of maximal ideals of R is the set

{kerψx : x ∈ X} ,

where ψx : R → F is the function that takes f ∈ R to f(x) ∈ F (which is a ring homomor-
phism).

Problem 1B. Score:

Which of the following series converge? Give reasons.

1.
∞∑
n=1

(2n)!(3n)!

n!(4n)!
·

2.
∞∑
n=2

1

n1+1/(logn)2
·

Solution: The first converges by the ration test, and the second diverges by comparison
with the harmonic series.

Problem 2B. Score:



Suppose that f is a smooth function from the reals to the reals satisfying the differential
equation

f ′(x) = sin(f(x))e−x
2

Prove that f is bounded.

Solution:
|f(a)− f(b)| ≤

∫ b

a
|f ′(x)dx ≤

∫∞
−∞ e

−x2
dx which is finite, so f is bounded.

Problem 3B. Score:

Let the function f be given by f(x) = 0 if x is irrational and f(x) = 1/n2 if x = m/n where
m,n are coprime integers and n > 0. Show that there is a point where f is continuous but
not differentiable.

Solution:
The function f is continuous at all irrational points, so in particular if the derivative

exists at some point it must be 0. Suppose x is the limit of the numbers xm = 1/21 + 1/22 +
· · ·+ 1/22m then (f(x)− f(xm))/(x− xm) does not tend to 0 as m tends to infinity, so f is
not differentiable at x.

Problem 4B. Score:

Evaluate ∫ ∞
−∞

x sinx

(x2 + 1)2
dx .

Solution:
The integrand is the imaginary part of the function

f(z) =
zeiz

(z2 − 1)2
,

so we will use contour integration to evaluate this integral.
For all (real) R > 1 let CR be the positively oriented contour consisting of the interval

[−R,R] on the real axis, together with the semicircle |z| = R, Im z ≥ 0. The function f is
holomorphic except for double poles at z = ±i, so we need to find its residue at z = i. Write

f(z) =
g(z)

(z − i)2
, where g(z) =

zeiz

(z + i)2
.



Then the residue of f at z = i is the coefficient of z− i in the Taylor series expansion of g(z)
about z = i, which is

g′(i) =

(
(eiz + izeiz)(z + i)2 − 2(z + i)zeiz

(z + i)4

) ∣∣∣∣
z=i

=
(e−1 − e−1)(2i)2 − 2(2i)ie−1

(2i)4

=
0− 4i2e−1

16i4

=
1

4e
.

Therefore ∮
CR

f(z) dz = 2πi · 1

4e
=
πi

2e
.

Since |eiz| = e− Im z ≤ 1 for all z in the upper half plane, we have |f(z)| ≤ R/(R2 − 1)2 on
the semicircle in CR. The length of this semicircle is πR, so the contribution of the integral
along the semicircle to the contour integral is bounded in absolute value by πR2/(R2 − 1)2,
which → 0 as R→∞.

Therefore, in the limit as R→∞, the integral along the semicircle approaches 0, and we
have ∫ ∞

−∞

x sinx

(x2 + 1)2
dx = Im lim

R→∞

∮
CR

f(z) dz = Im
πi

2e
=

π

2e
.

Problem 5B. Score:

Suppose that the complex function f is holomorphic and bounded for <(z) > 0. Prove
that it is uniformly continuous for <(z) > 1.

Solution:
By the Cauchy integral formula the derivative is bounded in the region <(z) > 1, so the

function is uniformly continuous in this region.

Problem 6B. Score:

Prove that a complex square matrix of finite order is diagonalizable. Give an example
of a square matrix of finite order (over some other algebraically closed field) that is not
diagonalizable.



Solution:
The minimal polynomial of a matrix of finite order n divides the polynomial xn−1. Over

the complex numbers this has no repeated roots so the matrix is diagonalizable.
The matrix

(
11
01

)
over a field of characteristic 2 has order 2 but is not diagonalizable.

Problem 7B. Score:

Find the number of conjugacy classes of complex 5 by 5 matrices such that all eigenvalues
are 1.

Solution:
Putting the matrix in Jordan normal form show that the number of conjugacy classes is

the number of partitions of 5, which is 7.

Problem 8B. Score:

Let G be a finite group and H be a subgroup.
(a) Show that the number of subgroups of G conjugate to H divides the index of H.
(b) Show that if

G =
⋃
g∈G

gHg−1

then G = H.

Solution:
(a) Let X denote the set of all subgroups conjugate to H. Then G acts transitively on

X and the stabilizer of H ∈ X coincides the normalizer N(H) of H. Then

|X| = |G|
|N(G)|

=
[G : H]

[N(H) : H]
.

(b) Since any subgroup contains the identity element we have

|
⋃
g∈G

gHg−1| ≤ |X||H| − |X|+ 1.

Since |X||H| ≤ |G| we have 0 ≤ 1 − |X|. This implies |X| = 1, H is normal and therefore
H = G.



Problem 9B. Score:

Let p(z) be a polynomial with real coefficients such that p(n) ∈ Z for all n ∈ Z. Show
that if the degree of p(z) is d then d!p(z) ∈ Z[z].

Solution: Follows from the Lagrange interpolation formula in the points 0, 1, . . . d.

p(z) =
d∑

j=0

∏
i 6=j(z − i)∏
i 6=q(j − i)

.


