Problem 1A. Score:

Suppose that x, y, p, ¢ are real numbers with z >0,y >0, p> 1, 1/p+1/q = 1. Prove
Young’s inequality
Pyl
oy < — + —.
p q

Solution: Fix y and consider xy — P /p—y?/q as a function of z. It is at most zero for z = 0
and for x large, so it is enough to check it is at most zero at all critical points. Differentiation
shows that the only critical point is z = y?~! when it is 0.

Problem 2A. Score:

Suppose f :[0,1] — R is a continuous function with

1
/ 2" f(x)dx =0
0
for all integers n with 1 < n < oco. Prove that f is identically 0.

Solution: We can say that f(x) is identically 0.
Let F(z) = fxl f(s)ds, so that

1
/ 2™F(z)dx =0
0

by integration by parts (since F'(1) = 0) for all m > 0. By linearity of the integral, F' is
orthogonal to polynomials:

/0 ' P(a)F(a)di = 0

whenever P is a polynomial. Let ¢ > 0 and let P be a polynomial which approximates f
within € on the interval [0, 1], by the Weierstrass approximation theorem. Then

[ Frae= [ Fwp@s [ Feee-pee < \/ [ F(x)zdx\/ [ o) Py




by orthogonality and the Cauchy-Schwarz inequality. By choice of P,

1 1
/ F(z)%dr < e / F(z)2dz.
0 0
Cancelling a square root factor shows that
1
/ F(z)%dr < €
0
and since € > 0 was arbitrary we have
1
/ F(z)*dz = 0.
0

Since F' is continuous it must vanish identically, and then f(z) = —F’(z) must vanish
identically as well.

Problem 3A. Score:

Suppose that X is an uncountable subset of the reals. Prove that there is a point of X
that is a limit of a sequence of distinct points of X.

Solution: If not, then for every point of z € X we can find an integer n, such that no
point of X is within 1/nx of z. Since X is uncountable, there is some integer n with an
uncountable number of points such that n, = n. But any 2 points of this set must be at
distance at least 1/n, so there are only countable number of them.

Problem 4A. Score:

(a). Show that there is a function f(z), holomorphic (analytic) near z = 0, such that

1

- 1
cos(25 +227)

f(2)"
for all z in a neighborhood of z = 0.
(b). Find the radius of convergence of its power series about z = 0. Your answer may

involve a root of an explicitly given polynomial.

Solution:



(a). From the power series for the cosine function, we have

5 .7\2 10
cos(z5—z7)zl—wju...:l_z__{_zl?_i_”'
2! 2
and therefore
1 , 410
C—OS(Z5—Z7)_ +7+....
Therefore WIHH) — 1 has a zero of order 10 at z = 0, and so
1
—1=2"%(2)

cos(2% + 227)

near z = 0, where g extends to a holomorphic function near z = 0 which does not vanish at

z = 0. We may then let
B log g(2))
f(z) =exp < 10 ,

and this is holomorphic at z = 0.

(b). We have cosz = 0 only at odd integer multiples of 7/2, and cosz = 1 only if
sin z = 0, which happens only at integer multiples of 7. Having removed the singularity at
z = 0, we have that f is holomorphic on the set where |2° 4+ 227| < 7/2, so the largest radius
of convergence is the positive root 7 of x® + 227 = 7/2, since |z| < r implies |2° 4+ 227 <
|2° +2|2|" < 75 4+ 2r" = 7/2, and cos(z® +227) = 0 when z = r.

Problem 5A. Score:

Let f(z) be a function holomorphic on the whole complex plane C such that f(z) € R
for all z € R. Show that f(z) = f(2) for all z € C.

Solution: L

Let g(z) = f(2). By Cauchy-Riemann condition ¢(z) is holomorphic and therefore h(z) =
f(2) — g(2) is also holomorphic on C. One the other hand, h(z) = 0 for any z € R. Again
Cauchy-Riemann equations imply that h(z) = 0.

Problem 6A. Score:

Let T be a linear transformation of a vector space V into itself. Suppose that 7™ = 0,
T™ # 0 for some positive integer m. Show that there is a vector x such that x, Tz,..., T"x
are linearly independent.



Solution:

Pick z so that 7™« # 0. If the points are linearly dependent, choose a relation a;7"x +
v +a, Tx = 0 with a; # 0 and k as large as possible. Applying T gives a similar relation
with a larger k, contradiction.

Problem 7A. Score:

Suppose n is a positive integer and let f be the function f(z) = (1,2, 2% ..2" ') from R
to R", Show that a hyperplane (of codimension 1) containing the points f(1), f(2), ..., f(n)
does not pass through the origin.

Solution: This is equivalent to showing that the points are linearly independent. So it is
enough to show that the determinant formed by their coordinates is nonzero. But this is a
Vandermonde determinant, which shows it is nonzero.

Problem 8A. Score:

Let A be an abelian group. Suppose that a € A and b € A have orders h and k, respectively,
and that h and £ are relatively prime.
Let r and s be integers. Show that if ra = sb then ra = sb = 0.

Solution: Since h and k are relatively prime, they generate the unit ideal in Z, so there
exist integers x and y such that xh 4+ yk = 1. Therefore,

ra = (xh + yk)ra = zh(ra) + yk(sb) = zr(ha) + ys(kb) =0,

and therefore also sb = 0.

Problem 9A. Score:

Let F be a field and let X be a finite set. Let R(X,F) be the ring of all functions from
X to F, endowed with the pointwise operations. What are the maximal ideals of R(X,F)?

