5106422416

MATH 140 - FINAL 12/14/05 D. Geba

1.(2p) Show that a surface of revolution can always be parametrized so that

$$E = E(v), F = 0, G = 1.$$

2.(1p) Let S be a surface of revolution and C its generating curve. Let s be the arc length of C and denote by $\rho = \rho(s)$ the distance to the rotation axis of the point of C corresponding to s. Show that the area of S is

$$2\pi\int_0^I\rho(s)\,ds$$

where l is the length of C.

- 3.(2p) Show that the meridians of a torus are lines of curvature. (Parametrization: $X(u,v)=((a+r\cos u)\cos v,(a+r\cos u)\sin v,r\sin u)$
- 4.(1p) If the surface S_1 intersects the surface S_2 along the regular curve C, then the curvature k of C at $p \in C$ is given by

$$k^2 \sin^2 \theta \, = \, \lambda_1^2 + \lambda_2^2 - 2\lambda_1 \lambda_2 \cos \theta$$

where λ_1 and λ_2 are the normal curvatures at p, along the tangent line to C, of S_1 and S_2 , respectively, and θ is the angle made up by the normal vectors of S_1 and S_2 at p.

- 5.(2p) Prove that the cylinder and the saddle $z = x^2 y^2$ are not locally isometric.
- 6.(1p) Consider two meridians of a sphere C_1 and C_2 which make an angle ϕ at the point p. Take the parallel transport of the tangent vectors w_1 of C_1 , along C_1 , and w_2 of C_2 , along C_2 , from the initial point p to the point q where the two meridians meet again, obtaining respectively, w'_1 and w'_2 . Compute the angle between w'_1 and w'_2 .