Solution:
Let R = R(X,F). Forallz € X and a € F let ¢,,: X — F be the function given by
Ora(r) = a and ¢, 4(2") = 0 for all 2’ # x.



Let I be an ideal of R, and let S C X be the set
S={xeX: f(x)#0 for some f€I}.

Then, for all x € S, the ideal I contains the function ¢, ; since I contains some element f
with f(z) # 0; then
gbx,l = gbx,f(ac)*l : f el.

For any f: X — F that vanishes at all x ¢ S, we then have

F=) f@)fen€l;

€S

therefore I = {f: X - F: f(z) =0 for all z ¢ S}.

Conversely, for any S C X the set of all functions X — F supported on S is an ideal of
R. This therefore gives a bijection between the set of subsets of X and the set of ideals of
R.

Therefore the set of maximal ideals of R is the set

{ker¢p, 1z € X},

where ¢, : R — F is the function that takes f € R to f(x) € F (which is a ring homomor-
phism).

Problem 1B. Score:

Which of the following series converge? Give reasons.

1.
i (2n)!(3n)!
“—~ nl(4n)!

2.
= 1
Z nl+1/(logn)? '
n=2

Solution: The first converges by the ration test, and the second diverges by comparison
with the harmonic series.

Problem 2B. Score:




Suppose that f is a smooth function from the reals to the reals satisfying the differential

equation
2

f'(@) = sin(f(z))e™"
Prove that f is bounded.

Solution:
|f(a) — f(b)| < fab |f'(x)dr < [*°_e~*"dz which is finite, so f is bounded.

Problem 3B. Score:

Let the function f be given by f(z) = 0 if x is irrational and f(z) = 1/n? if z = m/n where
m,n are coprime integers and n > 0. Show that there is a point where f is continuous but
not differentiable.

Solution:

The function f is continuous at all irrational points, so in particular if the derivative
exists at some point it must be 0. Suppose z is the limit of the numbers z,, = 1/2' +1/2% +
<o+ 1/22" then (f(z) — f(zm))/(x — ) does not tend to 0 as m tends to infinity, so f is
not differentiable at x.

Problem 4B. Score:

Evaluate

/°° rsinT

— dz.
oo (@24 1)2
Solution:

The integrand is the imaginary part of the function

ZeZZ

f(2)2m7

so we will use contour integration to evaluate this integral.
For all (real) R > 1 let Cr be the positively oriented contour consisting of the interval
[—R, R] on the real axis, together with the semicircle |z| = R, Im z > 0. The function f is

holomorphic except for double poles at z = £i, so we need to find its residue at z = 7. Write
Zeiz

(z+14)2"

flz) = _9) where ¢(z) =



Then the residue of f at z = i is the coefficient of z — i in the Taylor series expansion of g(z)
about z = 7, which is

Q

(i) = ((6” +ize)(z +)* — 2(z + i)zeiz)

(z +14)* =i
(et —e)(20)? — 2(2d)ie!
- i
0= 4i%e~!
T
1
T de
Therefore L
CRf(z)dz:Qm-E =5

Since |e*?| = e"™* < 1 for all z in the upper half plane, we have |f(z)] < R/(R? — 1)? on
the semicircle in Cg. The length of this semicircle is 7R, so the contribution of the integral
along the semicircle to the contour integral is bounded in absolute value by 7 R?/(R? — 1)?,
which — 0 as R — oo.

Therefore, in the limit as R — oo, the integral along the semicircle approaches 0, and we

have - )
rsmax v

Problem 5B. Score:

Suppose that the complex function f is holomorphic and bounded for £(z) > 0. Prove
that it is uniformly continuous for R(z) > 1.

Solution:
By the Cauchy integral formula the derivative is bounded in the region R(z) > 1, so the
function is uniformly continuous in this region.

Problem 6B. Score:

Prove that a complex square matrix of finite order is diagonalizable. Give an example
of a square matrix of finite order (over some other algebraically closed field) that is not
diagonalizable.



Solution:
The minimal polynomial of a matrix of finite order n divides the polynomial ™ —1. Over
the complex numbers this has no repeated roots so the matrix is diagonalizable.

The matrix (é}) over a field of characteristic 2 has order 2 but is not diagonalizable.

Problem 7B. Score:

Find the number of conjugacy classes of complex 5 by 5 matrices such that all eigenvalues
are 1.

Solution:
Putting the matrix in Jordan normal form show that the number of conjugacy classes is
the number of partitions of 5, which is 7.

Problem 8B. Score:

Let G be a finite group and H be a subgroup.
(a) Show that the number of subgroups of G conjugate to H divides the index of H.
(b) Show that if

G=|JgHg™"

geG

then G = H.

Solution:
(a) Let X denote the set of all subgroups conjugate to H. Then G acts transitively on
X and the stabilizer of H € X coincides the normalizer N(H) of H. Then

o (6]
X =N T - a

(b) Since any subgroup contains the identity element we have

[ gHg™| < IX||H| - [X]+1.
geG

Since | X||H| < |G| we have 0 < 1 — | X|. This implies |X| = 1, H is normal and therefore
H=G.




Problem 9B. Score:

Let p(z) be a polynomial with real coefficients such that p(n) € Z for all n € Z. Show
that if the degree of p(z) is d then dlp(z) € Z[z].

Solution: Follows from the Lagrange interpolation formula in the points 0,1, .. .d.
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